
Edge Assisted Real-time Object Detection for Mobile
Augmented Reality

Luyang Liu
WINLAB, Rutgers University
North Brunswick, NJ, USA
luyang@winlab.rutgers.edu

Hongyu Li
WINLAB, Rutgers University
North Brunswick, NJ, USA

hongyuli@winlab.rutgers.edu

Marco Gruteser
WINLAB, Rutgers University
North Brunswick, NJ, USA

gruteser@winlab.rutgers.edu

ABSTRACT
Most existing Augmented Reality (AR) and Mixed Reality
(MR) systems are able to understand the 3D geometry of
the surroundings but lack the ability to detect and classify
complex objects in the real world. Such capabilities can be
enabled with deep Convolutional Neural Networks (CNN),
but it remains di�cult to execute large networks on mobile
devices. O�oading object detection to the edge or cloud is
also very challenging due to the stringent requirements on
high detection accuracy and low end-to-end latency. The
long latency of existing o�oading techniques can signi�-
cantly reduce the detection accuracy due to changes in the
user’s view. To address the problem, we design a system
that enables high accuracy object detection for commod-
ity AR/MR system running at 60fps. The system employs
low latency o�oading techniques, decouples the rendering
pipeline from the o�oading pipeline, and uses a fast object
tracking method to maintain detection accuracy. The result
shows that the system can improve the detection accuracy
by 20.2%-34.8% for the object detection and human keypoint
detection tasks, and only requires 2.24ms latency for object
tracking on the AR device. Thus, the system leaves more
time and computational resources to render virtual elements
for the next frame and enables higher quality AR/MR expe-
riences.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools; •Computer systems
organization → Real-time system architecture;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300116

KEYWORDS
Edge Computing, Mobile Augmented Reality, Real-time Ob-
ject Detection, Convolutional Neural Network, Adaptive
Video Streaming

ACM Reference format:
Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted
Real-time Object Detection for Mobile Augmented Reality. In Pro-
ceedings of The 25th Annual International Conference on Mobile
Computing and Networking, Los Cabos, Mexico, October 21–25, 2019
(MobiCom ’19), 16 pages.
https://doi.org/10.1145/3300061.3300116

1 INTRODUCTION
Augmented Reality, and in particular Mixed Reality systems,
promise to provide unprecedented immersive experiences in
the �elds of entertainment, education, and healthcare. These
systems enhance the real world by rendering virtual overlays
on the user’s �eld of view based on their understanding of
the surroundings through the camera. Existing AR headsets
further promise to support an unprecedented immersive
experience called Mix Reality. Compared to tradition AR
system, MR requires the system to have a comprehensive
understanding of di�erent objects and instances in the real
world, as well as more computation resources for rendering
high quality elements. Reports forecast that 99millionAR/VR
devices will be shipped in 2021 [1], and that the market will
reach 108 billion dollars [2] by then.
Existing mobile AR solutions such as ARKit and ARCore

enable surface detection and object pinning on smartphones,
while more sophisticated AR headsets such as Microsoft
HoloLens [3] and the announced Magic Leap One [4] are
able to understand the 3D geometry of the surroundings and
render virtual overlays at 60fps. However, most existing AR
systems can detect surfaces but lack the ability to detect and
classify complex objects in the real world, which is essential
for many new AR and MR applications. As illustrated in Fig-
ure 1, detecting surrounding vehicles or pedestrians can help
warn a driver when facing potentially dangerous situations.
Detecting human body key points and facial landmarks allow
render virtual overlays on the human body, such as a virtual
mask on the face or a Pikachu sitting on the shoulder. Such

https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

(a) Dangerous tra�c warning. (b) Pickachu sits on
her shoulder.

Figure 1: New AR applications supported by object de-
tection algorithms.

capabilities could be enabled with CNN, who have shown
superior performance in the object detection task [5], but it
remains di�cult to execute large networks on mobile devices
with low latency, for example, TensorFlow Lite [6] requires
more than one second to execute an accurate CNN model
(e.g. ResNet Faster RCNN model) on one single frame.

O�oading object detection to the edge or cloud is also
very challenging due to the stringent requirements on high
detection accuracy and low end-to-end latency. High quality
AR devices require the system to not only successfully clas-
sify the object, but also localize the object with high accuracy.
Even detection latencies of less than 100ms can therefore
signi�cantly reduce the detection accuracy due to changes
in the user’s view—the frame locations where the object was
originally detected may no longer match the current location
of the object. In addition, as mixed reality graphics approach
the complexity of VR, one can also expect them to require
less than 20ms motion-to-photon latency, which has been
found to be necessary to avoid causing user motion sickness
in VR applications [7]. Furthermore, compared to traditional
AR that only renders simple annotations, mixed reality re-
quires rendering virtual elements in much higher quality,
which leaves less latency budget for the object detection task.

Most existing research has focused on enabling high frame
rate object detection on mobile devices but does not consider
these end-to-end latency requirements for high quality AR
and mixed reality systems. Glimpse [8] achieves 30fps ob-
ject detection on a smartphone by o�oad trigger frames to
the cloud server, and tracks the detected bounding boxes on
remaining frames locally on the mobile devices. DeepDeci-
sion [9] designs a framework to decide whether to o�oad
the object detection task to the edge cloud or do local infer-
ence based on current network conditions. However, they
all require more than 400ms o�oading latency and also re-
quire large amounts of local computation, which leaves little
resources to render high-quality virtual overlays. No prior

work, can achieve high detection accuracy in moving sce-
narios or �nish the entire detection and rendering pipeline
under 20ms.

To achieve this, we propose a system that signi�cantly re-
duces the o�oading detection latency and hides the remain-
ing latency with an on-device fast object tracking method. To
reduce o�oading latency, it employs a Dynamic RoI Encoding
technique and a Parallel Streaming and Inference technique.
The Dynamic RoI Encoding technique adjusts the encoding
quality on each frame to reduce the transmission latency
based on the Regions of Interest (RoIs) detected in the last
o�oaded frame. The key innovation lies in identifying the
regions with potential objects of interest from candidate re-
gions on prior frames. It provides higher quality encodings
in areas where objects are likely to be detected and uses
stronger compression in other areas to save bandwidth and
thereby reduce latency. The Parallel Streaming and Inference
method pipelines the streaming and inference processes to
further reduce the o�oading latency. We propose a novel
Dependency Aware Inference method to enable slice-based
inference of CNN object detection models without a�ecting
the detection result. On the AR device, the system decouples
the rendering pipeline from the o�oading pipeline instead
of waiting for the detection result from the edge cloud for ev-
ery frame. To allow this, it uses a fast and lightweight object
tracking method based on the motion vector extracted from
the encoded video frames and the cached object detection re-
sults from prior frames processed in the edge cloud to adjust
the bounding boxes or key points on the current frame in the
presence of motion. Taking advantage of the low o�oading
latency, we �nd this method can provide accurate object
detection results and leave enough time and computation
resources for the AR device to render high-quality virtual
overlays. Besides, we also introduce an Adaptive O�oading
technique to reduce the bandwidth and power consumption
of our system by deciding whether to o�oad each frame to
the edge cloud to process based on the changes of this frame
compare to the previous o�oaded frame.

Our system is able to achieve high accuracy object detec-
tion for existing AR/MR system running at 60fps for both the
object detection and human keypoint detection task. We im-
plement the end-to-end AR platform on commodity devices
to evaluate our system. The results show that the system
increases the detection accuracy by 20.2%-34.8%, and reduce
the false detection rate by 27.0%-38.2% for the object detec-
tion and human keypoint detection tasks. And the system
requires only 2.24ms latency and less than 15% resources
on the AR device, which leaves the remaining time between
frames to render high quality virtual elements for high qual-
ity AR/MR experience.
The contributions of this work can be summarized as

follows:

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

Figure 2: Latency Analysis.

• Quantifying accuracy and latency requirements in an
end-to-end AR system with the object detection task
o�oaded.

• Proposing a framework with individual rendering and
o�oading pipelines.

• Designing a Dynamic RoI Encoding technique to dy-
namically determine the Regions of Interest in order
to reduce the transmission latency and bandwidth con-
sumption in the o�oading pipeline.

• Developing a Parallel Streaming and Inference method
to pipeline the streaming and inference processes to
further reduce the o�oading latency.

• Creating a Motion Vector Based Object Tracking tech-
nique to achieve fast and lightweight object tracking
on the AR devices, based on the embedded motion
vectors in the encoded video stream.

• Implementing and evaluating an end-to-end system
based on commodity hardware and showing that the
proposed system can achieve 60fps AR experience with
accurate object detection.

2 CHALLENGES AND ANALYSIS
O�ering sophisticated object detection in mobile augmented
reality devices is challenging because the task is too compu-
tationally intensive to be executed on-device and too band-
width intensive to be easily o�oaded to the edge or cloud.
Most lightweight object detection models require more than
500ms processing time on current high-end smartphones
with GPU support. Even on a powerful mobile GPU SoCs
(such as the Nvidia Tegra TX2 which is reportedly used on
the Magic Leap One), object detection on an HD frame still
takes more than 50ms. This is too long to process every frame
on a 60Hz system and likely to lead to energy consumption
and heat dissipation issues on the mobile device.

Latency Analysis.When o�oading the detection tasks
tomore powerful edge or cloud platforms the image encoding
and transfer steps add signi�cant latency. Longer latency not
only reduces the detection accuracy but also degrades the
AR experience. To better understand these challenges, we
model the end-to-end latency of a baseline AR solution with
o�oading as follows:

te2e = tof f load + tr ender

tof f load = tstr eam + tinf er + ttrans_back

tstr eam = tencode + ttrans + tdecode

(1)

As shown in Figure 2, the AR device (i.e. smartphone or
AR headset) is assumed to be connected to an edge cloud
through a wireless connection (i.e. WiFi or LTE). The blue
arrow illustrates the critical path for a single frame. Let te2e
be the end-to-end latency, which includes the o�oading
latency tof f load and the rendering latency tr ender . tof f load
is determined by three main components: (1) the time to
stream a frame captured by the camera from the AR device
to the edge cloud tstr eam = T2 �T1, (2) the time to execute
the object detection inference on the frame at the edge cloud
tinf er = T3 �T2, and (3) the time to transmit the detection
results back to the AR device ttrans_back = T4�T3. To reduce
the bandwidth consumption and streaming latency tstr eam ,
the raw frames are compressed to H.264 video streams on the
device and decoded in the edge cloud [10]. Therefore, tstr eam
itself consists of encoding latency (tencode), transmission
latency (ttrans) and decoding latency (tdecode).
We conduct an experiment to measure the latency and

its impact on detection accuracy in the entire pipeline, and
�nd that it is extremely challenging for existing AR sys-
tem to achieve high object detection accuracy in 60fps dis-
play systems. In the experiment, we connect a Nvidia Jetson
TX2 to an edge cloud through two di�erent WiFi protocols
(WiFi-5GHz, WiFi-2.4GHz) and stream encoded frames of
a video [11] at 1280x720 resolution from the Jetson to the
edge cloud for inference. The edge cloud is a powerful PC
equipped with a Nvidia Titan Xp GPU.

Detection Accuracy Metrics. To evaluate the detection
accuracy in terms of both object classi�cation and localiza-
tion, we calculate the IoU of each detected bounding box and
its ground truth as the accuracy of this detection. We also
de�ne the percentage of detected bounding boxes with less
than 0.75 IoU [12] (the strict detection metric used in the
object detection task) as false detection rate. Similarly, we
use the Object Keypoint Similarity (OKS) [13] metric to mea-
sure the accuracy of each group of keypoints in the human
keypoint detection task.
We �nd that low latency object detection is highly ben-

e�cial for achieving a high detection accuracy. Figure 3(a)
shows the impact of tof f load on the false detection rate. We

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

1 2 3

Offloading Latency (# of frame time)

0

20

40

60

F
a

ls
e

 D
e

te
c

ti
o

n
 R

a
te

 (
%

)

(a) False detection rate with respect
to di�erent o�oading latency.

ResNet-50 ResNet-101 VGG-16

Backbone Network

0

5

10

15

20

25

30

35

In
fe

re
n

c
e
 L

a
te

n
c
y
 (

m
s
)

(b) Inference latency of Faster R-
CNN for di�erent backbone CNN
networks.

0 20 40 60 80 100

Encoding Bitrate (mbps)

0

5

10

15

20

25

T
ra

n
s

m
is

s
io

n
 L

a
te

n
c

y
 (

m
s

)

WiFi-2.4GHz
WiFi-5GHz

(c) Transmission latency of di�er-
ent encoding bit rate in two di�erent
WiFi networks.

0 10 20 30 40 50

Encoding Bitrate (mbps)

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y

1280x720 960x540 640x360

(d) Encoding Bitrate vs Inference Ac-
curacy for two di�erent resolutions.

Figure 3: Latency and accuracy analysis.

can �nd that even a latency of a frame time (16.7ms) will
increase the false detection rate from 0% to 31.56%. This is
because during the time that the detection result is sent back
to the AR device, the user’s view may have changed due to
user motion or scene motion.
However, it is very challenging to achieve very low la-

tency object detection with commodity infrastructures. We
�rst measure the latency spend on inference (tinf er), and
show the result in Figure 3(b). To push the limit of tinf er on
the edge cloud, we use TensorRT [14] to optimize three pre-
trained Faster R-CNN models1 using INT8 precision. These
three models use three di�erent backbone CNN networks
(ResNet-50, ResNet-101, and VGG-16) for feature extraction.
As shown in Figure 3(b), we can observe that all three models
require more than 10ms for object detection.

Figure 3(c) shows the additional latency imposed by trans-
mitting a single HD frame with di�erent encoding bitrate
from the AR device to the edge cloud (ttrans) through two
di�erent WiFi connections (WiFi-2.4GHz and WiFi-5GHz).
Here, bitrate is a codec parameter that determines the quality
of video encoding. Encoding with small bitrate will result in
a lossy frame after decoded. We can observe that the average
ttrans requires to transmit an encoded frame with 50mbps
bitrate is 5.0ms on 5GHz WiFi and 11.2ms on 2.4GHz WiFi.

1We choose Faster R-CNN because it is much more accurate than other
alternatives, such as SSD and R-FCN.

Inference plus transmission latency therefore already ex-
ceeds the display time for one frame. One may think that
decreasing resolution or encoding bitrate may reduce the
transmission latency, however, this also reduces the detec-
tion accuracy of an object detection model.

To validate this issue, we show the detection accuracy of
the ResNet-50 based Faster R-CNN model under di�erent
encoding bitrate and resolution in Figure 3(d). In this case,
we use the detection result on raw video frames (without
video compression) as the ground truth to calculate the IoU.
The result shows that it requires at least 50Mbps encoding
bitrate to achieve a high detection accuracy (i.e. 90). We
also compare the detection result on two lower resolution
frames (960x540 and 640x320), and show that lower resolu-
tion has much worse detection accuracy than the original
1280x720 frame. Lowering resolution therefore also does not
improve detection accuracy. Note that this accuracy drop
can be stacked together with the drop caused by the long
o�oading latency to get a much lower detection accuracy.
Based on the above analysis, we �nd that it is extremely

challenging for existing AR system to achieve high object
detection accuracy in 60fps display systems. This can lead to
poor alignment of complex rendered objects with physical
objects or persons in the scene.

3 SYSTEM ARCHITECTURE
To overcome these limitations, we propose a system that
is able to achieve high accuracy object detection with little
overhead on the rendering pipeline of mobile augmented
reality platforms, by reducing the detection latency with low
latency o�oading techniques and hiding the remaining la-
tency with an on-device fast object tracking method. Figure 4
shows the architecture of our proposed system. At a high
level, the system has two parts connected through a wireless
link: a local tracking and rendering system on amobile device
(a smartphone or an AR headset) and a pipelined objected de-
tection system on the edge cloud. To hide the latency caused
by o�oading the object detection task, our system decouples
the rendering process and the CNN o�oading process into
two separate pipelines. The local rendering pipeline starts to
track the scene and render virtual overlays while waiting for
object detection results, and then incorporates the detection
results into the tracking for the next frame when they arrive.

As shown in Figure 4, both pipelines start with a Dynamic
RoI Encoding technique that not only compresses raw frames
for the CNN o�oading pipeline (yellow arrow), but also
provides its meta data for the on-device tracking module
in the tracking and rendering pipeline (green arrow). Dy-
namic RoI Encoding is an e�cient video encoding mechanism
that is able to largely reduce the bandwidth consumption
and thereby reduce the transmission latency to the edge

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

Figure 4: System Architecture.

cloud, while maintaining detection accuracy. The key idea
of Dynamic RoI Encoding (DRE) is to decrease the encoding
quality of uninteresting areas in a frame and to maintain
high quality for candidate areas that may contain objects of
interest based on earlier object detection results. Due to the
spatiotemporal correlation over subsequent video frames,
the system uses the intermediate inference output of the last
o�oaded frame as candidate areas. These candidate areas
are where it maintains high encoding quality and are also
referred to as regions of interest (RoIs).
In the CNN o�oading pipeline as illustrated by the yel-

low blocks and arrow, we propose an Adaptive O�oading
and a Parallel Streaming and Inference (PSI) technique to fur-
ther reduce the latency and bandwidth consumption of the
o�oading task.
Adaptive O�oading is able to reduce the bandwidth and

power consumption of our system by deciding whether to
o�oad each frame to the edge cloud based on whether there
are signi�cant changes compared to the previous o�oaded
frame. For e�ciency, this technique reuses the macroblock
type (inter-predicted blocks or intra-predicted blocks) em-
bedded in the encoded video frame from the Dynamic RoI
Encoding to identify signi�cant changes that warrant o�oad-
ing for object detection.

Once the frame ismarked for o�oading, the Parallel Stream-
ing and Inference (PSI) method parallelizes the transmission,
decoding and inference tasks to further reduce the o�oading
latency. It splits a frame into slices and starts the convolu-
tional neural network object detection task as soon as a slice
is received, rather than waiting for the entire frame. This
means that reception, decoding, and object detection can pro-
ceed in parallel. To solve the dependency issues across slices
during object detection, we introduce a novel Dependency

Aware Inference mechanism that determines the region on
each feature map that has enough input features to calculate
after each slice is received, and only calculates features lie
in this region. The detection results are sent back to the AR
device and cached for future use.
In the tracking and rendering pipeline (green blocks and

arrow in Figure 4), instead of waiting for the next detection
result, we use a fast and light-weight Motion Vector based
Object Tracking (MvOT) technique to adjust the prior cached
detection results with viewer or scene motion. Compared
to traditional object tracking approaches that match image
feature points (i.e. SIFT and Optical Flow) on two frames,
this technique again reuses motion vectors embedded in the
encoded video frames, which allows object tracking without
any extra processing overhead. Given the aforementioned
optimizations to reduce o�oading latency, tracking is needed
only for shorter time frames and a lightweight method can
provide su�ciently accurate results. Using such a lightweight
method leaves enough time and computational resources for
rendering on the device, in particular to render high-quality
virtual overlays within the 16.7ms (for 60Hz screen refresh
rate) latency requirement.

4 DYNAMIC ROI ENCODING
Dynamic RoI Encoding reduces the transmission latency of
the o�oading pipeline while maintaining a high object de-
tection accuracy. Transmitting the frames with high visual
quality from the mobile to the edge/cloud leads to a high
bandwidth consumption and thereby transmission latency.
Dynamic RoI Encoding selectively applies higher degrees of
compression to parts of the frame that are less likely to con-
tain objects of interest and maintains high quality in regions
with candidate objects. This largely reduces the size of en-
coded frames with only a small tradeo� in object detection
accuracy. The key lies in identifying the regions with poten-
tial objects of interest, which we will refer to as regions of
interest. The design exploits candidate regions that have been
generated internally by the convolutional neural network on
prior frames. Note that Dynamic RoI Encoding leverages the
existing RoI encoding technique that is widely used in video
streaming standards but adds a novel, e�ective mechanism
to dynamically determine the RoIs for each frame.

4.1 Preliminaries
RoI Encoding.While the building block of RoI encoding has
been used in other applications, current methods to select
regions of interest are not suitable for this augmented reality
object detection task. RoI encoding is already supported
by most video encoding platform, which allows the user to
adjust the encoding quality (i.e. Quantization Parameter - QP)
for each macroblock in a frame. It has been largely adopted

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

(a) Detect RoIs on the last o�oaded frame. (b) Mark macroblocks that overlap with RoIs. (c) Change encoding quality on the current frame.

Figure 5: Three main procedures of RoI encoding.

in surveillance camera video streaming and 360-degree video
streaming, where the RoIs are pre-de�ned or much easier to
predict based on user’s �eld of view. For example, the RoI
can be derived as the area that a user chooses to look at.
This region would then receive near-lossless compression to
maintain quality while lossier compression is used for the
background or non-RoI area. Augmented reality includes use
cases that should draw users attention to other areas of the
view and therefore regions of interest cannot just be based
on the current objects a user focuses on.

Object Detection CNNs.Due to impressive performance
gains of state-of-the-art object detection is largely based
on CNN. While several networks exist (e.g., Faster-RCNN,
Mask-RCNN), they share a similar architecture, which �rstly
utilizes a CNN network to extract the features of the in-
put image, then internally propose candidate regions (also
called regions of interest) and their corresponding possibili-
ties through a region proposal network, and �nally perform
and re�ne the object classi�cation. The CNN network is also
called backbone network and there are multiple options for
its implementation, including VGG, ResNet, and Inception.
The region proposal network usually generates hundreds of
regions of interest which are potential objects locations in
the frame.
Note that the term RoIs is used both in object detection

and video compression. For the object detection task, RoIs are
usually the output proposals of the region proposal network.
While in the �eld of video compression, RoIs are the areas
inside video frames that may contain more visual informa-
tion and will be encoded with fewer losses. This presents an
opportunity to exploit this similarity and tie these concepts
together.

4.2 Design
In order to reduce the bandwidth consumption and data
transmission delay, we design a dynamic RoI encoding mech-
anism that links internal RoI generated in the object detection
CNNs to the image encoder. Speci�cally, it uses the CNN
candidate RoIs generated on the last processed frame for

determining encoding quality on the next camera frame. It
accommodates a degree of motion by slightly enlarging each
region of interest by one macroblock but largely bene�ts
from the similarity between two frames captured a short mo-
ment apart in time. While one may expect that even greater
bandwidth savings are possible by choosing RoIs only in
areas where object were detected on the previous frame, this
approach frequently misses new objects that appear in the
scene because the image areas containing these objects end
up too heavily compressed. Changes in such a heavily com-
pressed area, however, are often still identi�ed as part of the
much larger set of candidate RoIs of the CNN, the outputs of
the region proposal network. We therefore use the RoIs from
the region proposal network, �ltered with a low minimum
prediction con�dence threshold (i.e., 0.02). A sample output
of our RoI detection method is shown in Figure 5(a).
In order to use these selected RoIs to adjust the encod-

ing quality on the current frame, we calculate a QP map
that de�nes the encoding quality (QP) for each macroblock
on the frame. The QP map indicates for each macroblock
whether it overlaps with any RoI. In the example in Fig-
ure 5(b), all overlapping macroblocks are marked in blue and
non-overlapping ones in grey. Since object detection is of-
�oaded to the edge, cloud the object detection pipeline sends
this QP map back to the AR device, which uses it for the next
captured frame. As shown in Figure 5(c), the encoder applies
lossy compression on those non-overlapping (grey) regions,
while maintaining high visual quality on overlapping (blue)
regions.2 Speci�cally, our implementation reduces the QP
value by 5 for lossy encoding.

5 PARALLEL STREAMING AND
INFERENCE

We o�oad the heavy deep neural network computation to
the edge cloud. This requires transmitting the camera frames

2Note that Figure 5(b) and 5(c) uses a grid of 16x9 macroblocks for illustra-
tion purposes. In the H.264 standard, a macroblock is usually 16x16 pixels,
so a 1280x720 resolution frame has 80x45 macroblocks.

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

Figure 6: Parallel Streaming and Inference.

from the mobile side to the edge cloud. Conventional archi-
tectures, however, can only start the object detection process
when the entire frame is received, as the deep neural net-
works are designed with neighborhood dependency. This
will add to the latency, since both the streaming and the in-
ference process take considerable time and run sequentially,
as discussed in section 2. To mitigate this long latency, we
propose a Parallel Streaming and Inference technique which
enables inferences on slices of a frame, so that the streaming
and inference can be e�ectively pipelined and executed in
parallel. Since streaming and inference consume di�erent
resources that do not a�ect each other: transmission con-
sumes bandwidth on the wireless link, decoding uses edge
cloud hardware decoders, and the neural network inference
mainly consumes GPUs or FPGAs resources on the edge
cloud, this technique e�ectively use multiple resources to
execute di�erent tasks in parallel, which can signi�cantly
reduce the latency.
The challenge for deep neural networks to execute on

a slice of frame is the dependency among inputs, which is
caused by the neuron operations that take neighborhood
values as input. To address this problem, we propose De-
pendency Aware Inference to automatically analyze the
dependencies of each layer, and only infer on the regions
which have enough neighbor values. Figure 6 shows how
the Parallel Streaming and Inference method reduces the of-
�oading latency. Compared with encoding and inference on
the entire frame, we encode the whole image into multiple
slices, each slice will be sent to the edge cloud immediately
after it is encoded. The edge cloud will start to infer once it
receives and decodes the �rst slice of the frame.

5.1 Dependency Aware Inference
Due to the computational dependency among neighbor val-
ues of the input frame, simply running inference and then
merging based on slices of a frame will cause signi�cant
wrong feature values near boundaries. To solve this problem,
we design a Dependency Aware Inference technique which
only calculates the regions of feature points in each layer
with enough input feature points available. Dependencies
are caused by the convolutional layers (as well as pooling
layers sometimes), where the feature computation around
the boundary of each frame slice requires also adjacent slices.

Figure 7: Dependency Aware Inference.

This e�ect propagates for the standard convolutional layers
and pooling layers structure. We experimentally �nd that the
boundary feature computation of the last convolutional layer
on VGG-16, Resnet-50, and Resnet-101, requires 96, 120, 240
pixels respectively. One naive solution for parallelizing infer-
ence is to recompute such regions when the next slice arrives
at the edge cloud. However, this requires signi�cant extra
computations for every convolutional layer, which in�ates
the inference latency.

To solve this dependency issue, we calculate the size of the
valid region for the output feature map of each layer, and only
infer based on valid regions. Valid regions are de�ned as the
areas of each convolutional feature map that have enough
input features available and their sizes can be determined in
equation 2.

Hout
i = (H in

i � 1)/S + 1

W out
i =

(W in
i �(F�1)/2�1

S + 1, i = 1, 2, ...,n � 1
W in
i �1
S + 1, i = n

(2)

Hout
i andW out

i are the height and width of valid region of
the output feature map of a convolutional layer after slice
i arrives at the edge cloud (i is the number of slice, n is the
number of slices we divided.). Similarly, H in

i andW in
i are

the valid region on the input feature map of this convolu-
tional layer. We also de�ne the spatial extent and stride of
this conv layer as F and S correspondingly3. Note that we
empirically set n to 4 in our system to archive a balance
between transmission and inference.
Figure 7 illustrates the concept of the Dependency Aware

Inference technique. Since our system cuts the whole frame
into 4 slices with 1/4 of the original width, Hout

i of one conv
layer is constant and only a�ected by H in

i and S as shown
in the �rst equation, whileW out

i keeps increasing as more

3Note that we assume the number of zero padding of a conv layer is equal
to (F � 1)/2 in most cases.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

(a) Cached detection result of the last o�oaded
frame.

(b) Motion vectors extracted from the current en-
coded frame.

(c) Shift the bounding box based on the motion
vectors.

Figure 8: Main procedures of RoI encoding.

slices arrive at the edge cloud. For example, in the case of
a standard 3x3 convolutional layer with stride 1, we will
not calculate the very right column of features for slice 1,2
and 3, due to those features requiring inputs from the next
slice of the frame. As shown in Figure 7, our system only
calculates the red regions in each conv layer after slice 1
arrives at the edge cloud. As more slices arrive, the valid
region keeps increasing on each feature map, and the system
continuously calculates those new features included in the
valid region. We can observe that the number of features that
can be calculated for slice 1 keeps decreasing as the network
goes deeper. Slice 2 and 3 are able to compute more features
than slice 1, and all the remaining features will be calculated
after slice 4 arrives. Note that we also de�ned similar logic to
process pooling layers, whichwill not calculate the rightmost
column in the output feature map for slice 1,2 and 3 if the
input feature map is an odd number.

6 MOTION VECTORS BASED OBJECT
TRACKING

In this section, we introduce Motion Vector Based Object
Tracking that is able to estimate the object detection result
of the current frame using the motion vector extracted from
the encoded video frames and the cached object detection
result from the last o�oaded frame.

Motion vectors are broadly used by modern video encod-
ing approaches (e.g. H.264 and H.265) to indicate the o�set
of pixels among frames to achieve a higher compression rate.
Commodity mobile devices are usually equipped with spe-
ci�c hardware to accelerate video encoding and compute the
motion vectors. Figure 8 shows the key steps of the Motion
Vector based Fast Object Tracking technique. For each new
frame captured by the camera, the system passes the frame
to the Dynamic RoI Encoding session. The encoder uses the
frame corresponding to the last cached detection result (Fig-
ure 8(a)) as its reference frame for inter-frame compression.
After that, the system extracts all motion vectors from the

encoded frame, as illustrated in Figure 8(b). To track the ob-
ject in the current frame, we get the bounding box of this
object in the last o�oaded frame, calculate the mean of all
motion vectors that reside in the bounding box, and use it
to shift the old position (in blue) to the current position (in
yellow), as illustrated in Figure 8(c). Similarly, we also ap-
ply this technique to the human keypoint detection task, in
which we calculate the mean motion vector in the closest
9x9 macroblock region of each keypoint, and use it to shift
each keypoint.

In our experiment, we �nd that the accuracy of the motion
vector decreases as the time interval between the current
frame and reference frame increases. However, due to the
low o�oading latency achieved by the proposed latency
optimization techniques, we found that this method can
provide accurate object detection results with very short
latency. The system we implemented on Nvidia Jetson TX2
requires only 2.24ms for this motion tracking process, which
leaves enough time and computation resources for the AR
device to render high-quality virtual overlays within the
16.7ms latency requirement. Note that this technique cannot
hide the latency to �rst detection of an object. Since this is
already well under the response time that human observers
notice, this technique focuses on accurate tracking so that
virtual objects can follow the motion of physical ones.

7 ADAPTIVE OFFLOADING
To e�ectively schedule the o�oading pipeline, we propose an
Adaptive O�oading mechanism to determine which encoded
frame should be o�oaded to the edge cloud. The Adaptive
O�oading mechanism is designed based on two principles:
(1) a frame will only be eligible to be o�oaded if the previous
o�oaded frame has been completely received by the edge
cloud, (2) a frame will be considered for o�oading if it di�ers
signi�cantly from the last o�oaded frame. The �rst principle
eliminates frames queuing up to avoid network congestion,
while the second principle ensures that only necessary views

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

with enough changes will be o�oaded to minimize commu-
nication and computing costs. Therefore, if a frame satis�es
both principles, it will be o�oaded to the edge cloud.

The �rst principle requires the system to be aware of the
transmission latency of previous o�oaded frames. The edge
cloud therefore signals the AR device once it receives the last
slice of the o�oaded frame. Based on this time di�erence
between the reception time and the transmission time, the
AR calculates the transmission latency and uses it to decide
whether to o�oad the next encoded frame.

To ful�ll the second principle, it is necessary to estimate
the di�erences between two frames. We evaluate such dif-
ferences from two perspectives with either of them satisfy-
ing the second principle: (1) whether large motions (includ-
ing both user’s motion and objects’ motion) occur among
the frames, (2) whether there are considerable amounts of
changed pixels appearing in the frame. The motion of a
frame is quanti�ed by the sum of all the motion vectors, and
the number of new pixels is estimated by the number of
intra-predicted macroblocks within an encoded frame. Be-
tween the two types of macroblocks (inter-predicted block
and intra-predicted block) within an encoded frame, we ex-
perimentally �nd that intra-predicted macroblocks usually
refer to newly appeared regions, since these macroblocks fail
to �nd reference pixel blocks in the reference frame during
encoding.

8 IMPLEMENTATION
Our implementation is entirely based on commodity hard-
ware and consists of around 4000 lines of code.

8.1 Hardware Setup
In the hardware setup, we use a mobile development board
Nvidia Jetson TX2 as the AR device, which contains the same
mobile SoC (Tegra TX2) as the Magic Leap One AR glass.
The Jetson board is connected to a TP-Link AC1900 router
through aWiFi connection. We emulate an edge cloud with a
PC equipped with an Intel i7-6850K CPU and a Nvidia Titan
XP GPU, which connects to router through a 1Gbps Ethernet
cable. Both the AR device and the desktop PC run an Ubuntu
16.04 OS.

8.2 Software Implementation
We implement our proposed techniques based on Nvidia
JetPack[15], NvidiaMultimedia API [16], Nvidia TensorRT [14],
and the Nvidia Video Codec SDK [17].

Client Side. We implement the client side functions on
the Nvidia Jetson TX2 with its JetPack SDK. The implemen-
tation follows the design �ow in Figure 4. We �rst create a
camera capture session running at 60fps using the JetPack

Camera API, and register a video encoder as its frame con-
sumer using the Multimedia API. To realize the RoI encoding
module, we use the setROIParams() function to set the RoIs
and their QP delta value for encoding the next frame, based
on the RoIs generated on the edge cloud. We also enable the
external RPS control mode to set the reference frame of each
frame to the source frame of the current cached detection
results, so that the extracted Motion Vectors can be used to
shift the cached detection results. To implement the Parallel
Streaming and Inference module, we enable the slice mode
for the video encoder and use the setSliceLength() func-
tion with a proper length to let the encoder split a frame
into four slices. After frame slices are encoded, the system
extracts motion vectors and macroblock types from each
slice using the getMetadata() function. This information is
used as the input for Adaptive O�oading and MvOT in two
di�erent threads (Rendering thread and o�oading thread).
In the o�oading thread, if the Adaptive O�oading module
decides to o�oad this frame, its four slices will be sent out
to the server through the wireless link one by one. In the
rendering thread, the Motion Vector based Object Tracking
module uses the extracted motion vectors and cached de-
tection results to achieve fast object tracking. The system
then renders virtual overlays based on the coordinates of the
detection result.

Server Side. The server side implementation contains
two main modules: Parallel Decoding and Parallel Inference,
which are designed to run in two di�erent threads to avoid
blocking each other. In the Parallel Decoding thread, the
system keeps waiting for the encoded frame slices from the
AR device. Once a slice is received, it immediately passes it to
the video decoder for decoding in asynchronousmode, which
won’t block the system to continue receiving other slices.
We use Nvidia Video Codec SDK to take advantage of the
hardware accelerated video decoder in the Nvidia Titan Xp
GPU. After each slice is decoded, the system passes it to the
parallel inference thread in a callback function attached to
the decoder. The Parallel Inference module is implemented
using the Nvidia TensorRT, which is a high-performance
deep learning inference optimizer designed for Nvidia GPUs.
To push the limit of inference latency on the server side PC,
we use the INT8 calibration tool [18] in TensorRT to optimize
the object detection model, and achieves 3-4 times latency
improvement on the same setup. To achieve the proposed
Dependency Aware Inference method, we add a PluginLayer
before each convolutional layer and pooling layer to adjust
their input and output regions based on Equation 2. After
the inference process of a whole frame, the edge cloud sends
the detection results as well as the QP map back to the AR
device for future processing.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

9 EVALUATION
In this section, we evaluate the performance of the system
in terms of detection accuracy, detection latency, end-to-
end tracking and rendering latency, o�oading latency, band-
width consumption, and resource consumption. The results
demonstrate that our system is able to achieve both the high
accuracy and the low latency requirement for AR headsets
and hand-held AR system running at 60fps, under di�erent
network background tra�c loads. The result shows that the
system increases the detection accuracy by 20.2%-34.8%, and
reduce the false detection rate by 27.0%-38.2% for the object
detection and human keypoint detection tasks, respectively.
To achieve this high accuracy, the system reduces the o�oad-
ing latency by 32.4%-50.1% and requires only an average of
2.24ms to run the MvOT method on the AR device, which
leaves the remaining time between frames to render high
quality virtual elements.

9.1 Experiment Setup
We use the setup and implementation described in Section 8
to conduct experiments. Two di�erent detection tasks are de-
signed to evaluate the performance of our system: an object
detection task and a keypoint detection task. Both of them
follow the �ow in Figure 4. In the �rst task, the edge cloud
runs a Faster R-CNN object detection model with ResNet-50
to generate bounding boxes of objects for each o�oaded
frame. In the second task, the edge cloud runs a Keypoint
Detection Mask R-CNN model with ResNet-50 to detect the
human body keypoints. Based on the detection result, the
AR device renders a complex 3D cube on the user’s left hand,
as shown in Figure 10. Both detection tasks run local ob-
ject tracking and rending at 60fps on the AR device. We
use two di�erent WiFi connections (2.4GHz and 5GHz) as
the wireless link between the AR device and the edge cloud.
The bandwidths measured with iperf3 are 82.8Mbps and
276Mbps correspondingly. Compared to the �rst task, the
second task incurs higher rendering loads on the AR device.
For repeatable experiments, we extract raw YUV frames

at 1280x720 resolution from ten videos4 in the Xiph video
dataset [19] as the camera input for evaluation. In total, 5651
frames have been processed in our evaluation. Note that
we use pre-recorded videos instead of the raw camera feed
because the pre-recorded video frames usually contains com-
plex scenes with multiple objects and di�erent camera mo-
tions, which are much more challenging than normal camera
feed. The experiments strictly follow the same work �ow

4DrivingPOV, RollerCoaster, BarScene, FoodMarket, and SquareAndTime-
lapse for object detection task. Crosswalk, BoxingPractice, Narrator, Food-
Market, as well as SquareAndTimelapse for the human keypoint detection
task.

Detection
Model Approaches WiFi

2.4GHz
WiFi
5GHz

Faster
R-CNN
Object

Detection

Baseline 0.700 0.758
DRE + PSI 0.758 0.837
MvOT only 0.825 0.864

Overall System 0.864 0.911
Mask
R-CNN
Keypoint
Detection

Baseline 0.6247 0.6964
DRE + PSI 0.7232 0.7761
MvOT only 0.7667 0.8146

Overall System 0.8418 0.8677
Table 1: Mean Detection Accuracy (IoU/OKS) of two
models with two WiFi connections.

as shown in Figure 4 running in real-time, without any pre-
encoding or pro�ling on each frame.

9.2 Object Detection Accuracy
Our system is able to achieve high detection accuracy and
low false detection rate under various network conditions.
We �rst measure the object detection accuracy in four ap-
proaches: the baseline solution (Baseline), our solution with
only the two latency optimization techniques (DRE + PSI),
our solution with only the client side motion vector based
object tracking method (Baseline + MvOT), and our overall
system with all three techniques (DRE + PSI + MvOT). The
baseline approach follows the standard pipeline we intro-
duced in Section 2. We evaluate the detection accuracy of our
system with two key metrics: mean detection accuracy and
false detection rate. Speci�cally, we feed extracted frames of
each video to the client side video encoder at 60fps to emulate
a camera but allow experiments with repeatable motion in
the video frames. To calculate the detection accuracy for each
frame, we calculate the mean Intersection over Union (IoU)
or Object Keypoint Similarity (OKS) between the detection
result from the MvOT and the ground truth detection result
of each frame (without frame compression and emulating
no latency). Recall that IoU is 0 when the detected object la-
bels do not match (e.g., vehicle vs pedestrian) and otherwise
represent the degree of position similarity within the frame.
More precisely, it is the intersection area over the union area
of the detection bounding box and ground truth bounding
box. Similar to IoU, OKS also varies from 0 to 1, describing
the normalized Euclidean distances between detected posi-
tions of keypoints and groundtruth labels. In the experiment,
we connect the server and the client devices through two
WiFi connections: WiFi-2.4GHz and WiFi-5GHz.

Table 1 shows the mean detection accuracy of two models
with two di�erent WiFi connections. In the object detec-
tion case, we can observe that our system achieves a 23.4%

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

0 0.2 0.4 0.6 0.8 1

Detection Accuracy (IoU)

0

0.2

0.4

0.6

0.8

1

C
D

F

Baseline

DRE + PSI

Baseline + MvOT

Overall System

Loose Metric

Strict Metric

(a) Object Detection - WiFi 2.4GHz

0 0.2 0.4 0.6 0.8 1

Detection Accuracy (IoU)

0

0.2

0.4

0.6

0.8

1

C
D

F

Baseline

DRE + PSI

Baseline + MvOT

Overall System

Loose Metric

Strict Metric

(b) Object Detection - WiFi 5GHz

0 0.2 0.4 0.6 0.8 1

Detection Accuracy (OKS)

0

0.2

0.4

0.6

0.8

1

C
D

F

Baseline

DRE + PSI

Baseline + MvOT

Overall System

Loose Metric

Strict Metric

(c) Keypoint Detection - WiFi
2.4GHz

0 0.2 0.4 0.6 0.8 1

Detection Accuracy (OKS)

0

0.2

0.4

0.6

0.8

1
C

D
F

Baseline

DRE + PSI

Baseline + MvOT

Overall System

Loose Metric

Strict Metric

(d) Keypoint Detection - WiFi 5GHz

Figure 9: CDF of detection accuracy (IoU/OKS) for ob-
ject detection and keypoint detection task.

improvement for the WiFi-2.4GHz connection and a 20.2%
improvement for the WiFi-5GHz connection. In the human
keypoint detection case, our system achieves a 34.8% im-
provement for WiFi-2.4GHz and a 24.6% improvement for
WiFi-5GHz. The results also show that the three main tech-
niques (DRE, PSI, and MvOT) are able to e�ectively increase
the detection accuracy of the system. By comparing the DRE
+ PSI approach with the Baseline approach, we �nd that the
low latency o�oading solution helps to achieve high detec-
tion accuracy. By comparing the Baseline + MvOT with the
Baseline approach, we also see that our fast object track-
ing technique increases accuracy. The gains of these two
approaches accumulate in the overall system accuracy.
In addition, we show the CDF of the measured detection

accuracy results in Figure 9. To determine acceptable detec-
tion accuracy, we adopt two widely used thresholds in the
computer vision community: 0.5 as a loose accuracy thresh-
old and 0.75 as the strict accuracy threshold [20]. A detected
bounding box or a set of keypoints with a detection accu-
racy less than the accuracy metric is then considered a false
detection. Due to the high quality requirement of AR/MR
system, we mainly discuss the false detection rate in terms of
the strict accuracy metric, but we also mark the loose metric
in each �gure with the black dashed line.
Figure 9(a) and Figure 9(b) show the CDF of IoU for the

object detection task. Result shows that our system only
has 10.68% false detection rate using WiFi-2.4GHz and 4.34%
using WiFi-5GHz, which reduce the false detection rate of
the baseline approach by 33.1% and 27.0% correspondingly.
Figure 9(c) and Figure 9(d) show the CDF of OKS for the hu-
man keypoint detection task. Compared to object detection

(a) OKS: 0.98 (b) OKS: 0.98 (c) OKS: 0.97

(d) OKS: 0.83 (e) OKS: 0.76 (f) OKS: 0.73

Figure 10: (a)-(c) Rendering results based on our sys-
tem. (d)-(f) Rendering results based on the baseline ap-
proach.

task that only tracks the position of each object bounding
box, this task requires to track 17 human keypoints of each
human using embedded motion vector, which is much more
challenging. However, our system can still reduce the false
detection rate by 38.2% with WiFi-2.4GHz and 34.9% with
WiFi-5GHz.

To understand how the detection accuracy a�ects the AR
experience, we show several frameswith their detection accu-
racy (OKS) from a sample AR the human keypoint detection
task in Figure 10. In this sequence, the person is moving the
left hand while the system seeks to render virtual object in
the palm of the hand. The three frames in the �rst row are
the rendering results based on our system, while the bottom
three frames are based on the baseline approach. We can ob-
serve that the rendered cube is well-positioned in our system
but trailing behind the palm due to delayed detection results
in the baseline approach.

Impact of background network tra�c. Results further
show that our system is less a�ected by the background net-
work load, and accuracy degrades more gracefully even in
congested networks. Figure 11 shows our measurement re-
sults of the false detection rate in WiFi networks with di�er-
ent background tra�c loads. In the experiment, we gradually
increase the background tra�c in the network, and record
the corresponding false detection rate with both WiFi-5GHz
and WiFi-2.4Hz connections. When raising the tra�c load
from 0% to 90%, the false detection rate for baseline increases
by 49.84% and 35.60% in WiFi-2.4GHz and WiFi-5GHz, re-
spectively. For our system, the increase is only 21.97% and
15.58%, which shows the higher tolerance of our system to
network congestion.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

0 20 40 60 80 100

Network Background Traffic Load (%)

0

0.2

0.4

0.6

0.8

1

F
a

ls
e

 D
e

te
c

ti
o

n
 R

a
te

Baseline WiFi 2.4GHz

Baseline WiFi 5GHz

Our System WiFi 2.4GHz

Our System WiFi 5GHz

Figure 11: The false detection rate
of our system is less a�ected by the
background network load.

 2.24
 8.53

79.01

MvOT OF-LK OF-HS

Object Tracking Methods

0

20

40

60

80

T
ra

c
k

in
g

 L
a

te
n

c
y

 (
m

s
)

Figure 12: Latency of MvOT com-
pare with two di�erent optical �ow
tracking methods.

0 50 100 150 200 250

Frame Num

0

10

20

30

L
a
te

n
c
y
 (

m
s
)

Encoding
DRE + MvOT
DRE + MvOT + Rendering

Figure 13: Raw latency traces of our
system running a keypoint detec-
tion task.

9.3 Object Tracking Latency
Our system only requires 2.24ms to adjust the positions of
previously detected objects in a new frame, which leave
enough time and computation resources for the AR device to
render high-quality virtual overlays with the time between
two frames. Figure 12 compares our MvOT method with two
standard optical �ow based object tracking approaches—the
Lucas Kanade and Horn Schunck methods. Both methods
have been optimized to take advantage of the on-board GPU
of Nvidia Jetson TX2. We can observe that our 2.24ms MvOT
method is signi�cantly faster than traditional optical �ow
approaches and requires 75% less GPU resources compared
to the Lucas Kanade based optical �ow method. While their
tracking may be more accurate, the delay would mean miss-
ing the frame display time, which leads to lower accuracy
because objects can have moved even further in the next
frame.

9.4 End-to-end Tracking and Rendering
Latency

Our system is able to achieve an end-to-end latency within
the 16.7ms inter-frame time at 60fps to maintain a smooth AR
experience. To validate this, we run the keypoint detection
task with 3D cube rendering on the BoxingPractice video and
plot the raw latency traces in Figure 13. The black dashed line
in the �gure is the 16.7ms deadline for 60fps AR devices, and
the yellow curve is the end-to-end latency of this application.
Due to our low latency object detection method (Encoding +
MvOT) requires an average latency of only 2.24ms, we leave
more than 14ms for the AR device to render high quality
elements on the screen. We can �nd that our system is able
to �nish the detection and rendering tasks within 16.7ms for
all 250 test frames.

9.5 O�loading Latency
Our RoI Encoding and Parallel Streaming and Inference tech-
niques can e�ectively reduce the o�oading latency. Figure 14
shows the o�oading latency of three methods (Baseline,
DRE, and DRE + PSI) with two di�erent WiFi connections.
We divide the o�oading latency into streaming latency and
inference latency for the �rst two methods, and use a PSI
latency for the third method, because the streaming and
inference processes run in parallel. The streaming latency
contains time spending on encoding, transmission, and de-
coding tasks. The mean encoding latency to encode an HD
frame on Jetson TX2 is 1.6ms and the mean decoding latency
on our edge cloud server is less than 1ms.
In the baseline approach, the mean o�oading latency is

34.56ms for WiFi-2.4G and 22.96ms for WiFi-5G. With the
RDE technique, our system is able to reduce the streaming
latency by 8.33ms and 2.94ms, respectively. Combine the
techniques of both RDE and PSI, the system further reduces
the o�oading latency to 17.23ms and 15.52ms. We �nd that
our latency optimization techniques are especially e�ective
to reduce the o�oading latency on lower bandwidth connec-
tions, such as on the 2.4GHz WiFi network.

9.6 Bandwidth Consumption
Our system is able to reduce the bandwidth consumption
of the o�oading task through the Dynamic RoI Encoding
(DRE) and Adaptive O�oading techniques. We conduct an
experiment to measure the bandwidth consumption of three
di�erent o�oading approaches (Baseline, DRE only, and DRE
plus Adaptive O�oading) in the object detection task. In all
three approaches, we use seven di�erent QPs (5, 10, 15, 20,
25, 30, and 35) to control the base quality to encode each
frame. The approaches with the RoI Encoding technique will
adjust the encoding quality based on the detected RoIs, and
the adaptive o�oading approach further makes the decision
whether to o�oad each frame to the edge cloud. We record

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

BaseLine

RoI-E
 only

RoI-E
 + PSI

BaseLine

RoI-E
 only

RoI-E
 + PSI

WiFi-2.4G WiFi-5G

0

10

20

30

40

O
ff

lo
a
d

in
g

 L
a
te

n
c
y
 (

m
s
)

Streaming Latency
Inference Latency
PSI Latency

Figure 14: O�loading latency of
three approaches using WiFi.

0 50 100 150

Bandwidth Consumption (Mbps)

0.6

0.7

0.8

0.9

1

A
c

c
u

ra
c

y
 (

Io
U

)

Baseline
DRE
DRE + Adaptive Offloading

Figure 15: Bandwidth consumption
of three approaches.

5 10 15 20

Time (min)

0

10

20

30

40

R
e
s
o

u
rc

e
 U

s
a
g

e
 (

%
)

CPU
GPU

Figure 16: CPU/GPU Resource con-
sumption of our system.

the mean detection accuracy and the bandwidth consump-
tion of these approaches for each QP.

Figure 15 shows how themean detection accuracy changes
with the bandwidth consumption for the object detection
task, with the comparison of these three approaches. For
the same bandwidth consumption, our RoI Encoding plus
Adaptive O�oading approach can achieve the highest mean
detection accuracy. Similarly, we can observe that this ap-
proach also requires the least bandwidth consumption given
a mean detection accuracy, e.g. to achieve the mean detec-
tion accuracy of 0.9, our system reduces 62.9% bandwidth
consumption compared to the baseline approach.

9.7 Resource Consumption
Our solution consumes very few computation resources on
the AR devices. To calculate the resource consumption of our
system, we run an object detection task without any local
rendering tasks on the DrivingPOV video repeatedly for 20
minutes and use the tegrastats tool from JetPack to measure
the resource CPU and GPU usage. Figure 16 shows the raw
resource usage traces for 20 minutes. Results show that our
system requires only 15% of the CPU resource and 13% of
the GPU resource, which leaves all the remaining resources
to rendering rich graphic overlays for AR/MR system.

10 RELATEDWORKS
Mobile AR. Designing mobile Augmented Reality system
has attracted strong interest from both industry and academia.
ARCore [21] and ARKit [22] are two mobile Augmented Re-
ality platforms, while HoloLens [3] and Magic Leap One [4]
further promise to achieve an experience called Mixed Re-
ality. However, none of these platforms support object de-
tection due to the high computation demands. To enable
such experience, Vuforia [23] provides an object detection
plugin on the mobile devices based on the traditional feature
extraction approach. Overlay [24] uses sensor data from the
mobile device to reduce the number of candidate objects.

VisualPrint [25] aims to reduce the bandwidth consumption
of image o�oading by only transmit the extracted feature
points to the cloud. However, none of them is able to run in
real-time (e.g. 30fps or 60fps). Glimpse [8] is a continuous
object recognition system on the mobile device designed for
cloud o�oad under challenging network conditions. It runs
at 30fps, only o�oads trigger frames to the cloud, and uses
an optical �ow based object tracking method to update the
object bounding boxes on the remaining frames. However,
Glimpse yields higher end-to-end latency and requires more
signi�cant computational resources on the smartphone for
object tracking, which leaves less resources for rendering
high quality AR/MR . In comparison, we explore a di�erent
point in the design space that realizes higher quality AR/MR
under more benign network latencies to nearby edge servers.
It proposes several techniques to signi�cantly reduce the
o�oading latency so that it frequently completes within a
single frame interval and the low-cost motion vector based
tracking method also leaves most of the computation re-
sources available for heavy rendering tasks on the device.
Other mobile AR work [26–28] also provide useful insights
for us.

Deep Learning. In recent year, Convolutional Neural Net-
work (CNN) has been proven to achieve better performance
than traditional hand-crafted feature approaches on various
detection tasks. Huang et al. [29] compare the speed and
accuracy trade-o�s for modern CNN object detection mod-
els, including Faster R-CNN [30], R-FCN [31] and SSD [32].
Thanks to the idea of multitask learning, current CNN can
further reuse the deep features inside the object bounding
box for more �ne-grained detection, such as instance seg-
mentation [33], human key points detection [33], facial land-
mark detection [34], etc. There have been extensive works
on how to e�ciently run these CNN models on mobile de-
vices [35–42]. However, none of them can satisfy the latency
requirement for high quality AR/MR system.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

Mobile Vision O�loading. O�oading computation in-
tensive tasks to cloud or edge cloud infrastructures is a feasi-
ble way to enable continuous vision analytics. Chen et al. [43]
evaluate the performance of seven edge computing applica-
tions in terms of latency. DeepDecision [9] designs a frame-
work to decide whether to o�oad the object detection task
to the edge cloud or do local inference based on the network
conditions. Lavea [44] o�oads computation between clients
and nearby edge nodes to provide low-latency video ana-
lytics. VideoStorm [45] and Chameleon [46] achieve higher
accuracy video analytics with the same amount of compu-
tational resources on the cloud by adapting the video con-
�gurations. Most of these works focus on a single aspect in
the whole vision o�oading pipeline, while we focus more
on improving the performance of the entire o�oading and
rendering process.

Adaptive Video Streaming. Adaptive video streaming
techniques have been largely exploited to achieve better
QoE. Several 360-degree video streaming works [47–50] also
adopt the idea of RoI encoding to reduce the latency and
bandwidth consumption of the streaming process. Adaptive
video streaming techniques have also been adopted bymobile
gaming [51, 52] and virtual reality system [53–55] to achieve
high quality experience on mobile thin clients. Other video
adaptation techniques [56–59] are also complementary to
our work.

11 DISCUSSION
In this section, we discuss the following three issues: (1)
advantages and the generality of our system, (2) comparison
with existing AR tools, (3) limitations of our system.

Generality. Our system is a software solution that can
be extended to di�erent hardware and operating systems.
The video streaming modules on both the server side and
client side can be implemented using various hardware codec
APIs, such as Nvidia Video Codec [17], Intel QuickSync [60],
Android MediaCodec [61], etc. The inference module on the
edge cloud is developed using Nvidia TensorRT [14] platform,
which is compatible with most servers equipped with Nvidia
GPUs. As shown in Figure 11, our system better tolerates
higher background network tra�c loads than a baseline
o�oading scheme, which makes it usable over a wider range
of network conditions.

Comparison with Existing AR Tools. Most existing
AR tools are not capable of detecting 3D objects continu-
ously in real-time. ARCore [21] and ARKit [22] currently
only support 2D image detection such as posters, artwork,
or signs on recent high-end smartphones. HoloLens [3] can
achieve 3D object detection through the Microsoft Cogni-
tive Services [62] but not in real-time. Besides, several deep

learning frameworks designed for mobile and embedded de-
vices, such as TensorFlow Lite [6], Ca�e 2 [63], and TensorRT
for Jetson [14], claim to achieve low latency inference on
existing mobile devices. However, they do not achieve the
low latency and high quality requirement for sophisticated
mobile AR. Such frameworks typically run compressed CNN
models (e.g. Mobilenet SSD model) on low resolution frames,
and can only achieve maximum 20 fps performance. Ten-
sorFlow Lite requires more than one second to execute an
accurate CNNmodel (e.g. ResNet Faster RCNNmodel) on one
single frame [64]. Instead of processing all inference tasks
on mobile devices, our system is able to achieve real-time
continuous 3D object detection on existing mobile devices
with the support of edge cloud platforms. Note that our sys-
tem is not an entire AR solution, but complements existing
AR systems.

Limitations. This project has not addressed the network
challenges in outdoor scenarios or with signi�cantly vary-
ing channel conditions, which requires further evaluations
in the future. In our experiment, we use WiFi-2.4GHZ and
WiFi-5GHz transmissions between the server and the client.
Although we have addressed the system’s robustness under
increasing background network tra�c load, we did not yet
study other challenges such as network jitters and dropped
packets that are possible with higher wireless channel varia-
tions.

12 CONCLUSION
In this paper, we design a system that enables high accuracy
object detection for AR/MR systems running at 60fps. To
achieve this, we propose several low latency o�oading tech-
niques that signi�cantly reduce the o�oading latency and
bandwidth consumption. On the AR device, the system de-
couples the rendering pipeline from the o�oading pipeline,
and uses a fast object tracking method to maintain detection
accuracy. We prototype an end-to-end system on commodity
hardware, and the results show that the system increases
the detection accuracy by 20.2%-34.8%, and reduce the false
detection rate by 27.0%-38.2% for two object detection tasks.
The system requires very few resources for object tracking
on the AR device, which leaves the remaining time between
frames for rendering to support high quality AR/MR experi-
ences.

ACKNOWLEDGEMENTS
We sincerely thank our shepherd Karthik Dantu and anony-
mous reviewers for their valuable comments. This material is
based in part upon work supported by the National Science
Foundation under Grant Nos. 1329939 and PAWR/COSMOS
Grant Nos. 1827923.

Edge Assisted Real-time Object Detection for Mobile AR MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

REFERENCES
[1] Virtual Reality and Augmented Reality Device Sales to Hit 99 Mil-

lion Devices in 2021. http://www.capacitymedia.com/Article/3755961/
VR-and-AR-device-shipments-to-hit-99m-by-2021.

[2] The reality of VR/AR growth. https://techcrunch.com/2017/01/11/
the-reality-of-vrar-growth/.

[3] Microsoft HoloLens. https://www.microsoft.com/en-us/hololens/.
[4] Magic Leap One. https://www.magicleap.com/.
[5] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár,

and Kaiming He. Detectron. https://github.com/facebookresearch/
detectron, 2018.

[6] TensorFlow Lite. https://www.tensor�ow.org/lite/.
[7] Kevin Boos, David Chu, and Eduardo Cuervo. Flashback: Immersive

virtual reality on mobile devices via rendering memoization. In Pro-
ceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 291–304. ACM, 2016.

[8] Ti�any Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. Glimpse: Continuous, real-time object recog-
nition on mobile devices. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, pages 155–168. ACM, 2015.

[9] Xukan Ran, Haoliang Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi
Chen. Deepdecision: A mobile deep learning framework for edge video
analytics. In INFOCOM. IEEE, 2018.

[10] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the h. 264/avc video coding standard. IEEE Transactions
on circuits and systems for video technology, 13(7):560–576, 2003.

[11] Net�ix DrivingPOV Video. https://media.xiph.org/video/derf/
Chimera/Net�ix_DrivingPOV_Copyright.txt/.

[12] Intersection over Union (IoU). http://cocodataset.org/#detection-eval/.
[13] Object Keypoint Similarity (OKS). http://cocodataset.org/

#keypoints-eval/.
[14] Nvidia TensorRT. https://developer.nvidia.com/tensorrt/.
[15] Nvidia JetPack. https://developer.nvidia.com/embedded/jetpack/.
[16] Nvidia Multimedia API. https://developer.nvidia.com/embedded/

downloads/.
[17] Nvidia Video Codec. https://developer.nvidia.com/

nvidia-video-codec-sdk.
[18] Fast INT8 Inference with TensorRT 3. https://devblogs.nvidia.com/

int8-inference-autonomous-vehicles-tensorrt/.
[19] Xiph Video Dataset. https://media.xiph.org/video/derf/.
[20] Detection Evaluation for Microsoft COCO. http://cocodataset.org/

#detection-eval/.
[21] Google ARCore. https://developers.google.com/ar/.
[22] Apple ARKit. https://developer.apple.com/arkit/.
[23] Vuforia Object Recognition. https://library.vuforia.com/articles/

Training/Object-Recognition/.
[24] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Overlay:

Practical mobile augmented reality. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 331–344. ACM, 2015.

[25] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Low band-
width o�oad for mobile ar. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
pages 237–251. ACM, 2016.

[26] Wenxiao Zhang, Bo Han, and Pan Hui. On the networking challenges
of mobile augmented reality. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network, pages 24–29. ACM, 2017.

[27] Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky,
and Feng Qian. Cars: Collaborative augmented reality for socialization.
2018.

[28] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govin-
dan. Avr: Augmented vehicular reality. In Proceedings of the 16th

Annual International Conference on Mobile Systems, Applications, and
Services, pages 81–95. ACM, 2018.

[29] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, et al. Speed/accuracy trade-o�s for modern con-
volutional object detectors. In IEEE CVPR, volume 4, 2017.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[31] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances in neural
information processing systems, pages 379–387, 2016.

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37.
Springer, 2016.

[33] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference
on, pages 2980–2988. IEEE, 2017.

[34] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hyperface: A
deep multi-task learning framework for face detection, landmark lo-
calization, pose estimation, and gender recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

[35] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: E�cient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[36] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile devices.
In Proceedings of the 15th International Conference on Information Pro-
cessing in Sensor Networks, page 23. IEEE Press, 2016.

[37] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, pages 123–136. ACM,
2016.

[38] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
Quantized convolutional neural networks for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4820–4828, 2016.

[39] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon:
Mobile gpu-based deep learning framework for continuous vision
applications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, pages 82–95. ACM, 2017.

[40] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran,
Claudio Forlivesi, and Fahim Kawsar. Deepeye: Resource e�cient local
execution of multiple deep vision models using wearable commodity
hardware. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, pages 68–81. ACM, 2017.

[41] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin
Zhong. Redeye: analog convnet image sensor architecture for contin-
uous mobile vision. In ACM SIGARCH Computer Architecture News,
volume 44, pages 255–266. IEEE Press, 2016.

[42] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and
Junzhao Du. On-demand deep model compression for mobile devices:
A usage-driven model selection framework. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, pages 389–400. ACM, 2018.

[43] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos,
Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai,

http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://www.microsoft.com/en-us/hololens/
https://www.magicleap.com/
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://www.tensorflow.org/lite/
https://media.xiph.org/video/derf/Chimera/Netflix_DrivingPOV_Copyright.txt/
https://media.xiph.org/video/derf/Chimera/Netflix_DrivingPOV_Copyright.txt/
http://cocodataset.org/#detection-eval/
http://cocodataset.org/#keypoints-eval/
http://cocodataset.org/#keypoints-eval/
https://developer.nvidia.com/tensorrt/
https://developer.nvidia.com/embedded/jetpack/
https://developer.nvidia.com/embedded/downloads/
https://developer.nvidia.com/embedded/downloads/
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://media.xiph.org/video/derf/
http://cocodataset.org/#detection-eval/
http://cocodataset.org/#detection-eval/
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://library.vuforia.com/articles/Training/Object-Recognition/
https://library.vuforia.com/articles/Training/Object-Recognition/

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico Luyang Liu, Hongyu Li, and Marco Gruteser

Roberta Klatzky, et al. An empirical study of latency in an emerging
class of edge computing applications for wearable cognitive assistance.
In Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
page 14. ACM, 2017.

[44] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, page 15. ACM, 2017.

[45] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. Live video analytics at
scale with approximation and delay-tolerance. In Proceedings of the
14th USENIX Conference on Networked Systems Design and Implemen-
tation, pages 377–392. USENIX Association, 2017.

[46] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha
Sen, and Ion Stoica. Chameleon: Scalable adaptation of video analytics.
In Proceedings of the 2018 ACM SIGCOMM Conference. ACM, 2018.

[47] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei
Han. Rubiks: Practical 360-degree streaming for smartphones. pages
482–494, 2018.

[48] Xiufeng Xie and Xinyu Zhang. Poi360: Panoramic mobile video tele-
phony over lte cellular networks. In Proceedings of the 13th Interna-
tional Conference on emerging Networking EXperiments and Technolo-
gies, pages 336–349. ACM, 2017.

[49] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing
360 video delivery over cellular networks. In Proceedings of the 5th
Workshop on All Things Cellular: Operations, Applications and Chal-
lenges, pages 1–6. ACM, 2016.

[50] Xing Liu, Qingyang Xiao, Vijay Gopalakrishnan, Bo Han, Feng Qian,
and Matteo Varvello. 360 innovations for panoramic video streaming.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
pages 50–56. ACM, 2017.

[51] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury
Degtyarev, Sergey Grizan, Alec Wolman, and Jason Flinn. Outatime:
Using speculation to enable low-latency continuous interaction for
mobile cloud gaming. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 151–165.
ACM, 2015.

[52] Eduardo Cuervo, Alec Wolman, Landon P Cox, Kiron Lebeck, Ali
Razeen, Stefan Saroiu, and Madanlal Musuvathi. Kahawai: High-
quality mobile gaming using gpu o�oad. In Proceedings of the 13th

Annual International Conference on Mobile Systems, Applications, and
Services, pages 121–135. ACM, 2015.

[53] Eduardo Cuervo, Krishna Chintalapudi, and Manikanta Kotaru. Cre-
ating the perfect illusion: What will it take to create life-like virtual
reality headsets? 2018.

[54] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong
Zhang, Lintao Zhang, andMarco Gruteser. Cutting the cord: Designing
a high-quality untethered vr systemwith low latency remote rendering.
In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 68–80. ACM, 2018.

[55] Ruiguang Zhong, Manni Wang, Zijian Chen, Luyang Liu, Yunxin Liu,
Jiansong Zhang, Lintao Zhang, and Thomas Moscibroda. On building
a programmable wireless high-quality virtual reality system using
commodity hardware. In Proceedings of the 8th Asia-Paci�c Workshop
on Systems, page 7. ACM, 2017.

[56] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adap-
tive video streaming with pensieve. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 197–210.
ACM, 2017.

[57] Hyunho Yeo, Sunghyun Do, and Dongsu Han. How will deep learn-
ing change internet video delivery? In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, pages 57–64. ACM, 2017.

[58] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. Mp-dash:
Adaptive video streaming over preference-aware multipath. In Pro-
ceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, pages 129–143. ACM, 2016.

[59] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. Cs2p: Improving video bitrate
selection and adaptation with data-driven throughput prediction. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages 272–285.
ACM, 2016.

[60] Intel Quick Sync. https://www.intel.com/content/www/
us/en/architecture-and-technology/quick-sync-video/
quick-sync-video-general.html.

[61] Android MediaCodec. https://developer.android.com/reference/
android/media/MediaCodec.html.

[62] Microsoft Cognitive Services. https://azure.microsoft.com/en-us/
services/cognitive-services/.

[63] Ca�e2. https://ca�e2.ai/.
[64] TensorFlow Lite Performance. https://www.tensor�ow.org/lite/

models.

https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://caffe2.ai/
https://www.tensorflow.org/lite/models
https://www.tensorflow.org/lite/models

	Abstract
	1 Introduction
	2 Challenges and Analysis
	3 System Architecture
	4 Dynamic RoI Encoding
	4.1 Preliminaries
	4.2 Design

	5 Parallel Streaming and Inference
	5.1 Dependency Aware Inference

	6 Motion Vectors Based Object Tracking
	7 Adaptive Offloading
	8 Implementation
	8.1 Hardware Setup
	8.2 Software Implementation

	9 Evaluation
	9.1 Experiment Setup
	9.2 Object Detection Accuracy
	9.3 Object Tracking Latency
	9.4 End-to-end Tracking and Rendering Latency
	9.5 Offloading Latency
	9.6 Bandwidth Consumption
	9.7 Resource Consumption

	10 Related Works
	11 Discussion
	12 Conclusion
	References

