
Protecting Location Privacy Through Path Confusion

Baik Hoh
WINLAB

ECE Department
Rutgers, The State University of New Jersey

Email: baikhoh@winlab.rutgers.edu

Marco Gruteser
WINLAB

ECE Department
Rutgers, The State University of New Jersey

Email: gruteser@winlab.rutgers.edu

Abstract

We present a path perturbation algorithm which can
maximize users’ location privacy given a quality of ser-
vice constraint. This work concentrates on a class of ap-
plications that continuously collect location samples from
a large group of users, where just removing user identifiers
from all samples is insufficient because an adversary could
use trajectory information to track paths and follow users’
footsteps home.

The key idea underlying the perturbation algorithm is to
cross paths in areas where at least two users meet. This
increases the chances that an adversary would confuse the
paths of different users. We first formulate this privacy prob-
lem as a constrained optimization problem and then develop
heuristics for an efficient privacy algorithm. Using simula-
tions with randomized movement models we verify that the
algorithm improves privacy while minimizing the perturba-
tion of location samples.

1 Introduction

The continuous improvements in accuracy and cost of
Global Positioning System (GPS) receivers are driving new
location-based applications. Cellular communication tech-
nology as well as GPS can provide users’ location infor-
mation within 100 meters for 66 percent and 300 meters
for 95 percent of the calls, which is mandated by the Fed-
eral Communications Commission for E911. The automo-
tive industry intends to use vehicles as a mobile sensor plat-
form for collecting information about traffic jams, weather,
and road conditions [25]. Automatically collecting loca-
tion information is also useful for a governmental Depart-
ment of Transportation (DOT), which can use Origination-
Destination (OD) statistics from many users for traffic anal-
ysis [5].

Sharing location information for such applications, how-
ever, raises privacy concerns. For example, in the United

States, the ”Location Privacy Protection Act of 2001” [1]
and ”Wireless Privacy Protection Act of 2003” [2] designate
that an individual’s location data can be used without prior
agreement only for purposes that enhance public welfare.
One possible technical solution is that individual location
data is processed on a trusted computing device and only
aggregated data is distributed to other parties. This may not
always be feasible if the aggregation function is too com-
plex or requires inputs that are not available on the device.
Another common solution is anonymization via removal
of identifiers. In the case of location information, how-
ever, information on users’ trajectories enables an adversary
to follow users’ footsteps because there exists a high spa-
tial correlation between successive location samples. Multi
Target Tracking (MTT) algorithms [21] are a well-studied
technique to link subsequent location samples to individual
users who periodically report anonymized location informa-
tion. Thus, naive anonymization cannot solve the location
privacy problem for path information [14].

In this work, we conduct a feasibility study on mecha-
nisms that prevent an adversary from tracking a complete
individual path. Perturbation algorithms which impose tol-
erable errors on original location samples to maintain user-
specified levels of quality-of-service. We approach the de-
velopment of such an algorithm in four steps. First, we de-
fine the model for location privacy in terms of confidence
and spatial distance. Second, we define quality of service
(QoS) in terms of the error that the algorithm imposes on
location samples. Third, we derive an algorithm from a
constrained optimization problem formulation, which max-
imizes the metric of location privacy given a QoS require-
ment. Fourth, we calibrate our algorithm for an automo-
tive traffic monitoring system and present simulation results
with random movement models. We limit our discussion to
applications which receive periodic and anonymous loca-
tion samples. In addition, we concentrate on applications
where data can be processed offline but our results are also
applicable to online applications that tolerate slight delays.

The remainder of this paper is structured as follows. Sec-

tion 2 defines the class of applications and the privacy prob-
lem that this paper addresses. We describe how an adver-
sary could use MTT algorithms to form paths from anony-
mous location samples. Section 3 defines a mathematical
privacy model and describes a numerical algorithm to the
path perturbation problem. We apply our algorithm to ran-
dom movement models and compare its performance and
limitations to a random perturbation baseline algorithm in
section 4. In section 5, we discuss the implications of our
results for GPS-based application by comparing our simu-
lation environment with a real world scenario. We compare
with related work in section 6 and discuss future works be-
fore we conclude.

2 Threat assessment and Multi Target Track-
ing

We motivate the class of applications considered in this
paper with two examples from the automotive telematics
domain1. One application is traffic monitoring to provide
drivers with quicker feedback on road conditions. Selected
vehicles could periodically send their locations, speeds,
road temperatures, windshield wiper status and other infor-
mation to a traffic monitoring facility. This data reveals the
length of traffic jams (through speed and position), weather
condition such as rain (through windshield wiper activity),
and slick road conditions (through frequent anti-lock break-
ing). Using vehicles as mobile sensing platforms promises
dramatic cost reductions over deploying specialized road-
side sensors. The GuideStar project [20], for example, plans
to implement such a system.

Another application is transportation planning. Period-
ically, a DOT may asks for aggregated data across a large
number of users. The DOT can infer road usage from the
distribution of cars and calculate each car’s speed from suc-
cessive location samples. These average speeds provide
information on the frequency of traffic jams and average
travel time on specific roads. These kind of inferred statis-
tics could be used for traffic light scheduling, road redesign,
and other transportation optimizations.

2.1 System Model

Although these applications differ in their detailed data
requirements, they fit a common system model. Table 1
lists different data requirements for the traffic monitoring

1Efforts such automated road toll collection and taxation are likely to
provide GPS and communication infrastructure in vehicles that could be
reused for the following applications. For example, the State of California
considers taxing drivers by the mile. This would be implemented through
an in-car GPS receiver that keeps track of its mileage. When a driver visit
a gas station, the vehicle could communicate the location log files to a
computer in the gas pump which automatically adds the new tax to the
bill [16].

Location-Based Applications
Traffic Monitoring Transportation Plan-

ning
User Density (N/km2) 4 4

Timeliness Online Offline
Data Requirements Road segment track-

ing
O-D Tracking

Data Accuracy User-configurable Predefined

Table 1. Characteristics of Location-Based
Applications

and traffic planning applications. For example, to estimate
the average velocity on a road segment, it is sufficient to
track individual vehicles for the length of the road segment.
For transportation planning, it is necessary to know origin
and destination of a vehicle to determine which alternate
routes a vehicle could take. In the traffic monitoring case,
the driver is the data consumer, thus the driver can define
the level of accuracy needed. For transportation planning,
that decision must lie with government agencies. Alleviat-
ing traffic jams also requires immediate feedback, that can
only be provided by an online application. For transporta-
tion planning an offline, batch processing application may
be sufficient. In general, however, both applications require
access to periodic location samples from a large number
of vehicles and do not need to receive identity information
with the location data.

We assume a system model that interposes a proxy
location server between applications and vehicles (this
proxy could be operated by a cellular or telematics service
providers with whom vehicle owners have a service agree-
ment). The proxy provides applications with access to loca-
tion samples. It anonymizes all traces before passing data
on by removing identifiers such as user ids or network ad-
dresses from the data.

We assume that the positioning, cellular communica-
tions, and proxy infrastructure are appropriately secured
and trustworthy. Location information should be encrypted
when transmitted between vehicles and proxy and the proxy
can use the mix concept before passing data on to applica-
tions. The proxy itself could be secured through a com-
bination of contractual obligations, privacy legislation, and
secure hard- and software systems.2

2.2 Threats

The privacy problem considered here is data protec-
tion after transmission to third-party application service

2Cell phone operators already have access to and need to protect users’
position information. Coarse information is available via the GSM Home
Location Register, for example, and detailed information can be pro-
vided through positioning technologies deployed under the E911/E112
programs.

0 10 20 30 40 50 60 70
1

2

3

4

5

Sample number

U
se

r
In

de
x

N
um

be
r

(1
,2

,3
,4

,5
)

path−1
path−2
path−3
path−4
path−5

Figure 1. Disambiguation of paths. The five
curves represent the association of location
sample paths to users by an adversary. For
example, path-4 is wholly assigned to user 4
except its 53rd point assigned to user 1.

providers, with whom a user may have no direct business
relationship and may not be able to choose between al-
ternate providers. Although the location proxy forwards
only anonymous location samples, such naive anonymiza-
tion is not sufficient because location traces are often so
distinctive that users can be reidentified. A trace may be-
gin on a suburban home’s driveway, for example, which
allows household identification through correlation with a
geocoded household address database. Similarly, Beresford
and Stajano [6] mention that the location traces collected in
an office environment through the Active Bat system could
be correctly reidentified by knowing the desk positions of
all workers and correlating them with the traces. The spa-
tial and temporal correlation between successive location
samples creates challenges even when every location sam-
ple is anonymized individually. In this case the adversary
has no information about which subset of samples belongs
to a single user. Multi-target tracking (MTT) algorithms
developed in the tracking systems community can however
recreate the most likely paths based on general assumptions
about user’s movements.

To illustrate the performance of MTT algorithms, we
have applied a simplified version of Reid’s multiple hy-
potheses tracking algorithm [21] to a sample of five GPS
paths collected by students on a college campus. Multiple
hypotheses tracking, based on Kalman filtering, is a basic
work in the field. Most paths could be trivially distinguished
based on time or because of large distances between them.
Thus, we overlaid the paths to create a more challenging
synthetic scenario. Figure 1 shows the MTT output for this
scenario. The five curves show the paths that the algorithm

reconstructed from the anonymous samples. A step in value
of a curve means that the algorithm has misassigned sam-
ples to a wrong user—five constant lines would mean per-
fect reconstruction. The algorithm clearly confuses a num-
ber of sample points, but it tracks users two and four for
almost the entire scenario, and others for an extended pe-
riod of time.

We pose the research problem as increasing the level of
confusion while still enabling statistical location-based ap-
plications. Longer tracking durations lead to an accumula-
tion of information that eventually will lead to identification
of a user. Ideally, a privacy mechanism would limit the du-
ration over which users can be tracked, so that all users can
enjoy a similar level of privacy and are not depended on traf-
fic densities in different areas or other factors beyond their
control. In this discussion, we are most concerned with at-
tacks that can be easily automated and applied to large num-
bers of users rather than preventing tedious detective work
targeted at a single user.

3 Disclosure Control Algorithm

In this section, we present a formal metric for location
privacy and derive a disclosure control algorithm which ad-
dresses the trade-off between location privacy and quality
of service.

3.1 Location Privacy and Quality of Service Met-
rics

Intuitively, we define the degree of location privacy as
the accuracy with which an untrusted party can locate an
individual user. A location privacy metric has to take into
account distance and uncertainty. Privacy is intrinsically re-
lated to the concept of uncertainty, thus entropy-based met-
rics have been used to evaluate privacy in anonymous com-
munication and data mining systems (e.g., [22, 11, 3]). En-
tropy also proves useful in evaluating location anonymity. It
is typically defined as H(k) = −∑I

i=1 pi log pi where, in
the case of location privacy, the pi describe the adversaries
probabilities for different assignments of user identities to
the observed positions and I indicates the total number of
such assignment hypothesis. Entropy, however, does not
consider whether the locations of these users are actually
different. Consider an extreme case where two users, Alice
and Bob, meet and report two anonymous location samples
l1 and l2 to the location-based service. Assuming that ad-
versaries have no additional information, they could not dis-
tinguish whether Alice has sent sample l1 or l2. Therefore
entropy would report a high degree of anonymity. From an
information privacy perspective, however, the uncertainty
in the assignment does not matter because both possible as-
signments carry the same information. Privacy would only

be increased if l1 and l2 described different positions.
We choose an alternate metric, expectation of distance

error, which captures how accurate an adversary can esti-
mate a user’s position. We define the expectation of distance
error for a path as

E[d] =
1

NK

K∑
k=1

I∑
i=1

pi(k)di(k) (1)

where the di represent the total distance error between the
correct assignment hypothesis and the hypothesis i. N de-
notes the number of users and K is the total observation
time.

The data quality that location-based applications provide
depends largely on the accuracy of location information.
For example, a traffic monitoring application needs to map
vehicle positions to road segments. Inaccurate location in-
formation may lead to misassignments. We select a gen-
eral error-based metric because applications exhibit varying
levels of robustness against location inaccuracies, which is
difficult to capture in a single metric.

We define the mean location error (QoS) for a set of N
different users’ paths of length K as

QoS =
1

NK

N∑
n=1

K∑
k=1

√
(x̃n(k) − xn(k))2 + (ỹn(k) − yn(k))2

(2)
where xn(k), yn(k) is the actual and x̃n(k), ỹn(k) the ob-
served location of user n at step k. For simplicity, we have
not considered the time dimension, but this definition can
be easily expanded.

3.2 Path Confusion as an Constrained Nonlinear
Optimization Problem

The key idea underlying the following privacy algorithm
is the concept of path confusion. Every time two users’
paths meet (we define meeting as being in close proximity)
there is a chance for the adversary to confuse the tracks and
follow the wrong user. A privacy algorithm can exploit this
by perturbing location information in such meeting areas to
increase the chances of confusion.

Considering one particular meeting area, we can formu-
late perturbation as a constrained nonlinear optimization
problem. First, we form a cost function with the expec-
tation of distance error E[d(k)] at time k. We then add an
inequality constraint on location variables, x̃n(k), ỹn(k) for
every user n at time k as follows.:

(x̃n(k) − xn(k))2 + (ỹn(k) − yn(k))2 ≤ R2 (3)

where R is a user- or application-specific input parameter
that defines the maximum permissible perturbation. The

objective is to maximize

max
∀x̃n(k),∀ỹn(k)

1
N

I∑
i=1

pi(k)di(k) (4)

where the total distance error di(k) and the adversary’s
probability pi(k) are described by the following equations.

di(k) =

N∑
n=1

√
(˜xmi(n)(k) − xn(k))2 + (˜ymi(n)(k) − yn(k))2

(5)

pi(k) ≡ P (Ωk
i | Zk) ≈

N∏
n=1

fn(˜xmi(n)(k), ˜ymi(n)(k))

(6)
The formulas to estimate the adversaries probability assign-
ment are derived from Reid’s Multi-Hypothesis Tracking al-
gorithm [21]. The probability, pi(k) denotes the probability
of hypothesis Ωi

3 at time k, given the set of observations
Zk 4. In equation 6, mi is an assignment vector for the ith
hypothesis. Each field j in the vector contains the user in-
dex that this hypothesis assigns to the j location sample.5

Function fn is a multivariate gaussian density described by
the following equation:

f(zk | x̄k) = N(zk − Hx̄k, B), (7)

where xk is the state vector consisting of estimated position
and velocity at step k and zk is a new observation vector.
Here, N(m, C) refers to a multivariate normal distribution

N(m, C) = e−
1
2mT C−1m/

√
(2π)n | C |.

The state vector, xk can be predicted from the previous state
vector xk−1 according to a process model and zk relates to
the actual state through an observation model

xk = Fxk−1 + w and zk = Hxk + v, (8)

where w represents the process noise vector and matrix F
describes a linear prediction of the next state given the pre-
vious state. Matrix H converts a state vector into the mea-
surement domain and v represents the measurement noise
vector. This linear Kalman model assumes that the pro-
cess noise and the measurement noise are independent of
each other and normally distributed with covariance matri-
ces Q and S, respectively. To calculate B = HP̄ kHT + S

3It denotes ith hypothesis of the set of all hypotheses at time k which
associate the cumulative set of location samples Zk with N users. We may
view Ωk

i as the joint hypothesis formed from the prior hypothesis Ωk−1
g

and the association hypothesis for the current data set Z(k).
4It denotes the cumulative set of location samples up through time k

whereas Z(k) indicates the set of location samples only at time k.
5All vectors together represent all permutations of users. Therefore,

(˜xmi(n)(k), ˜ymi(n)(k)) represents the observed position according to
the ith hypothesis for user n.

and N(zk − Hx̄k, B), we need to know both x̄k and P̄ ,
which are calculated using the time update equation at the
prediction step of Reid’s multiple hypothesis tracking algo-
rithm [21].

At each time step, the filter predicts the new target posi-
tion as

x̄k+1 = F x̂k and P̄ k+1 = FP̂ kFT + QT , (9)

where x̂ and P̂ are the estimates after the last sample was
received. (section 3 in Gruteser and Hoh’s work [14] for
more details).

We build the constrained optimization problem by using
the equation 4 and the equation 3 of each user as a cost func-
tion and constraint equations, respectively. This optimiza-
tion problem can be solved through a numerical approach,
such as Sequential Quadratic Programming. For our exper-
iments we relied on MATLAB’s fmincon function.

With the set of the solutions (x̃n(k), ỹn(k)) for all users
at time k to the optimization problem, the state vector for
each user will be updated with the Kalman gain and the dif-
ference between the assigned location samples (perturbed)
and the x̄k calculated in the prediction step. This step is
called state correction step and described by

x̂k = x̄k + K[zk − Hx̄k] (10)

P̂ k = P̄ − P̄HT (HP̄HT + S)−1HP̄ (11)

where K = P̂HT S−1 is the Kalman gain. The so corrected
state vector and covariance matrix are then fed back into the
prediction equations for a new optimization problem at time
k+1 and the steps are repeated for the next set of samples.

Let us define the following terms based on this problem
description.

Perturbed Positions denotes the solutions (x̃n(k), ỹn(k))
for all users to the optimization problem. We refer to a
series of them as Perturbed Paths.

Original Positions refers to (xn(k), yn(k)) for all users at
time k and the series of them is named Original Paths.

The Path Perturbation Algorithm 1 returns perturbed
paths from the original set of two users’ paths. It maximizes
instantaneous location privacy at each step by modifying
the original set of location samples within the perturbation
radius R. Larger R results in a higher degree of privacy,
smaller R limits the effect of perturbation, which leads to
higher quality of service and lower privacy.

We illustrate the use of the Path Perturbation algorithm in
a simple scenario where two users travel on approximately
parallel paths. If we randomly generate two paths for two
users, we can divide the whole trip of two users into a finite
number of samples.

Algorithm 1 PathPerturbation calculates the set of per-
turbed location samples for two users, a 2 by B by 2 matrix,
PerturbedPaths.

1: {Inputs: OriginalPaths, the set of continuous loca-
tion samples for two users, a 2 by B by 2 matrix; R,
perturbation circle radius as a user input; B, the seg-
ment size; process (user movement) and observation
(tracking error) model for target tracking}

2: for k = 1 to B do
3: for all hypothesis i do
4: 1. (State Prediction Step): Calculate the state pre-

diction of each user based on parent tree.
5: end for
6: 2. (Hypothesis Generation I): With the state predic-

tion obtained in Step 1, set equation(6) for every
hypothesis i when perturbed paths were given.

7: 3. (Hypothesis Generation II): Set equation(5) for
every hypothesis i.

8: 4. (QoS Constraints): Set equation(3) for every user
n with R.

9: 5. (Solve the constrained optimization problem):
Construct the cost function in equation(4) with the
result through Step 2 and 3. Set inequality con-
straints with the result of Step 4.

10: for all ith hypothesis do
11: 6. (State Correction Step): Calculate the state up-

date of each user based with perturbed samples.
12: 7. (Save Parent Probability): Obtained probabili-

ties in Step 6 are saved for next probability tree.
13: end for
14: end for

−50 0 50 100 150 200 250 300 350

150

200

250

300

350

400

450

x (meters)

y
(m

et
er

s) User A: original
User A: perturbed
User B: original
User B: perturbed

MTT’s choice

Figure 2. Two users move in parallel. The Path
Perturbation algorithm perturbs the parallel
segment into a crossing segment.

Figure 2 depicts the confusions that the Path Perturba-
tion algorithm creates. The red circle points are periodic
location samples from user A. The blue square points are
those from user B. The crosses and X-marks are perturbed
samples from user A and B respectively. Both users move
from left to right starting out about 200 meters apart with a
horizontal velocity of 15m/s. R is set to 100 meter. The al-
gorithm assumes a correct assignment with probability 1 at
the initial step. After that, the algorithm generates two hy-
pothesis for each parent hypothesis, which was generated
during the previous step. For the two user case, the algo-
rithm must maintain 2k−1 hypothesis at step k. Starting at
the second step, it tries to maximize the expectation of dis-
tance error, which leads to the conversion of parallel paths
into crossing paths. The arrows in the figure show the re-
sult of applying the Multi Target Tracking algorithm to the
perturbed data: the algorithm confuses the two users and
follows the wrong track.

3.3 Path Segmentation

We apply the Path Perturbation algorithm only to se-
lected segments of paths to allow the algorithm to scale
to large numbers of users and longer paths. The number
of hypotheses grows exponentially with path length, a sce-
nario with N users and paths of length B yields (N !)B hy-
potheses. As a result, a Path Segmentation algorithm (see
in Algorithm 2) must preprocess the data to identify short
two-user segments, where the path perturbation algorithm
can be applied.

In the following discussion, we refer to a segment as
an area where the Path Perturbation algorithm could be
applied. A segment is an area where two paths meet:
a minimum of B consecutive location samples from two
paths must lie near each other, with a maximum distance of
D = Rα between the samples of both paths (α is a scaling
factor). A segment can be of either a crossing or a paral-
lel type (in an approximate sense). We define a segment as
crossing if the two paths intersect, and as parallel otherwise.

We must ensure that the path confusion approach cannot
easily be inverted by an adversary. Assuming that the algo-
rithms are known, the path confusion approach is only ef-
fective if the adversary cannot determine whether a path has
been successfully perturbed. Otherwise, the adversary only
needs to follow the less likely user to thwart this scheme.

The Path Perturbation algorithm performs best for short
parallel segments. Therefore, we only apply it to such seg-
ments and leave naturally crossing segments unchanged.
This can reduce the computation load but every crossing
segment can be suspected of being an artificial crossing seg-
ment by an adversary. The characteristic of original traces
(the frequency of occurrence of both segment types) can
give a priori information to an adversary if one type is dom-

inant over the other. Adversely, an adversary cannot distin-
guish artificial from natural ones if the frequency of occur-
rence of both segment types is comparable (see Figure 7).

The Path Segmentation algorithm proceeds as follows.
At each step, N users report their location samples. The
path segmentation algorithm keeps track of the distance
between location samples at each step and then filters the
N(N−1)

2 combinations into a candidate list that remained
close enough for the last B steps. These candidate segments
may contain segments with common users. Therefore, the
list is filtered further until each user is part of at most one
segment.6

PathSegmentation takes a matrix In[2][K][N] as an in-
put which is the set of original location samples of N users
for K sample time. Adding to that, it takes in α (a scaling
factor) and R from user. After segmentation, PathSegmen-
tation outputs Out[2][K][N] which is the set of perturbed
location samples (two-dimensional) of N users. The Path-
Segmentation algorithm uses the following data structures
as well as inputs and outputs variables:

c[I][2] : the set of combinations (2-subsets) out of N users,
where I = N(N−1)

2

d[I][K] : the distance between the user positions of the ith
combination at time index k

flag[I] : a boolean variable for indicating whether ith
combination is a candidate segment

b[I] : the current size of temporary segment for ith combi-
nation

segment1[2][B][I], segment2[2][B][I] : two individual
paths consisting of temporary segment for ith combi-
nation

The procedure CheckSegment estimates if the paths in
the given segment cross each other. Its implementation ap-
proximates the two paths with lines through the start and
endpoints of the path and tests whether the lines intersect.
This assumes that paths do not change direction abruptly.

4 Evaluation

This evaluation studies the performance of the Path Per-
turbation algorithm using location traces from a random
movement model. The algorithm must balance increased
privacy protection against reduction in service quality that
is caused by less accurate location samples. Therefore,
the main evaluation metrics are mean location privacy and

6Among combinations has common users, pick the best combination
to apply Path Perturbation algorithm and set flag[i] unmarked for com-
binations who is not qualified (jth combination is better if b[i] ≤ b[i]. If
b[i] == b[j], the combination who has smaller d[i][k] is the best one.)

Algorithm 2 PathSegmentation returns perturbed set of N
users’ paths from the original set of N users’ paths, taking
advantage of subfunction, PathPerturbationAlgorithm.
1: {Input: In[2][K][N], α, R, process model, observation model;

Output: Out[2][K][N]; }
2: 1. (Operating range of Algorithm1) D ← α ∗ R
3: 2. (Initialization) Set all data structure to 0
4: 3. (Compute the perturbed paths)
5: for k = 1 to K do
6: // Find candidate segments based on distance
7: for all i, ∀i ∈ {1, . . . , I} do
8: Calculate every d[i][k]
9: if d[i][k] ≤ D then

10: flag[i] ← 1
11: else
12: flag[i] ← 0
13: end if
14: end for
15: // Pick the best combination out of candidate segments to apply

PathPerturbation
16: flag ← F ilterCandidateSegments(flag, d, b)
17: // For not chosen combination,
18: for all i such that flag[i] == 0 do
19: b[i] ← 0
20: // No operation is done on input
21: Out[][k][c[i][1]] ← In[][k][c[i][1]]
22: Out[][k][c[i][2]] ← In[][k][c[i][2]]
23: end for
24: // For chosen combination,
25: for all i such that flag[i] == 1 do
26: // Increase b[i] up to B
27: b[i] ← b[i] + 1
28: // Save the current location samples in temporary segments
29: segment1[][b[i]][c[i][1]] ← In[][k][c[i][1]]
30: segment2[][b[i]][c[i][2]] ← In[][k][c[i][2]]
31: // If we gather B consecutive pairs of location samples, check if

it is crossing or not and perturb it
32: if b[i] == B then
33: type ← CheckSegment(segment1, segment2, c[i][])
34: if type == Crossing then
35: // Leave it unchanged if crossing
36: Out[][k−b(i)+1 : k][c[i][1]] ← path1[][1 : b[i]][c[i][1]]
37: Out[][k−b(i)+1 : k][c[i][2]] ← path2[][1 : b[i]][c[i][2]]
38: else
39: // Perturb path segment
40: Out[][k − b(i) + 1 : k][c[i][1]] ←

PathPerturbation(path1, path2, c[i][])
41: Out[][k − b(i) + 1 : k][c[i][2]] ←

PathPerturbation(path1, path2, c[i][])
42: end if
43: b[i] ← 0
44: else
45: // We temporarily have output same to input but if we have B

consecutive ones later, we overwrite the result of PathPertur-
bationw onto a matrix Out

46: Out[][k][c[i][1]] ← In[][k][c[i][1]]
47: Out[][k][c[i][2]] ← In[][k][c[i][2]]
48: end if
49: end for
50: end for

mean location error (quality-of-service), defined in equa-
tion (1) and in equation (2), respectively.

As a baseline for the evaluation we choose a gaussian
random perturbation algorithm, which adds an iid gaussian
offset to every location sample. We also show location pri-
vacy for unmodified location samples—labeled as “no op-
eration” in the graphs. In scenarios with higher user den-
sity, location privacy will still increase even though these
samples have not been processed by any privacy algorithm.
This is because the available sampling frequency may not
be high enough to allow a clear disambiguation of paths.

To obtain the location traces, we generate random sce-
narios using process and observation model parameters that
reflect the relatively straight paths taken by vehicular traffic.
The process model, which defines users’ behavioral model,
is represented by the following matrices, F and Q:

F =

1 0 5 0
0 1 0 5
0 0 1 0
0 0 0 1

 Q =

5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

Matrix F causes the current horizontal and vertical position
to be calculated with the previous position plus velocity, v
multiplied by sampling interval Tf = 5. The state vector
consists of x, y, vx and vy . We assume 5 meters of drift
variance in position and 5m/sec of drift variance in veloc-
ity using process noise matrix Q. A larger process noise
variance causes more changes in directions or velocity.

For creating the observation model which defines the
representation of location samples and the accuracy of the
underlying location tracking technology, we assume that ev-
ery user reports only latitude and longitude of their current
position. In addition, we assume that every user has a GPS
receiver with the measurement error obeying N(0, 5) in the
car. The matrices, H and S formally express these assump-
tions:

H =
[

1 0 0 0
0 1 0 0

]
S =

[
5 0
0 5

]

We generate paths in a 1km2 area (i.e., one section of
a road network) and assume that each car runs at 15m/s
(54km/h). Since algorithm performance is dependent on
user density we ensure that the number of users in this area
remains constant during the experiment (i.e., that no users
are leaving the square mile area). To this end, we randomly
choose initial positions on the boundary of the area and ran-
domly set initial trajectories within +/- 45 degrees towards
the midpoint of the area. The number of users is set to
N = 5, resulting in a user density of 12.8 per square mile.
User density and sample frequency were chosen based on
operational parameters found suitable for traffic monitoring
applications by Cayford and colleagues [8]. Unless speci-
fied, the segment length B was set to 4. We generated 50

0 200 400 600 800 1000

0

200

400

600

800

1000

x (meters)

y
(m

et
er

s)

Figure 3. Example traffic 1km2 scenario for al-
gorithm evaluation. Small rectangles indicate
starting points of paths, which are randomly
chosen on the boundary of the area.

different random scenarios for our experiments. For illus-
tration purposes, Fig. 3 shows one such example scenario.

4.1 Results

Figure 4 shows the mean location privacy versus the
mean location error graph for three different schemes. Each
point shows the mean computed from 50 randomly gener-
ated scenarios for a specific perturbation radius R setting.
The radius settings are 100m, 150m, and 200m, from left to
right, respectively. The error bars indicate a two standard
deviations interval. This result shows that the Path Pertur-
bation algorithm provides better location privacy than the
random perturbation technique baseline for the same loca-
tion error. From another perspective, if we compare two
point with a similar location privacy level (R = 150), the
Path Perturbation algorithm improve location error by about
20m. Consider the point with about 100m location privacy
and about 16m location error. It means that 16m perturba-
tion error for each user creates 100m location privacy for
each user. Here, we show mean location privacy over the
length of the path.

In Figure 5, however, we calculated the instantaneous
location privacy at each sample time. The graph shows the
mean results over all 50 scenarios. The result shows that
privacy varies over time but tends to increase. For exam-
ple, the path Perturbation algorithm achieves a maximum
location privacy of 220m at any one point in the path that
was represented by the point we considered in the previous
figure. This value would likely increase in a longer simu-
lation run, as the adversary is following the wrong path. In

0 10 20 30 40
0

20

40

60

80

100

120

Mean Location Error (m)

M
ea

n
Lo

ca
tio

n
P

riv
ac

y
(m

)

Path Perturbation algorithm
Random Perturbation
No Operation

Figure 4. Mean Location privacy and mean
location error for different perturbation con-
straints R (100m, 150m, 200m, from left
to right). The Path Perturbation algorithm
achieves higher quality of service for the
same degree of privacy.

the depicted time interval, the perturbation algorithm is ap-
plied multiple times to the same path, which could explain
the temporary reductions in privacy, as the adversary may
stumble back on the correct path.

The Figure 6 illustrates the sensitivity of the results with
respect to changes in block size B and perturbation radius
R. These result were obtained through microbenchmarks
comprising two short paths of 5 samples each with an ap-
proximate distance of D = 200m between them. For sim-
plicity privacy and QoS are shown as a single ratio value
with higher values representing better performance. The
smaller block size 3 leads to more variance in the outcome,
while the results for block sizes of 4 and 5 are more stable
across a broad range of different perturbation radius param-
eters.It clearly shows that parameters close to D

2 , such as
R = 80m, 100m (i.e., 2 ≤ α = D

R ≤ 2.5), perform best.
This experiment also indicates that performance may be fur-
ther improved by adaptively varying the perturbation radius
based on the distance between paths.

The following two figures present more data about the
level of privacy afforded by our algorithm. These were ob-
tained with an extended movement model, where the ve-
locity of vehicles randomly varies between 20km/h and
60km/h. In Figure 7, crosses show the frequency of oc-
currence of parallel segments while square points depict the
frequency of occurrence of parallel and crossing segments
in our movement model. Each point is measured over 50
different scenarios and averaged out. Error bars indicate the
standard deviation. The ratio of parallel segments to total

0 25 50 75
0

40

80

120

160

200

240

Time (sec)

In
st

an
ta

ne
ou

s
Lo

ca
tio

n
P

riv
ac

y
(I

LO
P

)
(m

et
er

)

Path Perturbation algorith (R=100)
Path Perturbation algorith (R=150)
Path Perturbation algorith (R=200)

Figure 5. Instantaneous location privacy
(ILOP) over time for three different values of
R. Location privacy increases when the ad-
versary follows the wrong track.

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

R
at

io
 o

f L
oc

at
io

n
P

riv
ac

y
to

 L
oc

at
io

n
E

rr
or

Perturbation Circle Radius (R) (meter)

B=5
B=4
B=3

Figure 6. Sensitivity of algorithm perfor-
mance to changes in block size B and per-
turbation radius R. Larger block sizes lead to
more predictable privacy results.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

Perturbation Circle Radius(R) (meter)

F
re

qu
en

cy
 o

f o
cc

ur
en

ce

Frequency of parallel segments
Frequency of total segments

Figure 7. Frequency of occurrence of cross-
ing and parallel segments given different per-
turbation radii R. Larger R produce more
chances to apply the Path Perturbation algo-
rithm. The frequency of parallel segments
ranges from 45 percent to 65 percent to that
of total segments.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

length of partial tracking path (sec)

C
D

F
 o

f p
ar

tia
l t

ra
ck

in
g

pa
th

R=20
R=50
R=80
R=100
R=150
R=200

Figure 8. CDF of tracking time over different
R. This graph shows how long an adversary
can correctly track users’ paths.

segments ranges from 45 percent to 65 percent over differ-
ent R. A relatively balanced occurrence of both segments is
important so that an adversary cannot distinguish artificially
created crossings from real crossings through information
on the prior distribution.

Figure 8 shows the cumulative distribution function for
the length of time that an adversary could correctly track
individual paths. Although the Path Perturbation algorithm
keeps an adversary from learning the whole path of an indi-
vidual user, even partial tracking can sometimes let an ad-
versary infer private information. Figure 8 shows that 80
percent of partial tracking paths is less than 9 samples for
R ≥ 80, which corresponds to 45 seconds or 675m. In-
creasing R reduces this tracking time; for example, the 80
percentile is less than 25 seconds in the case of R = 250.

5 Discussion

The main result in figure 4 supports the hypothesis that
path perturbation algorithms could increase privacy in traf-
fic monitoring applications. The results were obtained at
traffic densities that Cayford and colleagues [8] character-
ized as suitable for such a system. They further stated that
these applications can tolerate up to 100m errors and still be
able to distinguish road segments with 97.5% accuracy on
local streets and 99% accuracy on freeways. If we assume
that a GPS receiver produces location samples with 10m er-
ror a perturbation algorithm could introduce up to 90m er-
rors, without significant detrimental effects. The Path Per-
turbation algorithm creates 100m location privacy at an av-
erage location error of only 16m, leaving a large margin
of error for our simulation. In future work, this hypothe-
sis should be tested with real location traces from vehicular
traffic.

Although there exists a tradeoff between quality-of-
service and location privacy, this study has shown that this
relationship is not necessarily a zero-sum game. The sta-
tistical monitoring applications considered in this paper do
not need to track individual users for extended periods of
time. Thus, quality-of-service can be characterized as the
error applied to each individual location sample. For pri-
vacy, user identity is important, therefore it must be defined
over entire traces. A small perturbation on a few samples
may lead an adversary onto the wrong track and lead to big
improvements in privacy (if the tracks diverge) without the
need to apply any further perturbation.

Given a quality-of-service constraint, path perturbation
algorithms cannot eliminate the dependency on user den-
sity. Adequate levels of privacy can only be obtained if user
density is sufficiently high. In a low user density environ-
ment, we either have to sacrifice QoS by increasing R or
there may not be enough chances to apply the algorithm
to obtain a suitable level of privacy. Figure 7 has shown

that larger R create more chances for path confusion than
smaller R given the same user density. Temporal perturba-
tion provides another avenue for future investigations that
allow operation in low user-density environments.

Privacy provided by the Path Perturbation algorithm also
depends on the characteristics of the original traces, espe-
cially the frequency of parallel segments to crossing seg-
ments. If it is known that few crossing segments exist
in the original paths, an adversary could assume that all
crossing segments have been artificially inserted through
a perturbation algorithm. In our random movement model
this was not a problem (Figure 7) but this question should
also be addressed through studies with real vehicular loca-
tion traces. Privacy may further be compromised through
advanced tracking algorithms that reject unlikely location
samples. These algorithms would seek to identify perturbed
samples and not consider them in the tracking equations.
This could be addressed in the privacy algorithm through
an additional per-step perturbation bound.

The algorithms used in this feasibility study are com-
putationally too complex for a deployment in real-time in-
formation systems with large numbers of users. This over-
head could be reduced by finding a closed-form solution
to the optimization problem, for example through the La-
grange multiplier method. Another approach is to develop
heuristic-based perturbation algorithms that approximate
the performance of this solution. This would allow deploy-
ment of such algorithms in online applications.

6 Related Work

Prior work related to location privacy spans the fields of
networking, pervasive computing, and data mining. Some
of these mechanisms are not restricted to location privacy
but generally applicable to other privacy problems. We fo-
cus our discussion on privacy mechanisms whose underly-
ing theme is to degrade information in a controlled way be-
fore releasing it.

Beresford et al. [6] found that an adversary can often
identify a user from anonymous path information by cor-
relating it with knowledge about the environment. They
proposed the mix zone concept in which a trusted proxy
removes all samples before it passes location samples to
application servers [7]. The degree of privacy offered by
the mix zone was evaluated for pedestrian traffic under the
assumption that an attacker uses empirical linking. How-
ever, the static mix zone concept cannot guarantee location
privacy in the case that users’ behavioral movement mod-
els have small variance (i.e., it is less probable that users
change their direction in the mix zone) and in applications
with low-user density. Our dynamic mechanisms can be
adjusted for different privacy-quality-of-service tradeoffs.
The perturbation approach can also provide a degree of un-

observability. This means that an adversary does not neces-
sarily notice that privacy mechanisms are used, because no
location samples are suppressed. Huang et al. [15] imple-
mented a mix-zone concept by proposing the new concept
of a silent period in which a station is not allowed to dis-
close its pseudonym.

Gruteser and Grundwald [13] reduce the spatio-temporal
resolution of location-based queries to guarantee a defined
degree of anonymity in different locations. These mecha-
nisms assume that location-based queries are generated so
infrequently, that they can be viewed as independent queries
(the adversary should be unable to link them to the same
user). The time-series nature of a continuous stream of lo-
cation information poses novel privacy challenges that have
not been addressed. Gruteser and Hoh [14] described how
trajectory-based linking (i.e. Multi Target Tracking) can in-
fer a user’s path from individual location samples provided
by several users. For database systems, Sweeney has argued
that merely omitting obvious identifiers is not sufficient to
ensure anonymity and has developed algorithms based on
her k-anonymity concept [23, 24]

The same data degradation approach can be applied to
the data mining privacy problem. Agrawal and Srikant [4]
showed how a random perturbation technique can provide
privacy for individual data items while still allowing recon-
struction of the approximate distribution of values over a
large number of users. Agrawal and Aggarawal [3] have
provided an information theoretic metric to quantify the
amount of privacy to take an adversaries prior knowledge
into account. In this work, we showed that relying on
adding white noise to location samples may fail because
time series properties enable an MTT attack. Even for in-
dividual values Kargupta et al. [17] have pointed out that
the spectral properties of white noise allow an approximate
reconstruction of original data.

The question on how to define a privacy metric has led
to another thread of privacy research. In the general data
privacy area, Cynthia [9] suggested a framework for com-
paring privacy enhancing technologies in for preserving pri-
vacy in public databases. In the context of anonymous net-
work communication, Serjantov and Danezis [22] as well
as Diaz and colleagues [11] have proposed an information
theoretic metric for anonymity. Anonymity is maximized
when each subject is equally likely to have sent the mes-
sage in question. This metric, however, is not readily ap-
plicable to continuous data such as location as opposed to
discrete messages, because it does not take into account the
difference between two data items.7 Our work is based on

7Assume an adversary is given a set of location samples and a set of
users. According to the entropy metric, users enjoy the highest degree
of anonymity, if each user is equally likely to have generate each of the
location samples. In terms of location privacy, this is meaningless if the
location samples are too close each other, because the adversary knows all
users locations without first assigning the samples to users.

a modified privacy metric that considers distance as well as
assignment probabilities.

Prior work on location-aware systems has concentrated
on privacy-policy mechanisms [19, 18, 12], where service
providers publish policies that explain data collection and
handling practices to potential users. Users can match pri-
vacy preferences with these policies. The IETF Geopriv
group [10] is developing a standard for location privacy pol-
icy mechanisms. These efforts are complementary to our
work. Privacy policies can establish trust between users and
service providers, to ensure that collected data is not mis-
used, service providers have to rely on security mechanisms
such as access control or data anonymization. Privacy poli-
cies could also specify the degree of anonymity that service
providers must maintain before they release information to
third-party applications.

7 Conclusions

The prevalence of sophisticated location-tracking and
wireless communication technology gives rise to a novel
class of application that gather statistical information about
people’s movements. Current data perturbation techniques
are unable to protect time-series location information. We
have proposed a data perturbation technique that increases
path confusion by slightly modifying reported positions for
two users that are in close proximity of each other. This
technique can limit the tracking duration, for which an ad-
versary can follow an individual user. Specifically, we con-
clude that

• the Path Perturbation algorithm improves privacy with
a lower mean location error, that means at a lower qual-
ity of service penalty than a gaussian perturbation al-
gorithm.

• the Path Perturbation algorithms achieve promising re-
sults in an environment with about 10 vehicles per
square mile, which is a user density targeted in traf-
fic monitoring applications.

Future Work We see two promising avenues for further
work. First, eliminating the reliance on a general optimiza-
tion algorithm would improve computational efficiency of
the Path Perturbation algorithm. We expect that heuristics
can be found that retain most of the privacy and quality of
service improvements but are much more efficient to com-
pute. This would allow enable using the algorithms in ap-
plications with real-time data requirements. It would also
improve scalability to scenarios with large number of mov-
ing users.

Second, applying the algorithms to datasets collected
from real-life applications could provide an experimental
validation of this approach. It will provide information

about the relative frequency of crossing and parallel seg-
ments and can provide information on whether increased
privacy can be achieved with acceptable data quality trade-
offs.

References

[1] Location privacy protection act. http://www.
theorator.com/bills107/s1164.html, 2001.

[2] Wireless privacy protectection act. http://www.
theorator.com/bills108/hr71.html, 2003.

[3] D. Agrawal and C. C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In
Symposium on Principles of Database Systems, 2001.

[4] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In Proc. of the ACM SIGMOD Conference on Management
of Data, pages 439–450. ACM Press, May 2000.

[5] K. Ashok. Estimation and Prediction of Time-Dependant
Origin-Destination Flows. PhD thesis, Massachusetts Insti-
tute of Technology.

[6] A. Beresford and F. Stajano. Location privacy in pervasive
computing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[7] A. Beresford and F. Stajano. Mix zones: User privacy in
location-aware services. In IEEE Workshop on Pervasive
Computing and Communication Security (PerSec), 2004.

[8] R. Cayford and T. Johnson. Operational parameters affect-
ing use of anonymous cell phone tracking for generating
traffic information. Institute of transportation studies for the
82th TRB Annual Meeting, 1(3):03–3865, Jan 2003.

[9] S. Chawla and C. Dwork. Toward privacy in public
databases. In The Second Theory of Cryptography Confer-
ence (to appear), 2005.

[10] J. Cuellar, J. Morris, and D. Mulligan. IETF geopriv require-
ments. http://www.ietf.org/html.charters/
geopriv-charter.html, 2002.

[11] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards mea-
suring anonymity. In 2nd Workshop on Privacy Enhancing
Technologies, 2002.

[12] S. Duri, M. Gruteser, X. Liu, P. Moskowitz, R. Perez,
M. Singh, and J.-M. Tang. Framework for security and pri-
vacy in automotive telematics. In 2nd ACM International
Worksphop on Mobile Commerce, 2002.

[13] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal cloak-
ing. In Proceedings of the First International Conference on
Mobile Systems, Applications, and Services, 2003.

[14] M. Gruteser and B. Hoh. On the anonymity of periodic lo-
cation samples. In Proceedings of the Second International
Conference on Security in Pervasive Computing, 2005.

[15] L. Huang and H. Yamaneet. Enhancing wireless location
privacy using silent period. In 5th Workshop on Privacy En-
hancing Technologies, 2005.

[16] S. Hughes. States mull taxing drivers by mile.
http://www.cbsnews.com/stories/2005/
02/14/eveningnews/main674120.shtml, Feb
2005.

[17] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Ran-
dom data perturbation techniques and privacy preserving
data mining. In IEEE International Conference on Data
Mining. IEEE Press, 2003.

[18] M. Langheinrich. A privacy awareness system for ubiqui-
tous computing environments. In 4th International Confer-
ence on Ubiquitous Computing, 2002.

[19] G. Myles, A. Friday, and N. Davies. Preserving privacy in
environments with location-based applications. IEEE Per-
vasive Computing, 2(1):56–64, 2003.

[20] D. O. T. of Minnesota. Otso - about guidestars.
http://www.dot.state.mn.us/guidestar/
about.html, 1991.

[21] D. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, Dec
1979.

[22] A. Serjantov and G. Danezis. Towards an information the-
oretic metric for anonymity. In 2nd Workshop on Privacy
Enhancing Technologies, 2002.

[23] L. Sweeney. Achieving k-Anonymity Privacy Protection
Using Generalization and Suppression. International Jour-
nal on Uncertainty, Fuzziness and Knowledge-based Sys-
tems, 10(5):571–588, 2002.

[24] L. Sweeney. k-anonymity: a model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[25] R. Vyas. Ford device intended to unclog roads.
http://www.freep.com/money/autonews/
ford27_20040227.htm, Feb 2004.

