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Abstract

The emerging malware that can spread through lo-
cal wireless networks among mobile devices has so far
received less attention than computer worms in the In-
ternet. The local wireless links provide an alterna-
tive propagation path that circumvents intrusion de-
tection at the service provider gateways. On the mo-
bile nodes, conventional intrusion detection and intru-
sion response techniques such as address blacklisting
and content filtering are more difficult to deploy due to
the lack of central entities and the resource constraints
of mobile nodes.

We propose a new architecture for an intrusion re-
sponse system that takes advantage of an infrastruc-
ture network (e.g., cell phone network) to manage se-
curity of the mobile nodes. Infection patterns in ad hoc
networks are highly correlated with geographic prox-
imity. Thus an ecologically inspired diffusion-reaction
and advection models can provide estimates for the
current spread of the worm. These estimates allow the
service provider to precisely target a containment re-
sponse.

1 Introduction

A current trend in pervasive devices is towards
multi-radio support, allowing direct local interaction
between devices in addition to maintaining long-haul
links to infrastructure networks. Many current cell
phones already contain Bluetooth radios that enable
peer-to-peer exchange of files and usage of services
from nearby devices. Bluetooth is also available in

some automobiles and the US Federal Communica-
tions Commission has reserved spectrum for Dedi-
cated Short Range Communications (DSRC), a wire-
less communications standard for inter-vehicle net-
works based on the IEEE 802.11 medium access pro-
tocol [10]. Example applications are collaborative
crash warning and avoidance, dynamic traffic light
control, or ad hoc forwarding of traffic probe infor-
mation [26, 27].

Unfortunately, peer-to-peer interaction between de-
vices provides an alternative propagation path for
worms and virus. The Internet experience illus-
trates that worm attacks are a significant concern and a
proof-of-concept Bluetooth worm, Cabir, has already
been implemented.1 More aggressive worms that ex-
ploit bugs and make unwanted phone calls are not hard
to imagine [5, 24], and likely as financial incentives in-
crease.

Regardless of the sophistication of the prevention
strategies, in an environment with high reliability re-
quirements it is only prudent to also plan for outbreaks
with appropriate containment strategies. Peer-to-peer
replication over short-range wireless networks creates
a challenge for intrusion detection and response, be-
cause the worm cannot be observed and blocked by
intrusion detection and response systems (IDSs) in
the cellular service provider’s core network. Instead
intrusion detection must be deployed on resource-
constrained mobile devices or on specialized honeypot
devices distributed in high-traffic zones [28, 2]. Re-

1In fact, a Cabir outbreak was recently reported during a sport-
ing event at the Helsinki Olympic Stadium [21] and rumors are
abound that it could spread to in-car computers of a luxury sport
utility vehicles.



gardless of the employed intrusion detection method,
these constraints will lead to a delay between the time
of outbreak and alarm because of distributed process-
ing delays and human analysis. Thus, the intrusion
response system only has at best an outdated few of
the current worm propagation.

In this work, we consider an intrusion response ar-
chitecture where a service provider remotely admin-
isters mobile nodes over the wide-area infrastructure
wireless network. Using ecologically inspired [18]
location-based quarantine boundary estimation tech-
niques, the service provider can estimate a set of likely
infected nodes. This allows the service provider to
concentrate efforts on infected nodes and minimize in-
convenience and danger to non-affected parties.

The remainder of this paper is structured as fol-
lows. Section 2 clarifies threat model and system as-
sumptions. It also defines the estimation problem that
this paper addresses. Section 3 develops a quaran-
tine boundary estimation algorithm from ecological
diffusion-reaction and advection models. We evalu-
ate our proposed algorithm by applying it to two ad
hoc network scenarios: a pedestrian random-walk and
an a vehicular network on a highway. These results
are reported in section 4. In section 5, we analyze the
simulation results and discuss the effectiveness of the
approach. Section 6 compares our work with directly
related prior works before we conclude.

2 Threat assessment

We consider a network system that comprises mo-
bile radio nodes with ad hoc networking capabilities
and a wide-area wireless infrastructure network with
central network management by a service provider.
Each mobile node is connected to the infrastructure
network, provided that radio coverage is available, and
can directly communicate with other mobile nodes
over a short-range radio interface. Examples of such
a system are a CDMA/GSM cell-phone network with
Bluetooth handsets or an automotive telematics sys-
tem supporting CDMA and DSRC . We also assume
that the service provider can locate each mobile node.
This could be implemented through Assisted GPS on
the nodes or triangulation technology in the infrastruc-
ture. Hybrid approaches are also possible.

In this network system, worms and viruses may

spread through ad hoc connections over the short-
range interface, rather than the infrastructure network.
Mobile nodes can be infected if they are susceptible
and a neighbor, meaning in the communication range
Cr, of an already infected node. Typically, an in-
fected node is able to identify all its neighbors through
a network discovery mechanisms (e.g., IEEE 802.11
probe request, probe response protocol). In a sparse,
mostly disconnected network, nodes will be infected
when they first enter the communication range of an
infected node. While most current Bluetooth worms
need to be manually accepted by the receiving devices
owner, the increasing complexity of the software stack
software vulnerabilities more likely. We assume that
future worms will exploit software vulnerabilities and
do not require user interaction to spread.2

Malware spreading over the ad hoc network is more
difficult to detect and contain than malware spread-
ing over an infrastructure network, because the net-
work does not contain concentration points (choke-
points) where centralized network-based intrusion de-
tection and traffic filtering techniques can be applied.
Instead detection and response techniques must be im-
plemented in a highly distributed architecture on the
mobile nodes themselves. While it is plausible that
malware propagates over both the short-rangeand the
infrastructure network, we ignore this case here be-
cause the infrastructure connections can be prevented
with traditional defenses.

We are especially concerned with unknown mal-
ware, which signature-based intrusion detection sys-
tems cannot yet detect. The service provider may learn
of a new epidemic through different mechanisms rang-
ing from mundane user calls to its service hotline to a
sophisticated anomaly detection system. We observe
that any of these mechanisms suffer from a high false-
alarm probability and thus require the intervention of
human analyst to verify that an actual outbreak exists.
This leads to a detection delay of minutes in the best
case. Even in a fully automated system, a distributed
intrusion detection system would add delay due to the
distributed detection processing and the latency over-
head of delay-tolerant communication. During this

2The Bluesmacking attack on Bluetooth devices already ex-
ploits a buffer overflow vulnerability present on some systems. In
addition, a vulnerability that allows arbitrary code execution has
been discovered in the WIDCOMM software stack in 2004.



time the malware can spread further (and anomaly re-
ports from new nodes may again require verification)
leaving the analyst with an incorrect, delayed view of
the epidemic.

This work assumes, however, that the analyst can
accurately locatepatient 0, the initially infected node.
If every node runs an intrusion detection system with
sufficient memory for logging events, the infection can
generally be traced to its origin. An inaccurate esti-
mate of patient 0’s position will lead to degraded sys-
tem performance. We leave making the system more
robust to the patient 0 estimate for future work.

In summary, the service provider will determine
from a range of clues whether an intrusion took place.
The service provider characterizes an intrusion by a tu-
ple (posx, posy, time) that describes the time and po-
sition of patient 0 at the start of the outbreak.

2.1 Intrusion Response

Given that an intrusion event occurred, a service
provider’s main interest lies in minimizing inconve-
nience and potential danger (e.g., users may depend
on cell phones for 911/112 emergency calls or distrac-
tions from an infected in-vehicle system may cause car
accidents) to customers.

Responding effectively requires a secure manage-
ment interface to the mobile nodes that allows service
providers to remotely regain control of a compromised
mobile node. Remote management interfaces are com-
mon practice for managing servers in larger data cen-
ters and have become increasingly prevalent in the cell
phone world. For example, the Open Mobile Alliance
Client Provisioning Architecture [1] allows over-the-
air configuration of mobile nodes. It also specifies a
privileged configuration context, whose settings can-
not be modified by users or applications. Such inter-
faces could be further hardened to ensure availability
when malicious code controls the phone.

Given an over-the-air provisioning architecture,
possible responses to an intrusion event include:

1. Sending a warning to users of the mobile nodes
2. Deactivating mobile nodes
3. Disable the short-range network interface on mo-

bile nodes
4. Installing port or content-based filters
5. Installing patches to remove exploits
6. Provisioning patches to remove the worm

All of these responses can slow or stop the spread
of the virus, however, they also incur user inconve-
niences of its own. For example, frequent use of re-
sponse 1 may reduce its effectiveness, response 2 may
prevent emergency calls, and response 3 may prevent
the use of handsfree operation by drivers. Responses
3-6 require a more detailed understanding of the worm
implementation and so may allow the worm to spread
unrestricted for a period of hours or days. Even then,
installing hastily developed patches often leads to fail-
ures on a subset of phones.

We define theintrusion response planning problem
as identifying an optimal set of nodes to minimize the
impact of the wormandthe inconvenience and dangers
cause by (partial) service outages due to the response.
An optimal response plan only targets nodes that have
already been infected or will be infected until the pro-
visioning process is completed.

3 Quarantine Boundary Estimation

The optimal response set can be best found through
an estimation technique because the service providers
knowledge about the spread of the mobile worm is in-
complete. Anomaly reports usually trickle in only af-
ter nodes are infected and may be severely delayed in
areas of sparse coverage from the infrastructure wire-
less network.

3.1 A Macroscopic Model of Worm Propagation

Diffusion-reaction and advection models [18] have
been successfully applied to describe the spatial and
temporal distributions of diverse phenomena ranging
from animal dispersion3 to groundwater contamina-
tion.

The diffusion-reaction model comprises a diffusion
process and a reproduction process. The diffusion pro-
cess describes random movements and is character-
ized by the diffusion coefficientD. The reproduction
process describes the exponential population growth
and is specified by parameterα. Equation 1 specifies

3An early notable application of diffusion-reaction model was
designing a hostile barrier for stopping the dispersal of Muskrats.
In 1905, Muskrat was imported to Europe but some of them es-
caped and started to reproduce in the wild [6]. Skellam [23] later
modeled the dispersal of Muskrats though a diffusion-reaction
equation.



Model Parameter Correspondence in automotive scenario

Diffusivity Models minor roads and collector streets or
pedestrian movements

Growth rate Rate of new infections depends on density
and distribution of susceptible nodes, com-
munication range, and node velocity

Origin Positions of initially infected nodes

Table 1. Mapping of model parameters to au-
tomotive networking scenario.

the diffusion-reaction model. It assumes polar coor-
dinates centered at the position of an initially infected
node, isotropic dispersal with constant diffusivityD,
and growth proportional to the population densityS.
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This model has a closed form solution by solving
under the initial condition that at timet = 0, m in-
fected nodes are concentrated at location of patient 0
(r = 0). From this solution shown in equation 2, the
radiusR of the frontal wave can be calculated from
the propagation speed which depends onα andD as
described in equation 3.

S = (m/4πDt) exp(αt − r2/4Dt) (2)

R = 2
√

παDt (3)

Thus the propagation boundary is proportional to
the time since the outbreakt and the boundary moves
with velocity v = 2

√
παD. The parameterα andD

are depended on the exact scenario. Table 1) identifies
the parameter dependencies in an automotive scenario.

When a toxic pollutant diffuses going along the
groundwater paths, advection term describing a mean
flow is added to the diffusion-reaction model [22]. Ad-
vection term is governed by the velocityu in x-axis
andv in y-axis.

If we take an advection effect and ignore a diffu-
sion process, equation 1 is changed into an advection
equation model described by equation 4.

∂S

∂t
= − ∂

∂x
(uS) − ∂

∂y
(uS) + αS (4)

Figure 1. Different proportions of inter-vehicle
distance to communication range lead to dif-
ferent worm propagation velocities.

This model can be used in modeling the behavior
of mobile worms in highway networks (e.g., Southern
New Jersey Highway Networks).

3.2 Algorithms

Given an initial position of each infected nodei,
(xi, yi) for all i at timeTo, the algorithms should esti-
mate the frontal wave of propagation at

Tc = To + T∆

, whereTo is the time of outbreak andT∆ means time
delay. We can divide the problem into estimating the
worm propagation velocity and estimating the spatial
distribution.

In an ad hoc network where mobile nodes move
randomly in x-y coordinates, the propagation speed is
governed by equation 3. Constant diffusivityD and re-
productivityα guarantees constant propagation speed.
As long as the same node density and velocity is main-
tained, the propagation velocity remains constant.

However, in the vehicular scenario, every road seg-
ment may have a different propagation velocity be-
cause vehicle speeds and inter-vehicle distances dif-
fer. Figure 1 illustrates how the relationship between
communication range and inter-vehicle distance af-
fects propagation velocity. In the case (a) the inter-
vehicle distanceR is greater than the communication
rangeCr, so that an infected car cannot communicate
with neighboring cars. Thus, the propagation velocity
V ′ is solely determined by the vehicle speedV . In case



(b) however, the communication range is greater than
the inter-vehicle distance. Thus the worm can travel
over the wireless medium to the foremost car in com-
munication range in addition to the vehicle speed. If a
worm managesn such hops per second, this leads to
the following equation.

V ′ =

{

V + nR
⌊

Cr

R

⌋

if R ≤ Cr

V else

Because a one hop communication can never go far-
ther thanCr, an upper bound forV ′ can be obtained by
substitutingCr for R(Cr/R), yielding

V ′ = V + nCr (5)

The inter-vehicle distanceR and mean vehicle
speedV on each highway segment can be obtained
from Department of Transportation inductive loop sen-
sors on an hourly basis, for example. They could also
be inferred from tracking the position of probe vehi-
cles on the highway network.

Given this propagation velocity, a straightforward
isotropic estimate for worm distribution can be ob-
tained with the diffusion-reaction equations. For each
independent outbreak this approach yields a circular
boundary estimate centered at the location of patient 0
(at the time of the outbreak). The radius of the circle
increases linearly with the time durationT∆ since the
outbreak.

This approach is suitable when nodes movements
do not exhibit any directional trends, such as in a ran-
dom walk. Estimation can be improved, however,
when mobile nodes move on an underlying network
of roads or walkways. We frame our discussion of this
algorithm in the context of an automobile vehicular ad
hoc network, but the concepts are generally applicable
to nodes that follow a network of paths.

This algorithm assumes the availability of carto-
graphic material so that the position of patient 0 at the
initial outbreak can be mapped onto a road segement.
The maps must contains road classifications and the
geographical positions of roads and their intersections.
For example, this data is available from the US Ge-
ological Survey, which published detailed transporta-
tion network information in the spatial data transfer
standard. These maps also classify roads into express-
ways, arterial, and collector roads, according to their

size and traffic volume. The algorithm also requires
a mapping of the position of patient 0 at the time of
outbreak onto a road segment. This mapping can be
achieved by finding the road segment with the mini-
mum euclidian distance to the patient 0 position.

The key idea of this algorithm is to build an advec-
tion model using the transportation network informa-
tion. The underlying heuristic is that the maximum
propagation speed will be observed along the road
network—propagation across parallel road segments
in communication range and along smaller roads is
ignored by this heuristic. The algorithm 1 follows
all possible propagation paths using a traversal of the
road network graph and a propagation speed estimate
for each road segment. It outputs a polygon that in-
cludes all (partial) road segments that a worm could
have reached in the time since the outbreak.

For example, consider the section of the southern
New Jersey highway network in figure 2. Assume that
patient 0 lies on the linkLn between junction 3 (J3)
and junction 4 (J4). If we know the propagation speed
Vn on that link, we can calculate after how much time
a mobile worm arrives at either junction. Let us denote
T3 andT4 for the arrival time at J3 and J4. If the time
since outbreak

T∆ = Tc − To

is greater thanT3, the mobile worm has already passed
this junction and has most likely propagated along
both the link J1-J3 and the link J2-J3. This process
is repeated for each link until a junction with arrival
time greater thanT∆ is found. This segment is then
only partially infected and the infection boundary is
known based on the estimated link propagation speed.
The same process is also repeated in the opposite di-
rection from patient 0, towards J4. The algorithm then
encloses each fully infected link in a rectangle with
length and width set to the road length and road width,
respectively. Partially infected links are only enclosed
up to the infection boundary. All rectangles are then
merged into a polygon.4 Once we get a polygon,
we group nodes within a polygon into the optimal re-
sponse set by using ’Point-In-Polygon Algorithm [7]’.

4This can be implemented using well-known algorithms such
as provided by thepolyboolfunction [12] in MATLAB



Algorithm 1 QuarantineBoundaryEstimation
generates a polygon which estimates the frontal wave
of mobile worms atTr givenPatient0 atT0.

1: {Inputs: Patient0, the position of initially in-
fected node;T0, the time of outbreak;Tc, the time
of intrusion response;vn, the average car speed
onnth road segment;Rn, the average distance be-
ween adjacent cars onnth road segment;
Parameters:Jn, nth junction’s x and y coordinates
and every junction should have information on its
neighbor junctions;Cr, Communication range
Outputs: Quarantine polygons}

2: (A) Estimate the worm propagation speed, Vn

for all n with vn and Rn

3: if R ≥ Cr then
4: Vn = vn

5: else
6: Vn = vn + α ∗ Cr

7: end if
8: (B) Estimate the spaitial distribution
9: CalculateT∆[0][0] = Tc − T0.

10: Locate the link (Ln) whichPatient0 lies on.
11: SetPatient0 as the starting points of traversal and

push it into queue,Q[0]
12: Keep pushing all junctions in two ways to be vis-

ited next inQ until the last level
13: i = 0;
14: while Any T∆[i][] ≥ 0 do
15: i + +
16: K = the number of elements inQ[i][]
17: for j = 1 to K do
18: Save the parent junction ofQ[i][j] into Prev

19: Tj = D(Prev,Q[i][j])
Vn

wheren is the link index
between Prev andQ[i][j]

20: T∆[i][j] = T∆[i − 1][parent]
21: if T∆[i][j] ≥ Tj then
22: Generate a rectangular boundary from

Prev to Q[i][j]
23: else
24: Generate a rectangular boundary from

Prev to T∆[i][j] ∗ Vn

25: end if
26: T∆[i][j] = T∆[i][j] − Tj

27: end for
28: end while
29: Merge all rectangular boundaries into polygon.
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Figure 2. In our target map, there are 8 junc-
tions and 7 links between them. This region
is the part of Southern New Jersey Highway
Networks. Every black dot depicts the posi-
tion of individual car at specific time.

4 Evaluation

This evaluation studies the performance of the quar-
antine boundary estimation algorithms in a random
walk and a vehicular ad hoc network scenario. We
compare the accuracy of the macroscopic quarantine
boundaries against infection patterns generated by a
microscopic simulation model.

4.1 Metrics and Measures

Informally, the algorithm should maximize the
number of infected nodes within the boundary and
minimize the number of clean (uninfected) nodes
within it. We measure the accuracy of the quar-
antine boundary estimation through detection, false-
alarm probability, and Jaccard similarity.

The detection probabilityis defined as the ratio
of infected nodes within the boundary to all infected
nodes. More formally,Pd = i

I
, wherePd is the de-

tection probability,i is the number of infected nodes
within the boundary andI is the total number of in-
fected nodes. We define thefalse-alarm probability
as the ratio of clean nodes within the boundary to all
clean nodes. Accordingly,Pf = c

i+c
, wherePf is the

false alarm probability,c is the number of clean nodes



within the boundary andC is the total number of clean
nodes. Notice thatc + i is the number of nodes within
the quarantine boundary andC + I is the total number
of nodes in the scenario. A perfect quarantine bound-
ary has a detection probability of 1 and a false-alarm
probability of 0.

TheJaccard similarityJ provides a convenient way
to combine both probabilities. It is defined as shown
in equation (6), whereX is the optimum quarantine
boundary in x-y coordinates andY indicates an esti-
mated quarantine boundary.

J =
2 (|X ⋂

Y |)
|X| + |Y | (6)

It can be computed from detection and false alarm
probabilities by substitutingX = I andY = i + c,
yielding equation (7).

J =
2Pd(1 − Pf )

1 + Pd − Pf

(7)

The Jaccard similarity lies in the interval[0, 1] with
1 indicating a perfect estimate, corresponding to de-
tection probability 1 and false-alarm probability 0.

4.2 Simulation Model

We use the SIR model [3] for implementing the dy-
namics among susceptible nodes, infected nodes and
recovered nodes. This model is characterized by the
fraction of nodes that are susceptible to infection, the
infection probability when a susceptible node is in
contact with an infected node, and a recovery proba-
bility. In our model a susceptible node is in contact
with an infected node, if they are in communication
rangeCr of each other.

Generally, we chose aggressive parameters for our
simulations to evaluate a near worst-case worm. We
set the infection probability to 1, which assumes the
absence of any communication errors. In other words
if a susceptible node is within the communication
range of an infected node it becomes infected. We
assume that infected nodes can only be recovered by
the service provider, that is they must be within the
quarantine boundary. Worm propagation then depends
on the communication range and the exact mobility
model.

We choose the initially infected nodes randomly
among all nodes in random walk scenario. However, in
VANET scenario, we choose them only on the link be-
tween J3 and J4, which is the center of our concerned
map in figure 2. The initial positions of initially in-
fected nodes is independent from the performance of
our quarantine boundary algorithm, but placing them
on that link enables us to extend the simulation dura-
tion.

For a random walk scenario, I choose 5 seconds as
T∆. After T∆ elapsed in pedestrian scenario, the num-
ber of infected nodes amounts up to 40-50% of whole
nodes and the propagation for each initially infected
node covers up to the circle with about 13m radius.
Because our network is 50m by 50m, this amount of
T∆ is appropriate to measure detection, false alarm
probabilities. In VANET case, I vary a time delay,T∆

from 25 seconds to 45 seconds. In the case ofT∆ =45
seconds, the propagation approaches almost 5 links out
of all 7 links.

For therandom walk model, we chose parameters to
reflect dense pedestrian movements with short-range
(e.g., Bluetooth) communications. Node density is
varied from 100 to 300 in a 50m by 50m area with
node velocity ranging between 1m/s to 3m/s. Commu-
nication range is set to 5m, 10m, and 20m, to represent
different path loss and interference environments.5

For the vehicular scenario, we obtained loca-
tion traces from a microscopic traffic model for the
PARAMICS transportation system simulator [14]. The
model is calibrated to real traffic observed in a sec-
tion of the southern New Jersey highway network. [19]
The full simulation model contains 2162 nodes, ap-
proximately 4000 links and 137 demand zones, from
which serve as origins and destinations for vehicles.
Out of all vehicles in the simulation model a fraction
of susceptible vehicles are selected randomly during
the simulation process as they leave their respective
origin zones. This ensures that the overall traffic pat-
terns remain realistic even though we assume that only
a percentage of cars is equipped with susceptible com-
munications equipment. At each time step of the sim-
ulation (0.5 seconds), the x and y coordinates of the
susceptible vehicles are recorded until they reach their

5These parameters approximate a sport event environment such
as the one in the Helsinki Olympic Stadium, where an outbreakof
the Cabir virus was reported [21].
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Figure 3. Estimation accuracy of diffusion-
reaction model for random-walk scenario.

destination zones. For a low susceptibility scenario we
selected 200 vehicles and for a moderate susceptibility
scenario we chose about 1800 random cars. This rep-
resents about 5% of total traffic during the simulation
which was restricted to 4min 10s, for computational
tractability. The communication range is set to 50m,
100m and 200m in this scenario. 200m approximates
free space propagation of a DSRC system [11, 20],
while the shorter ranges model higher path loss envi-
ronments, such as in congested traffic.

4.3 Pedestrian Scenario Results

To gain a better understanding of the effect of dif-
ferent model parameters we first discuss results from
the less complex diffusion-reaction estimation model.
The estimator’s worm propagation speed is set to 2.56
m/s and the time delayT∆ is set to 5 seconds for these
experiments.

Figure 3 shows estimation accuracy of the
diffusion-reaction estimator for different node densi-
ties. Mean and standard deviation for one hundred tri-
als are shown. A mean detection probability between
95%-100% can be achieved with a false alarm rate of
approximately 40%-50%. Our quarantine method be-
haves slightly more effective in the 200 node network
because the worm propagation speed best matched this
case. A change of +/-100 nodes increases the false
alarm probability by about 10%.
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Figure 4. Distance of the farthest infected
node from the outbreak position over time. In-
creasing node velocity has an additive effect
on propagation speed. Propagation speed re-
mains constant over time.

The following results analyze the worm propaga-
tion speed in more detail. The speed is affected by
node density, communication range, and node mobil-
ity. Figure 4 shows the distance of the farthest in-
fected node from original position of patient 0 over
differnt node velocities. Node density is set to 200 in
the 50m by 50m region and communication range is
10m. Again, the graph show mean and standard devi-
ation over one hundred trials. As expected, propaga-
tion speed increases with node velocity. An increase
in node velocity has an additive effect on propagation
speed. The graph also exposes that propagation speed
remains constant over time, further supporting that a
linear model fits well. A linear regression forv=2m/s
yields intercept 2.1 and slope 2.8m/s.

The effect of changes in communication rangeCr to
worm propagation speed are shown in figure 5. Node
velocity is set to 1m/s and other parameters remain
the same as before. Propagation speed increases with
higher node velocity. A larger communication range
increases the likelihood that susceptible nodes are in
rage, which hastens the spread of the worm. Propa-
gation speed remains near-constant over time for each
communication range.
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4.4 Vehicular Scenario Results

The first experiments measures the worm propaga-
tion velocity that can be expected in a highway out-
break. While prior works [25, 4, 9] have developed
analytical equations for information propagation speed
on road networks, these are not easily transferable
to the worm scenario. The average radius of frontal
wave is estimated by averaging 50 simulations and it
is repeated for different communication ranges (50m,
100m and 200m). The estimated radius of frontal wave
is shown in figure 6. The results show that for a com-
munication range of 200m, the worm travels at a mean
velocity of about 75m/s, significantly faster than typi-
cal highway traffic. Lower communication ranges re-
sult in reduced velocity.

The next experiment compares the estimation accu-
racy of the advection model over the diffusion-reaction
model in the highway scenario. The communication
range is set to 100m. Figure 7 and figure 8 show the
detection and false alarm probability, respectively. The
results from the advection algorithm described in sec-
tion 3 are labeled “advection with analytical model”.
To allow a more detailed analysis, the graphs also con-
tain two additional curves, which assume that a more
precise estimate of worm propagation speed is avail-
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Figure 6. Worm propagation in highway model
with 5% of vehicles susceptible

able. In the “advection with same speed” approach,
we use the average worm propagation speed (obtained
from the previously described simulation) for all road
segments. The “advection with different speed” ap-
proach, uses more detailed speed estimates, one per
road segment, also derived from simulations.

The figures show that the advection models achieve
superior detection probability over the diffusion-
reaction model, while the false-alarm probability does
not differ more than about 10% between advection and
diffusion. The detailed knowledge about information
propagation speed does not lead to a discernible im-
provement in detection probability. However, when
worm propagation speed is known per road segment,
the mean false alarm probability improves by up to
10%. This shows that at least slight improvements to
the presented estimation techniques are possible.

5 Discussion

Estimation will necessarily lead to imperfect con-
tainment. Can this effectively slow worm propaga-
tion? We model the accuracy of quarantine boundary
through an immunization probabilityPimm between
0.8 and 1 and simulate worm propagation in the pedes-
trian random-walk scenario after such an imperfect
containment. Figure 9 depicts the infection rates after
one containment was performed atTc = 5seconds.
Detection probabilities greater than 0.95%, such as
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Figure 7. Detection probability on highway
network. The advection models achieve su-
perior accuracy over the diffusion-reaction
model.
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Figure 8. False-alarm probability on highway
network. The advection model’s better detec-
tion probability does not lead to a significant
increase in false alarms.
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Figure 9. Effect of imperfect containment on
worm propagation speed. Containment tech-
niques with more than 95% detection proba-
bility can significantly slow worms.

achieved by the advection model, significantly slow
the propagation of a worm, yielding additional anal-
ysis time for security engineers.

So far, we assumed that the intrusion response is
only performed once. Repeated application, however,
could further slow worm propagation. One approach
would be to wait for any intrusion reports after the
first response and then retry with an enlarged bound-
ary. Another approach would treat every remaining
infectious node as a new outbreak. However, this re-
quires changes to the estimation model because the
worm will continue to spread from multiple locations,
rather than a single origin.

The current solution aims for a high detection prob-
ability, to effectively slow worms. In some scenar-
ios a more balanced approach that also minimizes the
false alarm probability may be desirable. Higher Jac-
card similarity values, for example, can be obtained
when small reductions in detection probability yield
large reductions in false-alarm probability. To opti-
mize Jaccard similarity we could choose a smaller ra-
dius R̂ = γR = γ2

√
παDt for the random walk sce-

nario. R̂ denotes the effective radius which equals the
square root of the propagation area enclosed by a real
boundary (not a circle) against time. Our usage ofR
instead ofR̂ also explains the of our algorithm over
different node densities.



The successful application of ecological models to
estimating worm propagation raises the question about
other potential synergies between the fields. Biologi-
cally inspired interdisciplinary work has long affected
computer security. For example, computer immunol-
ogy improves virus defenses [8]. Epidemiology en-
ables us to investigate the spread of computer viruses
on a hybrid networks that combine computer network
and social networks, such as email [17]. In ecology the
Allee effect (or reduced per capita reproduction when
animals are scarce) may be useful for describe the dy-
namic change of the infection rate when we have dis-
connections in the ad hoc network. The effect of dis-
persal on competing populations (e.g., Predator-Prey
model) also holds promise for modeling competition6

or the cooperation of malicious codes [24].

6 Related Work

Moore and colleagues [16] investigated and com-
pared the existing containment methods for Internet
worms which can be implemented in gateway, firewall
and router. The hierarchical structure of the Internet
allows an administrator to partition and shut down a
local subnetwork which is infected. In wireless net-
works, however, an infected node can move and com-
municate with a susceptible node via localized inter-
action such as Bluetooth. Our work instead focuses
on estimating the geographic propagation pattern of
short-range wireless worms. The notion of locality is
less meaningful in wired networks where worms often
use random probing.

Khayam and Radha [13] investigated the param-
eters governing the spread of active worms over
VANET. They define the average degree of a VANET
node and use a SIR model for the spread of worms. In
our work, we provide a spatial and temporal distribu-
tion of the propagating worms rather than an infection
rate over time.

Wu and Fujimoto [25] presented an analytical
model for information propagation in Vehicle-to-
Vehicle Networks. Worm propagation is very similar
to information dissemination except that it has an ma-
licious purpose and it lacks cooperation of neighboring
nodes. Our work concentrated on practical estimation

6In 2001, the counterattacking CodeGreen appeared to disin-
fect CodeRed.

algorithms that are tractable for larger highway net-
works. We also presented simulation results from a
calibrated highway simulation.

Several intrusion detection system for wireless ad
hoc networks have been designed [28, 15]. Zhang and
Lee present a collaborative intrusion detection system
for ad hoc and assume that every node runs an IDS
agent. Anjum and colleagues have investigated the op-
timal placement of intrusion detection nodes in an ad
hoc network to reduce the need for one IDS agent per
node [2]. This intrusion detection work concentrates
mostly on external attacks such as distributing erro-
neous routing information. They do not address how
to catch up with a propagating worm. Our work shows
how to take advantage of a wireless infrastructure net-
work and how to forecast the propagation of the worm.

7 Conclusions

Wireless ad hoc networks requires a new worm
intrusion response architecture and mechanisms be-
cause it lacks central infrastructure choke-points such
as routers, gateways and firewalls where network in-
trusion detection and address blacklisting or content
filtering can take place. We have proposed an archi-
tecture in which a service provider manages the secu-
rity of an hybrid (ad hoc with wide-area network) net-
work over a low-bandwidth, wide-area infrastructure
wireless network. This work concentrated on devel-
oping and analyzing location-based quarantine bound-
ary estimation techniques. These techniques let ser-
vice providers identify the current set of likely infected
nodes when intrusion information is incomplete or de-
layed. Specifically, we found that

• a mobile worm could spread in a typical high-
way network with a mean velocity of about 75m/s
even though only 5% of vehicles are susceptible
to attack.

• advection-based estimation techniques can esti-
mate the group of currently infected nodes with
a detection probability greater than 95% and a
false-alarm rate of less than about 35%. This pro-
vides a significant improvement over having to
target a response at all nodes in a large geographic
region.



Future WorkThere are several directions for future
work. First, designing algorithms that show robust ac-
curacy if the geographic origin of the outbreak is not
or only approximately known. Second, it appears valu-
able to develop techniques that effectively address par-
tial outages of the wide-area wireless network. Finally,
the system could take advantage of propagation speed
information gained from the time difference in intru-
sion reports from different nodes.
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