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ABSTRACT
Motivated by a probe-vehicle based automotive traffic monitoring
system, this paper considers the problem of guaranteed anonymity
in a dataset of location traces while maintaining high data accuracy.
We find through analysis of a set of GPS traces from 233 vehicles
that known privacy algorithms cannot meet accuracy requirements
or fail to provide privacy guarantees for drivers in low-density ar-
eas. To overcome these challenges, we develop a novel time-to-
confusion criterion to characterize privacy in a location dataset and
propose an uncertainty-aware path cloaking algorithm that hides
location samples in a dataset to provide a time-to-confusion guar-
antee for all vehicles. We show that this approach effectively guar-
antees worst case tracking bounds, while achieving significant data
accuracy improvements.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy IssuesPrivacy; K.6
[Management of Computing and Information Systems]: Secu-
rity and Protection

General Terms
Algorithms, Measurements, Security

Keywords
Privacy, GPS, Traffic

1. INTRODUCTION
A new class of applications that mines aggregate location traces

from large numbers of users, spawned by the increasing ubiquity
of sensors and wireless communications, raises significant privacy
concerns. One example and the motivation for this paper is automo-
tive traffic monitoring through probe vehicles [20, 14, 30], which
infers traffic congestion from position and speed information peri-
odically reported from GPS-equipped vehicles. Other applications
of such aggregate location traces are road and city planning.

Privacy could be protected in such applications by rendering the
data anonymous before sharing it with application service providers.
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An anonymous location dataset provides strong privacy protection
while allowing sharing with arbitrary data consumers, since no
purpose-binding restricts the data for certain uses. Anonymization,
however, requires techniques beyond omitting obvious identifiers,
since the spatio-temporal characteristics of the data allows track-
ing and reidentification of anonymous vehicles when user density
is low. Existing algorithms based on the k-anonymity concept [42,
22, 24], however, modify the location traces substantially and can-
not meet the accuracy requirements of the traffic monitoring appli-
cation. Other techniques [6, 27, 36] achieve better accuracy but
cannot guarantee privacy in low user density scenarios.

This paper addresses the challenge of providing strong privacy
guarantees while maintaining high data accuracy of time-series lo-
cation data. Specifically, the key contributions of this work are:

• introduction of a novel time-to-confusion metric to evaluate
privacy in a set of location traces. This metric describes how
long an individual vehicle can be tracked.

• development of an uncertainty-aware privacy algorithm that
can guarantee a specified maximum time-to-confusion.

• demonstration through experiments on real-world GPS traces
that this algorithm limits maximum time-to-confusion while
providing more accurate location data than a random sam-
pling baseline algorithm.

Overview. The remainder of this paper is organized as follows.
Section 2 introduces the motivating traffic monitoring system and
data requirements. In section 3, we describe the privacy model
and introduce the time-to-confusion metric. Section 4 presents the
uncertainty-aware privacy algorithm. Section 5 describes the ex-
perimental results obtained with real-world location traces, which
demonstrate the privacy and data accuracy advantages. We then
discuss limitations and extensions in section 6, review related work
in section 7, and conclude.

2. TRAFFIC MONITORING WITH PROBE
VEHICLES

The traffic monitoring application that serves as a case study
aims to provide estimates of current travel time for each route using
real-time GPS traces from vehicles on these roads. The probe ve-
hicles use on-board GPS receivers and cellular communications to
periodically report their position and speed to a central traffic mon-
itoring system, which stores them in a database for real-time and
historical traffic analysis. Figure 1(a) illustrates this architecture.

2.1 Real-world GPS Trace Collection
To obtain a realistic dataset similar to real deployments [2, 3,

1], we have offline collected a dataset containing GPS traces from



(a) System architecture
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(b) 70km x 70km road network with cell weights indicating
the busiest areas

(c) Temporal distribution of GPS traces for 233 vehicles

Figure 1: Traffic monitoring system and spatio-temporal dis-
tribution of real-world dataset

233 vehicles driving in a large US city and its suburban area. Fig-
ure 1(b) depicts the 70 km by 70 km region that the vehicles cov-
ered. For privacy reasons no specific information about the vehicles
or drivers is known to the authors, except that traces were recorded
largely from test vehicles driven by volunteers. Each GPS sample
comprises vehicle ID, timestamp, longitude, latitude, velocity, and
heading information. Each vehicle records a GPS sample every
minute, while its ignition is switched on, for a period of one week.
This means that the traces contain temporal gaps, since no data is

Parameter Requirement
Spatial Accuracy 100m
Sample Interval 1min

Delay few minutes

Table 1: Traffic monitoring system data requirements

provided while the vehicle is parked with its ignition switched off.
In addition, data is unavailable when the GPS reception is lost (e.g.,
due to obstruction from high-rise buildings) or the receiver is still
in the process of acquiring the satellite fix. Figure 1(c) illustrates
the distribution of gaps in the traces of around 233 vehicles. Each
dot represents a received data sample. Since the traces do not con-
tain information about ignition status, we assume that a gap longer
than 10 min indicates that the vehicle was parked. We refer to the
parts of a trace between two gaps longer than 10 min as a trip.

2.2 Data Quality Metrics and Requirements
Data privacy algorithms increase privacy through deliberate mod-

ifications on the dataset, such as omission, perturbation, or gener-
alization of a datum. Thus, there exists a tradeoff between data
quality (or its utility) and the degree of privacy. To enable a mean-
ingful evaluation of privacy algorithms let us discuss data quality
requirements and metrics for the traffic monitoring application.

This application represents a road map as a graph comprising a
set of road segments, where each road segment describes a stretch
of road between two intersections. Generating the congestion map
then proceeds in three steps: Mapping new GPS samples to road
segments, computing mean road segment speed, and inferring a
congestion index (e.g., by comparing current mean speed with nom-
inal segment speed).

Mapping GPS samples onto road segments requires high spatial
accuracy. Consider that two different parallel road segments (with
traffic flow in same direction) may be only about 10m apart, as on
the New Jersey Turnpike, for example. Cayford and Johnson [9]
showed, however, that using tracking algorithms the correct road
can be determined in 98.4% of all surface streets and 98.9% of all
freeways if the location system provides a spatial accuracy of 100m
and updates in 1s intervals. When reducing the update interval from
1s to 45s, the correctly determined roads drop from 99.5% to 98%
(at 50m spatial accuracy). Therefore, to maintain high road map-
ping accuracy at the 1min sample interval for our data traces, we
can assume that a minimum spatial accuracy of 100 m is needed.

Another important data quality requirement is road coverage,
which primarily depends on the penetration rate, the percentage
of vehicles carrying the traffic monitoring equipment. To achieve
high coverage these systems aim at a minimum penetration rate of 3
(for freeways) to 5% (for surface streets) [14], but during the initial
deployment phase penetration rates may be much lower. Thus pri-
vacy algorithms must offer protection even with in low deployment
densities. Road coverage can also be reduced through privacy algo-
rithms. Thus, we measure a relative weighted coverage metric for
the privacy algorithms, which is based on the following heuristics.
First, road coverage decreases as more samples are withheld. Sec-
ond, probe-vehicle based traffic monitoring aims to extend traffic
monitoring beyond a few key routes, but information from busier
roadways is certainly more important than from low-traffic routes.
Third, coverage is fundamentally limited by the number of probe
vehicles on roads, thus we only consider coverage relative to the
original dataset.

To measure the effect of removed samples on road coverage, rel-
ative weighted coverage first assigns each location-sample a weight,



depending on how busy the area around this sample is. Then, it
divides the sum of weighted location samples from modified (or
partially removed) traces by the sum of weighted location samples
from the original traces. To estimate these weights for our dataset
we divide the area into 1km by 1km grid cells and count the number
of location samples ni emanating from each cell i over one day in
the original traces. The resulting weights for each cell are overlaid
on the road map in Figure 1(b). The weights are normalized with
the sum of weights over all samples, so that the relative weighted
road coverage for the original dataset is equal to 1. More precisely,
the weight for all samples in cell i equals wi = ni∑

j n2
j

. With these

weights, relative weighted road coverage for a set of location sam-
ples L is then defined as

∑
l∈L wc(l), where the function c returns

the cell index in which the specified location sample lies.
In summary, we can measure data quality for a traffic monitoring

application through the relative weighted road coverage, where we
consider a road segment covered if a data sample with sub-100m
accuracy is available. Table 1 summarize key system parameters
and requirements that we will assume in the following sections.

3. PRIVACY LEAKAGE THROUGH ANONY-
MOUS LOCATION TRACES

Especially in the United States where people rely heavily on au-
tomobiles and distances between buildings are large, monitoring
the movements of a person’s automobile can reveal sensitive in-
formation. First, knowing trip destinations can reveal information
about a persons health, lifestyle, net worth, or political associations,
Second, many drivers might object to such monitoring because it
could reveal minor traffic or parking violations.

Even after anonymization, some of this information may be re-
covered, as simply removing identifiers from a dataset does not
always provide strong anonymity guarantees, which was the moti-
vation for introducing the k-anonymity concept [42].

3.1 Existing Privacy Algorithms
Several techniques have been proposed to increase location pri-

vacy. However, we are aware of only one class of techniques, spa-
tial cloaking algorithms for k-anonymity, that can guarantee a de-
fined degree of anonymity for all users.

k-anonymity [42, 38] formalizes the notion of strong anonymity
and complementary algorithms exist to anonymize database tables.
They key idea underlying these algorithms is to generalize a data
record until it is indistinguishable from the records of at least k −
1 other individuals. Specifically, for location information, spa-
tial cloaking algorithms have been proposed [24, 22] that reduce
the spatial accuracy of each location sample until it meets the k-
anonymity contstraint. To achieve this, the algorithms require knowl-
edge of nearby vehicles positions, thus they are usually implemented
on a trusted server with access to all vehicles current position.

k-anonymous datasets produced with known algorithms cannot
meet traffic monitoring’s accuracy requirements. Figure 2 shows
the spatial accuracy results obtained after applying a spatial cloak-
ing algorithm to guarantee k-anonymity of each sample. We use
the same dataset in section 5.1 so that we could directly compare k-
anonymity with our proposed solution in terms of spatial accuracy.
The results were obtained with the CliqueCloak algorithm [22],
which to our knowledge achieves the best accuracy. The results
show that even for very low privacy settings, k = 3, location error
remains close to 1000m for an emulated deployment of 2000 ve-
hicles, far over the accuracy requirement of the traffic monitoring
application. While these results can be expected to improve with
increased penetration rates as the deployment case of 5500 vehicles

shows 500m for k = 3 (indeed, [24] shows that median accuracies
of 125 meters and below can be obtained when all vehicles act as
probes), other privacy approaches are necessary to enable probe
systems operating with lower penetration rates.
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Figure 2: Data accuracy of samples processed with spatial
cloaking algorithm fails to meet the accuracy requirement in
our scenario

Best effort algorithms. Given that in dense environments paths
from many drivers cross, drivers intuitively enjoy a degree of anony-
mity, similar to that of a person walking through an inner-city crowd.
Thus, Tang et al. [43] lay out a set of privacy guidelines and sug-
gest that the sampling frequency, with which probes send position
updates, should be limited to larger intervals. The authors men-
tion that a sample interval of 10min appears suitable to maintain
privacy, although the choice appears somewhat arbitrary (for ref-
erence, a typical consumer GPS chipset implementation offers a
maximum sampling frequency of 1 Hz). We refer to data collection
with reduced sampling frequency as subsampling.

Other best effort algorithms suppress information only in cer-
tain high-density areas rather than uniformly over the traces as the
subsampling approach. The motivation for these algorithms that
path suppression in high density areas increases the chance for con-
fusing or mixing several different traces. This approach was first
proposed by Beresford and Stajano [7]. The path confusion [27]
algorithm also concentrates on such high-density areas although
it perturbs location samples rather than suppressing them. These
techniques increase the chance of confusion in high-density areas,
but they also cannot guarantee strong privacy in low-density areas
where paths only infrequently meet. Thus, in-terms of worst-case
privacy guarantees their advantage over subsampling remains un-
clear.

We choose the subsampling algorithm as a best effort baseline
algorithm. Table 2 shows an adversary’s tracking performance
over an anonymous set of samples with 1 min (no removal) and 2
min (50% removal) sampling intervals. For a probe vehicle den-
sity of 500 vehicles per a 70km2 region, the tracking algorithm
returns 3480 segments of 15 min duration and 1172 segments of 20
min duration. Both reducing the sampling interval and increasing
probe vehicle density reduces tracking performance. For example,
with 2000 vehicles on a same area and 2 min sampling interval,
17 segments of 20 min duration can be identified. Precision of the
tracking algorithm is about 95% in all cases, meaning that only 5%
of the returned segments do not match an actual vehicles path, ex-
cept in the 2000 vehicle 2 min case, where relatively few segments
can be tracked (in this case precision drops to 60 percent). These
example results were obtained with a tracking model that we will
describe in detail in the following section.



Random sampling (50% removal) Anonymization (no removal)
15min 20min 15min 20min

Density=500, Uncertainty threshold=0.45 45/47 28/29 3300/3480 1117/1172
Density=2000, Uncertainty threshold=0.7 18/30 10/17 1302/1394 908/958

Table 2: Empirical confidence in subsampling

To understand the implications of these tracking durations (15min
and 20 min), let us consider figure 3, which depicts the histogram
of per-trip travel time in the GPS dataset. The data shows a large
number of very short trips, for example 30% of trips are shorter
than 10 min, 50% of trips shorter than 18min. This empirical result
also coincides with the empirical statistics from real GPS traces in
Krumm’s work [35] (Krumm observes 14.4 min per trip as a me-
dian). This means that by following a trace for only 10min, an ad-
versary may be able to track a vehicle from its home to a sensitive
destination.
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Figure 3: Empirical distribution of travel times per vehicle trip.

These results illustrate that protecting all drivers of probe vehi-
cles through subsampling remains difficult. One minute sampling
intervals are already large for a traffic monitoring application but
protecting all drivers even in low density areas would require a fur-
ther significant increase in the sampling interval. Moreover, it is
difficult to choose this sampling interval since traffic densities can
change substantially over time and space.

This raises the question of alternate definitions and measures for
anonymity in location traces.
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Figure 4: Fitting distance errors in tracking using an exponen-
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3.2 Privacy Metric and Adversary Model
We observe that the degree of privacy risk strongly depends on

how long an adversary can follow a vehicle. To constitute a privacy
breach a trace must contain a privacy sensitive event (e.g., visited a
sensitive destination) and the adversary must be able to identify the
driver generating this trace. Both the probability that sensitive in-
formation is included and the probability of identification increase
with longer traces. Identification may be possible, for example, if
the vehicle returns to a known home or work location of a specific
individual.

Since consecutive location samples from a vehicle exhibit tem-
poral and spatial correlation, paths of individual vehicles can be re-
constructed from a mix of anonymous samples belonging to several
vehicles. This process can be formalized and automated through
target tracking algorithms [26]. These algorithms generally predict
the target position using the last known speed and heading informa-
tion and then decide which next sample to link to the same vehicle
through Maximum Likelihood Detection [44]. If multiple candi-
date samples exist, the algorithm chooses the one with the highest
a posteriori probability based on a probability model of distance
and time deviations from the prediction (in our evaluation, we as-
sume a strong adversary with a good model of these deviations).
If several of these samples appear similarly likely, no decision with
high certainty is possible and tracking stops.

Privacy Metrics. In consideration of this adversary model, we
measure the degree of privacy as the Mean Time To Confusion
(MTTC), the time that an adversary could correctly follow a trace.
Note that this includes time while a user remains stationary unless
otherwise specified. More specifically, the time to confusion is
the tracking time between two points where the adversary reached
confusion (i.e., could not determine the next sample with sufficient
certainty). Inspired by the use of entropy in anonymous commu-
nication systems [40, 16], we use information theoretic metrics to
measure uncertainty or confusion in tracking.

For any point on the trace, Tracking Uncertainty is defined as
H = −∑

pi log pi, where pi denotes the probability that location
sample i belongs to the vehicle currently tracked. Lower values of
H indicate more certainty or lower privacy. Given no other infor-
mation than the set of location samples, intuitively the probability
for a sample reported at time t is high, if the sample lies close to
the predicted position of the vehicle at time t and if no other sam-
ples at the same time are close to the vehicle. As one step further,
we can also express tracking confidence C on adversary’s trial by
calculating (1−H).

Empirically, we found that distances of the correct sample to
the predicted position appear monotonically decreasing in figure 4.
Therefore, we compute the probability pi for a given location sam-
ple by first evaluating the exponential function

p̂i = e
− di

µ

for every candidate sample and then normalizing all p̂i to obtain
pi. The parameter µ can be interpreted as a distance difference that
can be considered very significant. We obtain the value of µ from
empirical pdf of distance deviation in figure 4 which we fit with



exponential function using unconstrained nonlinear minimization
(µ is 2094 meters).

The following algorithm is not dependent on the use of an ex-
ponential function for estimating the probability that a location
sample belongs to the same trace. It does assume, however, that
a publicly-known ’best’ tracking model exists and that the adver-
sary does not have any better tracking capabilities. In this paper,
we have empirically derived this probability model by fitting an
exponential function.

Overall, the mean time to confusion can then be defined as the
mean tracking time during which uncertainty stays below a confu-
sion threshold. If the uncertainty threshold is chosen high, tracking
times increase but so also does the number of false positives (fol-
lowing incorrect traces). Since the adversary cannot easily distin-
guish correct tracks and false positives, we assume that high uncer-
tainty thresholds will be used.

4. PATH PRIVACY-PRESERVING MECHA-
NISM

In this section, we present a method for preserving privacy in
GPS traces that can guarantee a level of privacy even for users
driving in low-density areas. Given a maximum allowable time
to confusion and an associated uncertainty threshold, the algorithm
can process a stream of received position samples to maintain the
tracking time bounds.

Since the algorithm must be aware of the positions of other ve-
hicles, we first develop a centralized solution and then discuss how
reliance on a trustworthy privacy server may be relaxed. We first
consider the stepwise tracking model without the possibility of path
reacquisition.

We observe that a specified maximum time to confusion (for a
given uncertainty level) can be guaranteed if the algorithm only
reveals location samples when (i) time since the last point of con-
fusion is less than the maximum specified time to confusion or (ii)
at the current time tracking uncertainty is above the threshold.

Algorithm 1 shows how this idea can be implemented. Note that
it describes processing of data from a single time interval, it would
be repeated for each subsequent time slot with the state in the ve-
hicle objects maintained. It takes as input the set of GPS samples
reported at time t (v.currentGPSSample updated for each vehicle),
the maximum time to confusion (confusionTimeout), and the asso-
ciated uncertainty threshold (confusionLevel). Its output is a set of
GPS samples that can be published while maintaining the specified
privacy guarantees.

The algorithm proceeds as follows. It first identifies the vehicles
that can be safely revealed because less time than confusionTime-
out has passed since the last point of confusion (line 12f.) Second,
it identifies a set of vehicles that can be revealed because current
tracking uncertainty is higher than specified in confusionLevel (line
15-30). Finally, it updates the time of the last confusion point and
the last visible GPS sample for each vehicle (line 32ff., the latter
is needed for path prediction in the uncertainty calculation). This
step can only be performed when the set of revealed GPS samples
had been decided, since confusion should only be calculated over
the revealed samples.

The second step relies on several approximations. To reduce
computational complexity it calculates tracking uncertainty only
with the k closest samples to the prediction point, rather than with
all samples reported at time t. This is a conservative approxima-
tion, since uncertainty would increase if additional samples are
taken into account (see proof in appendix A). Further, it builds
a set of releaseCandidates since uncertainty should only be calcu-

Algorithm 1 Uncertainty-aware privacy algorithm
1: // Determines which location samples can be release while maintaining

privacy guarantee.
2: releaseSet = releaseCandidates = {}
3: for all vehicles v do
4: if start of trip then
5: v.lastConfusionTime = t
6: else
7: v.predictedPos = v.lastVisible.position +
8: (t-v.lastVisible.time)*v.LastVisible.speed
9: end if

10:
11: // release all vehicles below time to confusion threshold
12: if t - v.LastConfusionTime < confusionTimeout then
13: add v to releaseSet
14: else
15: // consider release of others dependent on uncertainty
16: v.dependencies = k vehicles closest to the predictedPos
17: if uncertainty(v.predictedPos, v.dependencies) > confusionLevel

then
18: add v to releaseCandidates
19: end if
20: end if
21: end for
22:
23: // prune releaseCandidates
24: for all v ∈ releaseCandidates do
25: if ∃ w ∈ v.dependencies. w 3 releaseCandidates ∪ releaseSet then
26: delete v from releaseCandidates
27: end if
28: end for
29: repeat pruning until no more candidates to remove
30: releaseSet = releaseSet ∪ releaseCandidates
31:
32: // release GPS samples and update time of confusion
33: for all v ∈ releaseSet do
34: publish v.currentGPSSample
35: v.lastVisible = v.currentGPSSample
36: neighbors = k closest vehicles to v.predictedPos in releaseSet
37: if uncertainty(v.predictedPos, neighbors) >= confusionLevel then
38: v.lastConfusionTime=t
39: end if
40: end for

lated with released samples, but the set of released samples is not
determined yet. The algorithm subsequently prunes the candidate
set until only vehicles remain who meet the uncertainty threshold.
The key property to achieve after the pruning step is that ∀ v ∈
releaseCandidates. uncertainty(v.predictedPos, k closest neighbors
in releaseSet ∪ releaseCandidates) ≥ confusionLevel. The algo-
rithm uses the approximation of calculating the k closest neighbors
before the pruning phase, and ensuring during pruning that only
vehicles remain if all k neighbors are in the set. While this approx-
imation could be improved in order to release more samples, the
current version is sufficient to maintain the privacy guarantee.

4.1 Algorithm Extensions for the Reacquisi-
tion Tracking Model

The algorithm described so far does not provide adequate pri-
vacy guarantees under the reacquisition tracking model because it
only ensures a single point of confusion after the maximum time to
confusion has expired. Recall that under the reacquisition model an
adversary skips samples with high confusion under certain condi-
tions and thus may be able to reacquire the correct trace even after
a point of confusion.

We observe that such reacquisitions are only possible over short
time-scales, since movements after more than several minutes be-
come too unpredictable. To verify this assumption, figure 5 shows
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Figure 5: Cumulative distribution function of reacquisitions

the longest reacquisition and distribution of reacquisition length in
minutes, empirically obtained from our dataset. As expected, no
reacquisitions occur over gaps longer than 10 minutes. Thus, the
following extensions can prevent reacquisitions within a time win-
dow w. For the experiments reported in the following section we
set w = 10.

• After the confusionTimeout expires: In addition to main-
taining confusion from the last released position, it is calcu-
lated from every prior released location sample (of the same
vehicle) within the last w minutes. Samples can only be re-
leased if all these confusion values are above the confusion
threshold.

• Before the confusionTimeout expires: Every released sam-
ple must maintain confusion to any samples which are re-
leased during the last w minutes and before the confusion-
Timeout was last reset.

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of the pro-

posed privacy preserving techniques. Specifically, we demonstrate:
(1) the effectiveness of our proposed techniques for privacy protec-
tion in the analysis of GPS traces; (2) how our proposed privacy
preserving techniques can maintain the quality-of-service for the
traffic monitoring application.

5.1 Experimental Setup
Experimental Data Sets. In our experiments, we used trace-

driven simulations for capturing real vehicle movements, density,
GPS inaccuracies, and road network artifacts. In the experiments,
we first applied privacy preserving techniques on the GPS traces
and then tested the performance of privacy protection using target
tracking techniques on these privacy-preserved GPS traces.

Since target tracking typically is only effective for a short time
period, we conducted the targeting tracking experiments on 24-
hour GPS traces in two different user density scenarios: 500 probe
vehicles and 2000 probe vehicles on a 70km2 region. To create a
high density scenario, we overlay GPS Traces of different volunteer
drivers at the same time frame (24 hours) of different dates. A lim-
itation of this overlay method is that it generates similar routes by
aggregating GPS traces from the same set of drivers. Still, we be-
lieve that it provides insights into higher density deployments (we
will revisit this limitation in the discussion section.)

Evaluation Metrics. In our experiments, we applied the follow-
ing two metrics to evaluate our privacy preserving algorithms for
GPS traces.

Tracking Time. Minimizing tracking time reduces the risk that
an adversary can correlate an identity with sensitive locations. We
use time to confusion (TTC), which we defined in section 3 as a
privacy metric, to measure the tracking duration. To better demon-
strate the bounded privacy protection of our proposed algorithm,
we report two statistics: the maximum value of TTC and the me-
dian value of TTC.

(Relative) Weighted Road Coverage. This metric provides an in-
dication of data quality for the traffic monitoring applications. In-
deed, there is a tradeoff between privacy protection and the flexible
use of data. In our case, a privacy preserving algorithm must pro-
vide reasonable privacy protection while delivering the same road
coverage for satisfying the need of the traffic monitoring applica-
tions. In this paper, we use relative road coverage as we defined in
section 2. In addition to this metric, we also provide the percentage
of released location sample compared to the original traces which
we consider 100%. Note that both metrics are normalized by values
of the original GPS traces.
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(a) Snapshot of privacy-preserving GPS traces generated by
uncertainty-aware path cloaking at off-peak time (over 1.5
hours) in a high density scenario
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(b) Snapshot of privacy-preserving GPS traces generated by
uncertainty-aware path cloaking algorithm at peak time (over
1.5 hour) in a high density scenario

Figure 6: Uncertainty-aware privacy algorithm removes more
samples in low-density areas, in which vehicles could be easily
tracked. Gray dots indicate released location samples, black
ones denote removed samples.

Snapshots of Privacy-preserving GPS Traces. Let us com-
pare the privacy-preserving GPS traces generated by the proposed
path cloaking algorithm with the original GPS traces. Figures 6(a)
and 6(b) show both in a high user density scenario for off-peak



(over 1.5 hours at 10am) and peak time (over 1.5 hour at 5pm),
respectively. Gray dots indicate released location samples while
black dots illustrate samples removed by path cloaking. We ob-
serve two characteristics from these traces. First, uncertainty-aware
path cloaking removes fewer location samples at peak time and sec-
ond, it retains more location samples within the presumably busier
downtown area. This illustrates how the algorithm, by virtue of its
design, retains information on busier roads where traffic informa-
tion is most valuable.

5.2 Protection Against Target Tracking
The following target tracking experiment illustrates how the path

cloaking algorithm prevents an adversary from reconstructing an
individual’s path using the cleansed GPS traces. Specifically, we
compare our uncertainty-aware privacy algorithm and its with-reacq-
uisition version with random subsampling in terms of maximum
and median TTC for configurations that produce the same number
of released location samples (as a metric of data quality). We evalu-
ate the effectiveness of our proposed privacy preserving algorithms
by answering the following questions:

• Do uncertainty-aware privacy algorithms effectively limit track-
ing time (i.e., guarantee time-to-confusion)? Are these limits
maintained even in low-user density scenarios?

• How does the average tracking time allowed by path cloak-
ing compare to the subsampling baseline, at the same data
quality level.

• How are the results affected by the choice of data quality
metric (percentage of released location samples vs relative
weighted road coverage)?

Throughout the results presented in the following subsections,
one graph depicts many experiment trials, where one trial com-
prises the following steps. We first apply a privacy algorithm to the
low-density (500 vehicle) or high-density (2000 vehicle) dataset
generated from the 233 original vehicle traces. We then remove
vehicle identifiers and execute the target tracking algorithm (see
Sec. 3) to measure tracking time for the first 233 vehicles. For each
vehicle, we compute the tracking time starting from each sample
of the trace and report the maximum. One data point shown in the
graph then corresponds to the median or maximum over the 233 ve-
hicle tracking times computed for one trial. For each graph, these
trials are then repeated with different uncertainty thresholds for the
path cloaking algorithms and different probabilities of removal in
the subsampling algorithm.

5.2.1 Bounded Tracking Time without Reacquisition
First, we ascertain whether the uncertainty-aware privacy algo-

rithm guarantees bounded tracking under the no reacquisition track-
ing assumption . Figures 7(a) and 7(b) show the maximum and me-
dian tracking time plotted against the relative amount of released
location samples, respectively, for a high density scenario with
2000 vehicles in the 70km-by-70km area. Figure 7(a) shows re-
sults for the uncertainty-aware privacy algorithm (marked with +)
for varying uncertainty levels with timeout fixed at 5 minutes and
for the random subsampling algorithm for varying probabilities of
removal. Since the configuration parameters from these algorithms
are not directly comparable, the graph shows the percentage of re-
leased location samples on the x-axis, allowing comparison of TTC
at the same data quality level. Also note that graph compares the
algorithms in terms of maximum tracking time, to illustrate differ-
ences in tracking time variance and outliers. During tracking we
set the adversary’s uncertainty threshold to 0.4. This means that

the adversary will give up tracking if at any point the uncertainty
level rises above this threshold, because the correct trace cannot
be determined. A 0.4 uncertainty level corresponds to a minimum
probability of 0.92 for the most probable next location sample.
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Figure 7: Maximum / Median tracking duration for different
privacy algorithms in high density scenarios (2000 vehicles /
1600 sqm). The Uncertainty-aware privacy algorithm outper-
forms random sampling for a given number of released location
samples.

As evident from the data, the uncertainty-aware privacy algo-
rithm effectively limits time to confusion to 5 min, except for very
low privacy settings (i.e., low uncertainty threshold less than 0.4),
while the random sampling algorithm allows some vehicles to be
tracked up to about 35min. Our proposed algorithm can release up
to 92.5% of original location samples while achieving the bounded
tracking property.

In figure 7(b), we see that naturally occurring crossings and merges
in the paths of nearby vehicles lowers median TTC to 1 or 2 minutes
(with reacquisition it would be higher, though). However, with ran-
dom subsampling (20% removal), about 15% of vehicles (34 out of
233) can still be tracked longer than 10 minutes. The uncertainty-
aware path cloaking can guarantee the specified maximum track-
ing time of 5min even for these vehicles with higher data quality,
removing only 17.5% of samples.

5.2.2 Dependence on Reacquisition and Density
We now repeat the same experiment under the reacquisition track-

ing model, where an adversary may skip ahead over a point of con-
fusion. Figure 8(a) (note scaled x-axis) shows that the uncertainty-



aware privacy algorithm with reacquisition extensions can also ef-
fectively limit tracking time under this model, while subsampling
allows a worst case tracking time of 42 min. Figure 8(b) also shows
that the median tracking time is increased by one minute due to the
change in tracking model. The maximum allowable amount of re-
leased location samples is decreased compared to that of figure 7.
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(a) The Maximum Value of TTC using the (with
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Figure 8: Maximum / Median tracking duration for different
privacy algorithms in high density scenarios (2000 vehicles /
1600 sqm) under the reacquisition tracking model.

Let us now investigate whether the privacy guarantee is also
maintained in a very low user density scenario with only 500 probe
vehicles. Figure 9 shows that this is indeed the case both with
and without the reacquisition model. While subsampling allows
a longer maximum TTC due to the low user density, our proposed
scheme still preserves the maximum TTC guarantee of 5 minutes
by removing 1.8% to 14.8% more samples (for uncertainty thresh-
olds between 0.4 and 0.99). The same result can be observed in
figure 9(b) with reacquisition, except that the difference in sam-
ples removed is not as pronounced. Compared to the high density
scenario, our proposed algorithm requires removing more samples
to achieve the bounded tracking property in the lower user density
scenario.

5.3 Quality of Service Analysis
So far, we have measured quality of service in terms of the per-

centage of samples removed by the algorithm. Since samples in
higher density areas are more important for the traffic monitor-
ing application, the benefits of our proposed privacy algorithm are
even more significant if we consider relative weighted road cov-
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Figure 9: The Uncertainty-aware privacy algorithm and its
(with reacquisition) version outperform a random subsampling
at a given range of sample removal also in the low density sce-
narios (500 vehicles / 1600 sqm).

erage. More details are shown in figure 10. Figure 11(b) fur-
ther shows that the uncertainty-aware privacy algorithm achieves
a relative weighted road coverage similar to that of original lo-
cation traces even though the actual number of released location
samples is lower than that of original location traces as shown in
figure 11(a). Figure 6 explains this results, in that the algorithm
retains most samples in high-density areas and removes most from
lower densities. However, the uncertainty-aware privacy algorithm
with reacquisition extensions provides a slight improvement of rel-
ative QoS for weighted road coverage. More detailed statistics on
this improvement are provided in table 3.

6. DISCUSSION
The following issues warrant a more detailed discussion.
Map-based Tracking. Tracking performance would likely be

improved by also considering road maps during the linking pro-
cess. For example, the adversary could assign a lower probability to
a segment if no direct road connection exists, even though the seg-
ment is near the predicted position. The algorithm could also adjust
the predicted location based on actual roadway positions [11]. To
counter this more sophisticated tracking, the bounded privacy algo-
rithm could also take these road maps into account when computing
entropy values. The complete analysis remains an open problem for
future work.



QoS metrics
Released location samples Weighted road coverage

Original traces 100% 100%
Uncertainty-aware privacy (5min,0.95) 81% 95.0%
Random sampling (0.8) 80% 79.3%
(with reacq) Uncertainty-aware (5min,0.4) 53.2% 55.6%
Random sampling (0.53) 53% 52.9%

Table 3: Quality of service enhancement in each of Uncertainty-aware privacy algorithm, (with reacquisition) Uncertainty-aware
privacy algorithm, and random sampling compared to the QoS level which original traces can achieve.
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Figure 10: Time-to-confusion advantages of uncertainty-aware
path cloaking become even more pronounced when compar-
ing algorithms with the traffic-monitoring-specific (Relative)
Weighted Road Coverage data quality metric.

A priori knowledge. In this work, we have concentrated on data
mining and inference techniques that do not possess any a priori
knowledge about the individual drivers. Even if home identification
and tracking in general remain difficult, an analyst could infer sen-
sitive information by focusing on a select individual. For example,
given the home and work position of an individual, it is possible to
determine when the person left home and passed an accident site
because the tracking analysis a priori knows the destination of the
trip. The detailed analysis of this case also remains for future work.

Relaxing trust in location server. The described centralized al-
gorithm requires a trustworthy location server, since the algorithm
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Figure 11: The Uncertainty-aware privacy algorithm removes
more samples in low density area, leading to enhanced QoS in
the high density regions, where traffic monitoring information
is most valuable.

needs the full GPS traces of all vehicles. A fully distributed algo-
rithm poses a research challenge by itself, since clients would need
to monitor the positions of neighboring cars, which again raises pri-
vacy concerns. It also appears possible, though, to relax the trust
assumptions in the location server through a hybrid approach, with
additional in-vehicle disclosure control based on coarser informa-
tion about neighbors. Since data quality would only be marginally
affected by missing updates in low-density areas, one could devise
schemes to inform vehicle of the approximate probe density in their
area. Then vehicles could reduce location updates to the server in
the most sensitive low-density areas. To prevent spoofing of such
density information, further research could investigate data cross-
validation schemes or secure multi-party computation schemes to
compute density.



Dataset limitations. Finally, we need to point out that the track-
ing results can be affected by the choice of probe vehicles. In our
dataset, most drivers shared the same workplace. Thus, the work-
place acted as a place of confusion, where the tracking algorithms
failed. A random sample of the population would probably not
share such a common location, thus we would expect tracking per-
formance to improve. This would cause both our proposed algo-
rithms and the random sampling method to remove more samples
to meet the maximum TTC. The performance gap between them
might also change from what we have observed in our study. In
addition, our method of overlaying multiple datasets to create one
high-density scenario may not be entirely faithful in representing
true traffic conditions. Due to this overlay, some of the vehicles
may also be driven by the same driver on similar routes, creating
a further bias towards reduced tracking performance. Nonetheless,
we believe our current results provide a valuable first step towards
understanding tracking performance in probe vehicle scenarios.

7. RELATED WORK
The question of data anonymity has been studied for some time

(e.g., [38]) but a solution that achieves both strong privacy guaran-
tees and a high degree of data accuracy for time-series location
data remains elusive. Not surprisingly, recent analyses of GPS
traces [34, 28, 26] have shown that simply omitting obvious iden-
tifiers from a dataset does not guarantee anonymity. Thus, stronger
protection mechanisms are needed. Specifically, the k-anonymity
concept [38, 42] has been adapted for location-based services [24,
37, 22]. If user density is high, these solutions can provide suf-
ficient accuracy for applications such as point-of-interest queries,
but as we have shown they do not achieve the high accuracy re-
quirements of traffic monitoring applications with low penetration
rates.

Similarly, random perturbation approaches for privacy-aware data
mining [5, 4], which seek to modify a dataset to guarantee privacy
of data subjects while preserving utility of the data, are not appli-
cable in this context. Noise with large variance does not preserve
sufficient data accuracy, while noise with small variance may be
filtered by tracking algorithms due to the spatio-temporal nature
of the data (in addition to the general weaknesses pointed out by
Kargupta et al. [33]).

Thus, several best effort location data protection algorithms have
been suggested [7, 39, 36, 27, 8], which have in common that they
create areas of confusion where the traces from several users con-
verge. While these algorithms achieve better accuracy and provide
a defined level of privacy in such an area of confusion, they cannot
provide overall privacy guarantees because these areas of confusion
might not occur in lower-density areas.

Anonymity has also been extensively studied in the networking
domain. Starting from Chaum’s anonymous communication [10]
work, researchers have developed MIX networks such as Onion
Routing [23] or Tor [17]. Privacy of location information has been
extensively investigated at the network-level. Network-level pri-
vacy techniques such as mixes and pseudonyms have been devel-
oped for cellular networks [19] and mobile IP [18]. The usage
of silent periods [25, 39, 36, 29], periods of no communication,
was proposed for wireless networks to reduce exposure to tracking.
Sharing a similar approach with swing & swap by Li et al. [36],
Jiang et al. combined three known concepts (silent period, pseudo-
nym update, and control of transmission) to maximize the size of
anonymity set in their work [31]. For sensor networks, two research
groups, Kamat et al. and Deng et al. [32, 15] develop routing al-
gorithms to protect the location of message senders or receivers
(i.e., base station). These approaches are largely complementary to

our work, they could be used in relaying (encrypted) GPS readings
to the traffic monitoring service provider. The work on measuring
communication anonymity [40, 16] also inspired us to use entropy
in defining time to confusion.

Another proposed approach builds on privacy policy languages [13]
and their location-oriented extensions [41] to allow users (or their
automated agents) to make more informed decisions about data
sharing. Such policies may be enforced through access control
mechanisms, such as [21, 45] for spatio-temporal data. Using these
approaches, data can only be shared if the data provider trusts the
data consumer.

8. CONCLUSIONS
In this paper, we have proposed a novel time-to-confusion metric

to characterize the degree of privacy in an anonymous set of loca-
tion traces. We then developed an uncertainty-aware privacy algo-
rithm, which can guarantee a defined maximum time-to-confusion
for all vehicles, even those driving in low density areas. We showed
through experiments with real-world GPS traces that the algorithm
can effectively guarantee a maximum time-to-confusion, while a
random sampling baseline algorithm allows tracking time outliers
for vehicles in low density regions at the same data accuracy level.

APPENDIX
A. PROOF OF THEOREM

Theorem A. Given n non-zero probabilities p0, p1, . . . pn, let H(Si)
be the entropy calculated over the normalized probabilities of the
i ≤ n most probable hypotheses. Then, H(Si) ≤ H(Sn).

PROOF. Let us order the probabilities so that p1 ≥ p2 ≥ p3 ≥
... ≥ pn. We then refer to the set which includes the normalized
probabilities from the first to the ith one p1∑

i pi
, . . . pi∑

i pi
as Si.

The entropy of S1 is 0, since the event is certain, and thus S1 ≤
S2. More generally, we know from [12] that the following relation
holds between H(Si) and H(Si+1).

αH(p1, p2, ..., pi) + H(α, 1−α) = H(αp1, αp2, ..., αpi, 1−α) (1)

Since we ordered the probabilities (descending) and (1−α) is the
(i + 1)th probability in Si+1, we also know that (1 − α) ≤ 1

i+1
.

Thus, i
i+1

≤ α ≤ 1 holds, given that α ≤ 1 as a probability.
In terms of H(Si) and H(Si+1) equation 1 can be rewritten as
αH(Si) + H(α, 1 − α) = H(Si+1). Subtracting H(Si) from
both sides yields equation 2:

H(Si+1)−H(Si) = H(α, 1− α)− (1− α)H(Si) (2)

We now show that this equation must be positive or zero to prove
our theorem. If α = 1 this obviously holds. Otherwise, the right
side of the equation 2 is minimized with the maximum value of
H(Si), which is log i and is obtained with all equal probabilities.
Thus, we now consider equation 3.

H(α, 1− α)− (1− α)H(Si) ≥ H(α, 1− α)− (1− α) log i (3)

Since f(α) = H(α, 1 − α) − (1 − α) log i is a monotoni-
cally increasing function and α ≥ i

i+1
, its minimum is obtained

at f( i
i+1

) = (i + 1){log(i + 1) − log(i)} ≥ 0. Therefore,
H(Si) ≤ H(Si+1) and by induction H(Si) ≤ H(Sn) holds.
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