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Abstract—We propose a rate adaptation scheme for visual
MIMO camera-based communications, wherein parallel data
transmissions from light emitting arrays are received by multiple
receive elements of a CCD/CMOS camera image sensor. Unlike
RF MIMO, multipath fading is negligible in the visual MIMO
channel. Instead, the channel is largely dependent on receiver
perspective (distance and angle) and visibility issues (partial
line-of-sight availability and occlusions). This allows for slower
adaptation but requires the adaptation algorithm to choose
among a more complex set of modes. In this paper, we define a set
of operating modes for visual MIMO transmitters and propose
a rate adaptation scheme to switch between these modes. Our
Visual MIMO Rate Adaptation (VMRA) is a packet based rate
adaptation protocol that bases its rate selection decisions on the
packet error rate feedback. Using trace-based simulation results
for a vehicle-to-vehicle communication scenario, we illustrate
how our VMRA algorithms can adapt over distance as well
as visibility variations in an optical link and achieve a higher
average throughput.

I. INTRODUCTION

The increasingly ubiquitous use of cameras and light emit-
ting devices, for example, in cell phones, cars, laptops, music
players, and surveillance systems creates an exciting novel
opportunity to build camera based optical wireless communi-
cation systems and networks based on a concept we call Visual
MIMO [1]. In this concept, optical transmissions by an array of
light emitting devices, which we refer to as light emitting array
(LEA), are received by an array of photodiode elements (e.g.
pixels in a CMOS camera). Examples of LEAs are arrays of
light emitting diodes, pixel arrays on LCD or plasma screens,
or digital micromirror devices combined with a light source.
The pixels in a camera is essentially an array of photodiodes
and the camera lens provides a different narrow field of view
for each photodiode. This creates a large number of highly
directional receive elements and by transmitting using multiple
elements of the LEA such camera based communications can
take advantage of data rate gains from multiplexing and/or
diversity using such an inherent multiple input multiple output
(MIMO) setting in the system. Visual MIMO promises to
achieve higher information capacity [1] than conventional op-
tical wireless systems that use photodiode receivers especially
in mobile settings where ranges greater than tens of meters
are required. Thus, one potential application area is vehicle-
to-vehicle communications, where LED lights could act as
transmitters and in-vehicle cameras as receivers. Visual MIMO
techniques, however, could also facilitate communications be-

tween large screens and handheld devices or communications
between handheld devices such as mobile phones. This may be
particularly attractive in dense settings, such as conferences,
since visual MIMO communications are virtually interference-
free due to its high directionality. The PixNet project [2] has
demonstrated that using an LCD monitor as transmitter that
data rates of the order of Mbps are possible. Such higher data
rates are typically achieved by multiplexing information data
streams over several transmitter elements.

Due to negligible multipath fading in optical channels
the data-rates achievable (i.e., the degree of multiplexing)
in visual MIMO depend primarily on the distortions in the
visual channel rather than multipath fading, unlike RF. These
distortions are typically observed as distortions in the size
and shape of the image, partial visibility of an image and
even interference between images of two different transmitter
elements in the scene due to perspective projection onto the
camera sensor and image blurring. In mobile settings, the
quality of the visual MIMO link varies significantly with the
variation in these distortions which depends on the camera
receiver perspective.

This suggests that the throughput of visual MIMO links can
be significantly improved through rate adaptation techniques,
which adapt the transmission data rate to the receiver per-
spective. Particularly in a vehicular setting with front and rear
facing visual MIMO transceivers the receiver could provide
feedback and make rate adaptation possible. Rate adaptation
has, of course, been the focus of extensive study for RF
communication systems (e.g., [3]–[5]). The visual MIMO rate
adaptation challenge differs in that (i) the primary challenge
lies in MIMO mode adaptation, and (ii) visual MIMO modes
present a more complex set of choices than what RF rate
adaptation algorithms have explored. Mode adaptation is the
more significant problem in visual MIMO, since visual MIMO
transmitters can employ a much larger number of transmit-
ter elements than typical RF MIMO systems (due to their
operation in the optical spectrum). Selection of the mode
requires more complex decisions than the typical rate-up or
rate-down decisions of many RF rate adaptation algorithms
because the adaptation algorithm has to choose a perspective-
appropriate subset of transmitter elements for multiplexing.
This subset has to be chosen such that all of the elements are
visible to the camera (within field-of-view and not occluded)
and the transmitter elements do not interfere with each other.



Interference between transmitter elements typically occurs
when link distance increases and the images of the elements
start to overlap in the camera view.

To address these challenges, this paper first defines a set of
visual MIMO transmission modes for an N = Nr ×Nc LED
array transmitter and develops adaptation algorithms to switch
to perspective-appropriate modes. The scheme uses packet
error feedback to choose the appropriate set of LEDs both over
changing distance and changing partial visibility conditions.
To identify the set of LEDs suitable for multiplexing, we
propose a probing scheme that uses certain spatial patterns
and a block CRC scheme that uses separate CRCs for the
blocks of information sent from each transmitter element.
Using trace-based simulations, we compare their performance
with a baseline solution that uses an exhaustive probing search
through all LED elements. The simulations are based on a car-
following video sequence where the car brake light LEDs are
assumed to be the transmitter elements.

II. RELATED WORK

Rate adaptation protocols have been largely studied, de-
signed, experimented and implemented for the RF channel
over the years and especially for 802.11 based networks [3]–
[5]. In IEEE 802.11 networks, the current standard feedback
from a receiver to a transmitter is only the presence or absence
of an ACK frame. Many rate adaptation schemes also try to
rely on physical layer metrics such as signal-to-interference
noise ratio (SINR) and bit error rate (BER) to obtain the
channel condition [6]. Such schemes typically apply to cellular
networks (e.g WiMAX and 3GPP) since cellular networks
have a wide range of SINR values [7]. There have also been
both simulation and implementation efforts in 802.11 networks
to find out what is the best rate along with the choice of spatial
diversity or spatial multiplexing for the wide range of channel
state among MIMO antennas [8], [9].

Similar to a few RF mechanisms an optical transmitter may
also seek to adapt to the link condition change based on a
few physical layer parameters. For optical channels, Diana and
Kahn [10] investigated how to adjust the parameters of FEC
techniques, such as repetition codes and rate-compatible punc-
tured convolutional (RCPC) codes, for Infra-Red links (IR)
based on BER metric. In their paper, Garcia-Zambrana [11] do
not adapt the bit-rate directly but seek to enhance the peak-to-
average optical power ratio (PAOPR) by inserting the silence
period while keeping the average optical transmitted power
for FSO links. More recently, Grubor et al. [12] investigated
how the power and information bits can be allocated among
OFDM subcarriers for throughput maximization. Applying
above techniques such as repetitive codes, RCPC, silence
periods to visual MIMO where the camera sampling rates are
limited add complexity and significant overheads which can
depreciate the effective throughput of the system.

III. PERSPECTIVE DEPENDENT DATA RATES

In Visual MIMO, the achievable data rate depends largely
on receiver perspective. In RF MIMO communication systems,

multipath fading can lead to independent parallel channels
between antenna pairs. This allows multiplexing of informa-
tion over these independent channels. With N independent
channels used for multiplexing, N symbols can be trans-
mitted simultaneously, leading to an N -fold gain in data
rate. Although multipath fading is negligible in the optical
spectrum considered here, independent parallel channels also
exist in visual MIMO. Consider an ideal full frontal view
onto a light emitting array at close distance. The light from
different transmitter elements will fall onto different pixels
in the camera image. These pixels can be independently read
out, which allows the same multiplexing of information across
different transmitter-pixel pairs. In this ideal case, the Shannon
capacity for the visual MIMO system with multiplexing can
be characterized as in RF MIMO by Cm = NWlog2(1 + γ),
where W is the sampling rate (frame-rate of the camera) and
γ is the signal-to-noise ratio (SNR) in a single LED-camera
communication system, as discussed in earlier work [1].
This assumes that SNR differences from LED to LED are
negligible. As in RF MIMO, operation in a diversity mode
is also possible. In this mode the same bits are signaled
on all (or a subset) of transmitter LEDs. This leads to a
stronger signal at the receiver and usually less errors. Note
that this is also possible when LEDs are blended together in
the image, the signals from multiple LEDs will simply be
combined on the receiver pixels. This leads to a capacity of
Cd = Wlog2(1 + Ndγ), where Nd denotes the number of
LEDs transmitting in this diversity mode. The key difference
to RF MIMO lies in larger N and very different channel
distortions introduced by the optical channel.

The SNR γ of the visual MIMO system with single LED
transmitter is given as,

γ =


κP 2

t d
−2

qRPnWf2l2 if d < dc
κP 2

t d
−4

qRPnWs2 if d ≥ dc
(1)

where Pt is the transmit power, q is charge of an electron,
R is the receiver responsitivity, Pn is the photon shot-noise
power density (Watts/area), f is the focal length of the camera,
W is the camera frame rate, l is LED diameter, s is the pixel
side length and d is distance. The parameter dc = fl/s is the
distance at which one LED projects onto exactly one pixel and
κ is a function of parameters such as the LED’s lambertian
radiation pattern, irradiance angle, field-of-view and optical
concentration gain of the receiver [13].

A. Modeling Channel Distortions

In practice, the availability of parallel channels will be
affected by visibility issues, perspective distortions, and lens
blur.

Visibility: Like any other optical wireless system, visual
MIMO requires line-of-sight. An outage will generally occur
when none of the transmitter elements are directly visible in
the camera image. Only rarely will reflections of the trans-
mitter image be strong enough to be detected by the receiver.
A key difference of visual MIMO systems is, however, that



only some of the transmitter elements may be visible. This
can occur when random objects partially obstruct the line of
visibility between the camera and the transmitter LEDs. It can
also occur when the transmitter is only partially within the field
of view of the camera or due to weather effects such as snow
flakes and rain drops. Such partial visibility means, that fewer
parallel channels are available and the maximum achievable
gain will be degraded. We model such visibility issues through
an index function V (n), which for each LED n ∈ 1 . . . N takes
a value 1 when the LED is visible or 0 when it is obscured.
The instantaneous multiplexing and diversity capacities Cm
and Cd can then be obtained by replacing the total number of
LEDs N with the number of visible LEDs

∑
V (n). Clearly,

visibility often changes over time. Modeling such visibility
changes is beyond the scope of this article.

Perspective Distortion: Changes in viewing angle or dis-
tance lead to perspective distortions that can also affect the
availability of such independent transmitter-pixel channels.
Consider again the full-frontal view onto a transmitter array,
but now from larger distance. As distance increases, the image
of the transmitter will become smaller. Eventually, light from
multiple transmitter LEDs will shine onto the same pixels. At
this point the light from these transmitters can no longer be
independently read out and the achievable multiplexing gain is
again reduced. With changes in viewing angle, the image of the
transmitter will be skewed. This can lead to situations where
part of the transmitter LEDs shine onto the same pixels, while
other transmitter LEDs can still be independently received.

Given the camera parameters as well as the location of the
transmitters and camera in 3D space, perspective projection
analysis [14] can be used to determine which pixels detect
light from which transmitters. For simplicity, let us focus
here on the effect of distance. Given a fixed-focal length f
of the camera, a spatial distance α between the centers of
two adjacent LEDs, and the distance to the camera d, we can
calculate the separation of the LEDs on the camera image
plane using projection. To be able to independently read the
signal from two LEDs, let us assume that a minimum image
separation η is required. Thus, multiplexing over all N parallel
channels is only possible for distances d below the threshold
d∗ = fα

η . In practice, α and η are likely to be fixed for a
visual MIMO system, since it will be difficult to dynamically
increase the spacing between LEDs or improve the resolution
of the camera. It is possible, however, to indirectly modify α
by leaving some LEDs unused. This effectively increases the
separation between LEDs in use but decreases the multiplexing
gain.

Lens Blur: In addition to perspective distortions, lens
blur can lead to blending of the images from two different
transmitters. The amount of blur in a camera image is a
characteristic of the camera lens and specific to the type of lens
used in the system. Such blur is often modeled with a Gaussian
blur filter. That is, a (blurred) image Zim is the output of a
Gaussian blur filter whose input is an ideal image Zideal, that
is Zim = Zideal ∗ gblur where ′∗′ represents a 2D-convolution
operation and gblur is a 2D-Gaussian function with zero mean

and standard deviation σblur measured using experiments [14].
In this paper, we will assume that the Gaussian blur from
two LEDs can be separated and independently read out, if the
distance between the centers is greater than the full-width-
at-half-maximum (FWHM) of the Gaussian blur function.
FWHM is often used as a parameter for image resolution in
analyzing fine detailed astronomical and medical images [15],
[16]. That means, we define the minimum necessary separation
in the image plane η as follows.

η = 2
√
2ln2σblur (2)

The rate adaptation problem then is to choose transmission
modes that exploit the available parallel channels while keep-
ing the error rate low. Multiplexing across more transmitter
LEDs will lead to higher data rates, but including an LED
that is occluded in the image, for example, would lead to bit
errors. We will further discuss an analyze different possible
transmission modes next.

B. Transmission Modes

A transmission mode is a certain assignment of multiplexing
and diversity functions to the set of LEDs. In one mode,
which we refer to as full multiplexing, bits are multiplexed
over all LEDs. In another mode, all LEDs would be used
to transmit the same bits. We refer to this as full diversity
mode. In between these extremes, lie many other possibilities
where only subsets of LEDs are used for multiplexing or
some subsets of LEDs are grouped for diversity operation.
We therefore define a transmission mode as a set of m non-
overlapping subsets chosen from the N LEDs of the array
where each set i = 1, 2, . . .m is a group of Di LEDs such that
m∑
i=1

Di ≤ N . Data bits are transmitted using the LED array

in a way that LEDs in each subset transmit the same bits
(diversity) and information is multiplexed over the different
subsets. The modes (m = N , Di = 1∀i = 1, 2, . . .m),
(m = 1, Di = N & i = 1) correspond to full-multiplexing
and full-diversity cases respectively.

As an example, let us discuss some possible modes that
can be obtained on a 3 × 3 transmitter array by choosing
subsets of LEDs for multiplexing. Assume that each LED is
separated from the next LED in the same row and column
by α units. Recall that the full multiplexing mode (mode 1
in Fig. 1) can be used only up to a critical distance of d∗

and would provide a multiplexing gain of 9. If we now con-
sider mode 2, which leaves LEDs {(1, 2), (2, 1), (2, 3), (3, 2)}
unused, the spatial separation between active LEDs increases
to α

√
(2). This increases the maximum distance to

√
2d∗,

albeit at a reduced multiplexing gain of 5. In mode 3, we also
switch off LED (2, 2), which allows communication for all
d ≤ 2d∗. The system can multiplex over the remaining LEDs
{(1, 1), (1, 3), (3, 1), (3, 3)}, yielding a multiplexing gain of 4.
The largest range is provided by the full diversity mode.

Other modes can be required to address visibility of the
transmitter to the camera. Weather conditions such as fog,
rain or snow can significantly reduce the resolvability due to



Fig. 1. Illustration of 3× 3 LED array modes

modes (dmin, dmax) (Nm,Nd) Rate
1 (0, d∗] (9,1) Cmimo(d

∗)

2 (d∗,
√
2d∗] (5,1) Cmimo(

√
2d∗)

3 (
√
2d∗, 2d∗] (4,1) Cmimo(2d

∗)
4 (2d∗, dmax] (1,9) Cmimo(dmax)

TABLE I
MODES AND RATES FOR N = 3X3 LED ARRAY

occlusions over time and blurring. For example, if the right
half of the LED array was obscured, a multiplexing mode
should only include LEDs from the left half. The resolvability
is also reduced when the camera is at an angle to the
transmitter. One possible mode to address the resulting skewed
images is to use a combination of multiplexing and diversity
where a group of LEDs could coordinate to attempt to provide
sufficient brightness for a particular bit, but individual groups
could be spaced sufficiently far apart to reduce the chances of
blur among the groups. In the vehicular application context,
we expect that visibility and distance distortions are more
prominent than such angular distortions and the remainder of
the paper will focus on these.

C. The Rate Adaptation Problem and Error Model

Due to the large number of possible transmission modes,
the visual MIMO rate adaptation problem lies in efficiently
choosing a transmission mode that maximizes throughput.
We assume an on-off-keying communication system where
feedback in the form of acknowledgments is available. The
feedback channel could be realized through a reverse visual
MIMO link.

We base our design and simulations on the following packet
error model. Recall that for an independent and identically
distributed (i.i.d) stream of bits framed into L bit packet
sequences the packet error rate (PER) is given as PER =
1 − (1 − Pe)

L, where Pe is the bit error probability. A
received packet is erroneous if at least one bit in the packet
or equivalently one LED is in error. Bit errors may be caused
due the AWGN background light noise and also due to visual
distortions we discussed. In this context, we consider that
LEDs will be in error when their centers cannot be resolved
from any adjacent LED in the image space. Let us consider
a visual MIMO LED array with N LEDs such that the
transmission modes are defined using m multiplexing sets
and each set containing Di LEDs (i = 1, 2 . . .m) used for
diversity, as discussed in section III-B. Then the packet error
ratio can be expressed as,

PER =


1
m

m∑
i=1

1−
Di∑
j=1

([1−Q(
√
Diγ)]

L)V (j) if(A)

1 if(o.w)
(3)

where (A) is the condition min(α(im)) > 2η. α(im) is the
set of the image separation values (in pixels) between any
two multiplexing sets and η is the resolvability factor from
equation 2. Given the spatial separation α the separation in
the image at a distance d be found by perspective projection
equations [14] as α(im) =

fα
ds . The decisions on the number of

sets m and LEDs Di for each set depends on this resolvability
condition (A) which infact depends on the distance. In this
way this model accounts for errors due to distance based
distortions. The errors resulting from AWGN background
noise are addressed through the term Q(

√
γ) which is the

average BER for a single transmitter (single LED) with an
SNR γ for OOK modulation in an AWGN channel (shot-noise
optical channel). The errors due to visibility are factored into
this model using the V (i) factor which denotes if an LED i
is visible (1) or obscured (0).

IV. VMRA-RATE ADAPTATION ALGORITHMS

In this section we detail our proposed algorithms for our
receiver-based rate adaptation protocol VMRA that adapts its
transmission data rate over distance and visibility variations
in the visual channel. The algorithms use the packet error
feedback information to choose the appropriate set of LEDs
both over changing distance and changing partial visibility
conditions. In our design the LED array transmitter sends a
continuous stream of packets - each appended with a CRC -
that are decoded at the camera receiver. Upon each successful
packet receipt the receiver sends back an acknowledgment
(ACK signal) back to the transmitter over a reverse visual
MIMO feedback link. The transmitter then flags the transmis-
sion as erroneous based on a packet error ratio computed over
a time window of T sec (can be of the order of tens of frame-
time),

PER = 1− (# ACKs in time T )

# packets transmitted in time T
(4)

The transmission is termed successful as long as the PER
is below a preset threshold PER∗ (typically 10-15%). In our
protocol the transmitter data rate is adapted to the distance
variations in the channel by switching to the perspective-
appropriate mode as described in section III-B. Since the data
rates in our system is primarily dependent on the number
of multiplexing/diversity LEDs over each iteration of the
adaptation, we design our algorithms to output the set of
indices of LEDs that can be multiplexed βm (|βm| = Nm)
and that can be used for diversity βd =(|βd| = Nd). To adapt
the transmissions to the visibility variations in the channel each
of our algorithms use different techniques to determine the set
of visible LEDs over each iteration of the adaptation. Such



techniques will be discussed along with a detailed description
of the algorithms in the following sections.

A. Exhaustive Visibility search VMRA

This algorithm uses an elementary approach to find the
erroneous LEDs (bits) by exhaustively searching over all the
LEDs (Nr ×Nc of them) in the transmitter array and output
the indices of LEDs that are to be multiplexed βm or use
diversity βd.

• To find the erroneous LEDs, each LED is set to transmit
a unique l bit training sequence (common bit-sequence +
unique ID of each LED), one after the other, such that
each bit is transmitted (each LED is ON) only once over
each image frame and those LEDs that are not in error
are indexed into a set V (visible set of LEDs). Since
errors may also occur due to even distance variations the
algorithm tries to determine the most appropriate mode
for transmission based on an estimate of the distance
between the transmitter and receiver it calculates in the
next step.

• The algorithm first finds a pair of LEDs within the set V
that are separated the farthest in space. Using the image
separation between these two corner LEDs, an estimate of
the distance d is calculated using perspective projection
theory [14]. Though not addressed in detail this paper
this method may also be extended to using all four corner
LEDs to also detect skew from different viewing angles to
adapt to angular distortions. The perspective appropriate
mode is determined by checking if the distance estimate
is within the distance ranges (dmin, dmax) of a partic-
ular mode (as discussed in section III-B). The distance
estimation to determine the perspective appropriate mode
is necessarily only when the system is using any of the
multiplexing modes. At a large distance LEDs may merge
together or the LED signal is too weak to be decoded. In
such a case where all the LEDs are marked erroneous by
the exhaustive search the algorithm defaults the mode to
a full-diversity mode.

• When an error occurs in the transmission (PER >
PER∗) or when a time-out (tout set to a large value like
10-20sec) occurs the algorithm reinitates the exhaustive
search and adaptation procedure. If transmissions are
successful for the period of tout the algorithm steps up
the transmission rate to next mode with a higher data rate.

B. Framing based algorithms

The exhaustive search to detect erroneous LEDs may prove
wasteful particularly when the the size of array is very large.
In such cases rate adaptation may not perform as fast as
it is needed to especially in mobile scenarios. Given the
spatial setting of the LED array it may be possible to find
erroneous LEDs by framing packet transmissions in a spatially
coordinated manner over the array. By coordinating such
packet transmissions over space and time it may be possible
to ‘track’the bit transmissions from packets not only in time

but spatially as well. In this aspect, we propose two possible
techniques of such spatio-temporal framing,

Bit per LED : The LED transmitter array is set to transmit
packets of constant size L bits such that each LED transmits
one bit. Each packet contains a C bit CRC for error detection.
When is the system uses ‘multiplexing’each LED transmits
an independent bit from the data packet, while when using
‘diversity’all the LEDs of the transmit array transmit the same
bit. The significance of such a framing technique is that it is
practical and easily implementable.

Block per LED: The data packets are split into blocks of
data bits. These blocks are spatially framed such that each
LED transmits bits corresponding to individual blocks from
a packet. Each block is also appended with a C bit CRC for
error detection. Only when the system uses spatial diversity on
a set of LEDs then the transmitter frames the packets such that
the diversity LEDs will transmit the same bits from the same
block. Though such a configuration may be relatively complex
when compared to Bit per LED the advantage is that detecting
the erroneous LEDs (and hence bit errors) becomes very easy
as packet errors can be detected just by indexing the erroneous
blocks and mapping it to the corresponding LED indices.

Fig. 2. Probevisibility pattern for a 4× 4 LED array in Probe VMRA

1) Probe-VMRA: In this section we propose a Probe VMRA
algorithm that uses the bit per LED framing technique for
packet transmissions. This algorithm uses a unique probe
function ProbeVisibility() to detect occlusion in the visual
channel by using a smart spatial patterning of bits on each
row and column of the array. The spatial patterning for
Probevisibility() is such that any square LED array can be
reconfigured to transmit similar bits on each spatial quadrant
of the array and complement bits on each side of the horizontal
and vertical axis at the center of the array (as shown in Fig. 2).
The fundamental idea behind using such a pattern is that, by
having a copy of the bit and its complement the detection
of bit-flips double efficient. This simplifies the detection of
erroneous LEDs’ locations. Other possible patterns to detect
occlusions are to use all ones/zeros or alternating ones/zeros.
The issue with such approaches is that, in cases of occlusions
in the channel the pixel intensity of a bit depends on the object
occluding the camera view. If the object is white in color then
the pixel intensity will remain high and a bit 1 is retained as
bit 1 thus not flagging an error. Alternating ones and zeros



may prove helpful but it may only detect if an occlusion has
occurred but may not be possible to exactly reveal the occluded
LED positions most of the time. In Fig. 2 we illustrate two
practical cases in which such a complement bit pattern can
work (shown for a 4×4 array but can be extended to any square
array). But we also realize that such a probing may not be
always error-free. For example, a false alarm can occur when
bit b1 in quadrant A gets corrupted due to stronger background
noise. In this case the probing detects an occlusion while
actually there is no occlusion but noise. Also, the probing
may miss an error such as when all the b1 and b1’ bits are
corrupted such that b1 is detected as b1’ and b1’ as b1. In
this case the probing returns no-error while actually there
has been occlusion at four locations. But such occurances are
very rare in reality because it is highly uncommon that an
occlusion is of the form that can create exactly complementary
effects on different spatial regions of the array. False alarms
are also rare because the ambient photon noise is typically
uniformly averaged over the detector area. Hence we rule out
such possibilities and consider the most typical cases in our
algorithm design.

• When a transmission error is declared in the system
(PER > PER∗), the algorithm first checks for the
occlusion by initiating the ProbeVisibility() where the
LEDs are set to transmit bits based on the spatial pattern
mentioned earlier. The function returns the set of visible
LEDs indices V and a probe flag pFLAG (true when
occluded).

• If the occlusion is full then the probe function would
return V = ∅. In other cases, the algorithm increments
its mode so as to accommodate for any distance variation.

• If the error was due to both partial occlusions and distance
variations the algorithm first sets its mode and then re-
probes using ProbeVisibility() in the next iteration.

• If there is no occlusion then the function returns a probe-
error pError and the algorithm increments to the next
transmission mode and checks for errors in transmission.

• In case of multiplexing modes the algorithm sets the
LEDs in the visible set V for multiplexing. In diversity
mode the algorithm sets all the LEDs for transmitting
similar bits (regardless of whether they are occluded or
not). If the algorithm is already in its diversity mode then
the algorithm resets itself back to full multiplexing and
reinitiates the probing for occlusions.

2) Index-VMRA: Here we present a method that obviates
the need for exhaustive search or spatial probing to detect
the presence of occlusion. This approach uses the block per
LED framing technique of sending packets in the form of
independent blocks of bits for each LED. Since each block
is appended with a CRC the system can keep track of the
erroneous LEDs on the fly by indexing the erroneous block
of each packet during a transmission error and indexing those
LEDs into a set E. We denote the set of usable LEDs in a
mode as U(mode). Using this approach we propose the Index
VMRA algorithm (Algorithm 1).

• In each iteration, the algorithm first indexes all the
erroneous LEDs of the set U(mode) into E.

• If the set E is full (all LEDs used in a particular mode
are in error) then the algorithm shifts to the next mode
and updates U(mode) = set of usable LEDs in the mode.

• If the set E is not full, then all LEDs in U(mode) that
are not in error (U(mode)− E) are indexed into the set
I .

• If the transmission is in multiplexing mode then all the
LEDs in set I are used for multiplexing. In diversity
mode, since all LEDs transmit the same bits it may
happen that the CRC bits may be corrupted resulting
always in error. In this case we start with using all the
LEDs in diversity mode and reduce the set by one (LED
in any row r and column c) in each subsequent iterations
until the transmission is successful (PER < PER∗).

• Since it is possible to determine the LEDs that are
erroneous in each iteration, over the adaptation period,
the erroneous LEDs are set to transmit ’training pack-
ets’ (packets containing alternate ON-OFF sequences
101010. . . L bits) to determine if the channel is less
‘noisy’. Upon successful reception of these bits the
receiver acknowledges by sending back an ACK over
the visual MIMO feedback channel and those LEDs are
indexed to be used for data transmission again.

• The algorithm reinitiates the adaptation procedure when
an error occurs in the transmission (PER > PER∗) or
when a time-out (tout set to a large value like 10-20sec)
occurs. If all transmissions are successful for the period
of tout the algorithm steps up the transmission rate to
next mode with a higher data rate.

V. PERFORMANCE EVALUATION

We evaluate the performance of our VMRA protocol in
terms of the average throughput achieved by its candidate
algorithms over the distance and visibility variations in the
channel and compare it with an oracle solution (referred to
as ideal, that has the power to adapt over the visible set
of LEDs to any type of occlusion and distance variation by
using the best mode for maximizing the throughput). We then
elaborate the adaptation behavior of our two framing based
algorithms; Probe VMRA, Index VMRA. Our evaluation uses
a trace-driven simulation using traces of input derived from a
realistic vehicle-vehicle communication setting.

A. Obtaining trace inputs

As our source for our traces, we used the video of a real
car on a highway with a 3 × 3 LED array configuration in
its brake-lights. The video was captured using our Basler
Pylon piA640 camera fitted onto another car at a frame-
rate of 60fps and 640 × 480 resolution. Short sequences of
image frames in the video were analyzed partly manually and
partly using software to generate the two dataset traces (a.
distance and, b. distance − occlusion ) that were used as
our test inputs for simulation. To obtain the distance trace
we used a basic tracking technique from computer vision [14]



Algorithm 1 Index VMRA
INPUT: packet error rate PER, total# of modes µ,
U(mode)
OUTPUT: LED index sets βm (multiplexing) and βd (di-
versity)
while iteration i 6= 0 do

if tout & PER < PER∗ then
if mode 6= 1 then

mode = mode-1
end if

end if
if mode = max(mode) then

if PER < PER∗ then
βd = {all LEDs}
continue

end if
else

for all (r, c) ∈ U(mode)s.tPER(r, c) > PER∗ do
index (r, c) in E

end for
if E = U(mode) then

mode=modulo(mode+1,µ); I=U(mode)
else

I = U(mode)-E
end if

end if
if mode 6= diversity then
βm = I;βd = ∅

else
βm = ∅;βd = βd − (LED (r, c))

end if
end while

to estimate the distance between the LED two brakelights
x of the car in each image frame of the video. This inter-
brakelight separation in the image (in pixels) was used to
compute the distance d between the camera and the car in each
frame using perspective projection mapping d = f lx , where
f is the calibrated camera focal length and l = 1.5m is the
typical spatial distance of separation between two brakelights
in a car. The distance − occlusion trace was obtained by
analyzing a set of frames from the video and manually
creating a dataset where the number of distinguishable LEDs
visible in each frame was noted. We also noted down if the
transmitter was fully visible (visibility = 1), fully occluded
(visibility = 0) or partially visible (visibility = 0.25 or 0.5
or 0.75) depending on the image area of the array visible.
Based on the number of LEDs distinguishable in each frame,
the transmission modes were manually estimated and used as
ground-truth. The data samples in both traces were spaced by
one frame time (1/60 secs). Figure 3 shows a few samples of
images that were analyzed.

B. Simulation Methodology

We simulated the adaptation behavior and computed the
performance of our VMRA candidate algorithms in MATLAB
for the two types of trace inputs using a common simulation
methodology. In the simulation each algorithm set to adapt its
transmission rate parameter Rtx to the number of visible LEDs
and the transmission mode based on the PER determined
(equation 3) in each iteration. Since SNRs in a visual MIMO
channel are typically very large [1] we assume the probability
of bit error due to AWGN background noise is zero. Thus
the PER takes values depending only on the errors due to
visibility and/or distance change at any LED i. Hence PER
from equation 3 reduces to,

PER =

1 if{min(α(im)) < 2η} or V (i) = 0

0 if otherwise
(5)

While detecting error due to visibility is done independent
of adaptation (probing or indexing using framing) the error
due to distance change is detected by comparing the mode
determined by the algorithm with that estimated based on
distance and a resolvability threshold (η = FWHM of Gaussian
blur) using perspective projection theory as,

mode =



1 ifd ≤ fα
ηs

2 if fα
η ≤ d ≤

√
2 fαηs

3 if
√
2 fαη ≤ d ≤ 2 fαηs

4 if d > fα
ηs

(6)

When PER = 1 a transmission error-flag is raised and the
adaptation algorithm is initiated which would set a rate Rtx
based on the mode and the number of visible LEDs specified
by the algorithm. The data rates for each transmission mode
are summarized in the look-up table II for a 3 × 3 array
configuration. To retain uniformity in all cases we set the rate
Rtx = 0 if the LED array is fully occluded.

In order to understand the behavior of the algorithms we
recorded a few parameters output at each iteration, such
as, a.the transmission modes, b.if transmission error flag,
c.ProbeError flag (only for Probe VMRA) , and d.transmission
rate Rtx set by the algorithm. We then computed the average
throughput ρ for each algorithms and for each of the two traces
analyzed as,

ρ =
T

B

B/T∑
i

Rtx(i)(1− error(i))(1− ProbeError(i)) (7)

where B is the time width of the window of data-trace. As
Exhaustive Visibility search and Index VMRA do not use the
probing to detect occlusion we set ProbeError = 0 when
computing the average throughput for these algorithms.



Fig. 3. Sample video frames analyzed for data trace

mode (dmin, dmax)[m] (Nm,Nd) Rate [kbps]
1 (0, 17.6] (9,1) 1192
2 (17.6, 24.91] (5,1) 543.9
3 (24.91, 35.2] (4,1) 338.54
4 d > 35.2 (1,9) 59.24

TABLE II
RATE CHOICE FOR EACH mode FOR N = 3X3 LED ARRAY WITH α = 2CM

INTERLED SPACING

C. Trace-driven Results

In Fig 4 we plot the average throughput ρ from equation
7 for our proposed VMRA algorithms and compare it with
the ideal performance from the oracle solution. We clearly
see that our framing-based approaches achieve close to an
ideal performance for distance variations as well as visibility
variation traces.

We now elaborate on the adaptation behavior of VMRA
protocol using the trace-based results for its framing-based
algorithms a. Probe VMRA and, b. Index VMRA. We illustrate
each algorithm’s adaptation behavior over time by plotting the
output of each iteration of the algorithm for the distance trace
and then repeat the same for the distance− occlusion trace.
Fig. 5 shows the performance of the Probe VMRA algorithm
for the distance trace over time. We see that whenever an
error is declared then the algorithm increments its mode until
no more error is declared. Once the system reaches the mode
4 (diversity) then the algorithm resets back to mode 1 (full-
multiplexing). As Index VMRA also uses the same approach for
adaptation over distance the performance will be the same. In
Figure 6 and 7 we show the performance of the Probe VMRA
and Index VMRA algorithms for the distance − occlusion
trace. Observe that, in the region A where the transmitter
is partially visible, the Probe VMRA always first initiates
the probe for detecting occlusion of the LEDs and only if
a ProbeError is declared the algorithm changes its mode.
Thus this algorithm always incurs a ’one-iteration’ delay when
adapting to the partial-occlusion of the array. The Index VMRA

Fig. 4. Summary of throughput performance

Fig. 5. Probe VMRA performance over distance trace

on the other hand does not incur any delay or error in detecting
the partial-occlusion as the indices of erroneous LEDs are
logged over each iteration. Also observe that the outcome of
complete occlusion such as in point B (t ≈ 0.4sec) is that
all the packets become erroneous. Since the system has no
knowledge if the reason for such packet corruption is complete
occlusion or distance variation, both these algorithms first
check if the system is in a diversity (mode 4) and if not then
the algorithm sets the system into a full-multiplexing mode
(mode 1) by transmitting at the highest rate and then wait for
the channel to get better (array being visible).

VI. CONCLUSION

We proposed a rate adaptation mechanism for a novel
concept called visual MIMO that uses camera based receivers
and light emitting transmitter arrays. We discussed how two
important factors such as distance between the transmitter and
receiver and occlusion of the receiver’s view can govern the
quality of the optical link and highlighted the necessity to
revisit classical rate adaptation methodologies in RF channels
when applied to visual MIMO. We proposed a scheme VMRA



Fig. 6. Probe VMRA-distance− occlusion trace

Fig. 7. Index VMRA-distance− occlusion trace

that uses packet error feedback to choose the appropriate set
of LEDs both over changing distance and changing partial vis-
ibility conditions. We presented three algorithms (Exhaustive
Visibility search VMRA, Probe VMRA, Index VMRA) applica-
ble for our VMRA rate adaptation protocol in an exemplary
visual MIMO system that uses LED array transmitter and
camera receiver. The algorithms adapt to distance variations
by setting a rate corresponding to the best possible spatial
pattern of the elements in the transmitter array (modes) at
that distance. The Probe VMRA and Index VMRA use special
probe and a block-CRC indexing scheme respectively to detect
occlusion efficiently. The Index VMRA approach shows the

best performance (close to ideal) among the three as the
algorithm, unlike the other two, offers an error-free detection
of occlusion in the channel and hence adaptation to occlusion
incurs minimal overhead.
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