
AN ARCHITECTURAL APPROACH TO SERVICE ACCESS IN
WIRELESS ADHOC NETWORKS ∗

Sebnem Baydere, Mesut Ali Ergin
Department of Computer Engineering

Yeditepe University
Kayisdagi Campus, 81120, Istanbul, Turkey

{sbaydere, ergin}@ics.yeditepe.edu.tr

ABSTRACT
This paper introduces an architectural approach to ser-
vice access in an environment where no established infra-
stucture at any level exists. Mobile clients invoke services
by their descriptive names and a temporary multihop net-
work is dynamically formed between the client and the host
offering a service instance. The proposed protocol stack
supports dynamically optimized routing to named services.
The elements of the architecture for adapting clients and
services to a highly varying topology are explained and the
algorithms are given in pseudo code like notation using a
service model specified in XML.

KEY WORDS
Service Access, Adhoc Networks, Routing, XML

1 Introduction

In self organizing mobile adhoc networks, nodes with wire-
less interfaces form a temporary network without the aid
of any established infrastructure. The network‘s topology
may change rapidly and unpredictably. Mobile nodes can
move independently or as group towards a target such as
fire, flood, search rescue or a battlefield. Several mobil-
ity models are proposed in the literature [1]. There is an
increasing trend in offering new services to network users
besides classical services, such as those offered by print-
ers, scanners and so on. Following this trend it becomes
increasingly important to support mobile users so that they
can discover and bind to services “on the fly” where no
static configuration at any level or addressing scheme other
than wireless link address available. The packet routing
problem in adhoc networks has been extensively researched
[2-4]. Support for describing, locating and gaining ac-
cess to services for mobile entities such as sending a job
to “a reachable color printer” is also emerging [5,6]. Ad-
ditionally, architectural approaches are needed to address
problems related to the construction of multihop adhoc net-
works; such as, how they are formed, how long they live,
how they are managed throughout their lifetime, what are
the characteristics of the applications that can be accom-

∗This work is partially supported by The Scientific and Technical Re-
search Council of Turkey under grant 101E037/EEEAG-AY-41.

modated and so on.
Accessing a network resource is typically realized as

a client-server application, which establishes a logical con-
nection between two networked nodes. We propose an ar-
chitecture in which each logical connection is mapped to
a unique session treated as a temporary network and man-
aged for the duration of the service access. In our target en-
vironment, the protocols are designed to accommodate ran-
dom walk mobility [7] for both clients and servers. In this
model, mobile nodes move randomly with a given speed
and direction of motion. The speed and direction of the
motion in a new time unit is not related to the previous
epoch. This model may generate sudden stopping or sharp
returns which may not be suitable for some applications.
In this paper, the component interaction and the algorithms
for non-interactive services are given.

The rest of the paper is organized as follows; Sec-
tion 2 gives related work and motivation. Section 3 in-
troduces the SeMA architecture, its components and the
algorithms for service discovery and binding. Section 4
discusses route optimization and maintenance. Section 5
contains future work and some concluding remarks.

2 Related Work

Most related research activities concentrate on automatic
service discovery and configuration when a mobile Inter-
net user visits a foreign infrastructured network. The ser-
vice discovery protocols; Jini [8], Service Location Proto-
col(SLP) [6], Universal Plug and Play(UPnP), Bluetooth
Service Discovery Protocol(SDP) and Salutation [9] pro-
vide mechanisms to search for and choose the most appro-
priate service using an attribute based centralized directory
service, complementing DNS. Directory services are main-
tained by one or more directory agents (DAs) periodically
advertising themselves to the network. A mobile device
dynamically obtains the directory agent address in the do-
main and gets the service access information from it. The
Berkeley Service Discovery Service (SDS) [5] extends this
concept with security and a fixed hierarchical structure for
wide area operations. Some research activities concentrate
on naming schemes used to describe services; Intentional
Naming Scheme (INS) [10] is a simple language based on

attributes and values for its names. It achieves expressive-
ness in the service definition and defines name resolution
process and late binding in a name resolvers network.

All above mentioned protocols are useful to form an
application level overlay network supporting discovery and
late binding. The network and internet layer functions in
the underlying infrastructured network are left to the exist-
ing protocols; DHCP, Mobile IP.

On the other hand, “networks formed on the fly” can-
not not rely on an existing infrastructure for service discov-
ery.

We propose a full protocol stack for adapting clients
machine to a highly varying topology without any need for
configuration changes in the machine. Each node estab-
lishes a local service directory by collecting information
from its data link neighbors. No intermediary centralized
look-up services are needed. The model consists of a set of
mobiles acting either as client or server, and a set of valid
services on which clients can make requests.

3 SeMA Architecture

SeMA architecture is a protocol stack operating at three in-
teracting layers to accommodate access to general purpose
network applications such as printing, file transfer and so
on in a highly mobile environment. Neither an infrastuc-
tured network underneath nor an overlay look-up network
exist. Mobile nodes dynamically establish routes among
themselves to form a multihop network when a service re-
quest is made. The protocol stack is composed of the fol-
lowing layers:

• Data link layer: A standard wireless data link such
as IEEE 802.11

• SeMA layer: Protocols supporting service access.
Three interacting software components are operating
together in this layer. Session Manager (SM) provides
a descriptive naming interface to the application; Ser-
vice Agent (SA) deals with service tracking and de-
layed binding. Routing Agent (RA) sends packets over
dynamically optimized routes. All SeMA packets are
forwarded to the Communication Agent (CA) which
passes them to the wireless link interface for frame
delivery with the assumption that a SeMA packet can
be transmitted in a single frame. No fragmentation is
supported at this level.

• Application layer: Mobile client and server applica-
tions developed with SeMA API.

Two types of services are defined; non-interactive
services, such as printing, require best effort delivery
from the network. The application is unaware of the
session maintained by the network layer for the sequenced
delivery of network packets. Duplicate packet control and
sequenced delivery is guaranteed without a re-transmission
facility. Session Manager assigns a locally unique id to

APPLICATION

S e M A
LAY E R

D ATA LINK
LAY E R

Client
A p p lic a tio n

S es s io n
M a na g er

Session Cache

Routing
A ge nt

Ser v ice T ab l e

S e r v ic e
A ge nt

C om m .
A ge nt

Figure 1. Components of SeMA Layers

the session and simply fragments the application data
into SeMA packets appending each one with a sequence
number. A SeMA packet is uniquely identified by the
combination of the following fields;

SeMA ID= Client WirelessLinkID + Session ID + Seq#

Client WirelesslinkID is the address of the node where
the session is originated. Session ID is a locally unique
ID given to the session by the originator and Seq# is the
packet number flowing over this session.

Interactive services, such as file transfer, require reli-
able delivery of the packets. Heavy weight sessions with
re-transmission facility will not be discussed here. This pa-
per covers algorithms for the light weight sessions.

An adhoc network (AN) as defined below is a function
of mapping from a set of mobile nodes to a locally unique
id;

AN : (M → I)

∀x, y ∈ M : (x <> y)∨(∃z ∈ M | (x <> z)∧(z <> y))

∀m ∈ M : if(∃(m, i) ∈ AN) ∧ ((m, j) ∈ AN)then i = j

where M is the set of all SeMA nodes, I is the set of iden-
tifiers and <> indicates nodes in the same data link trans-
mission range. The network is initiated by the client node
when the service is needed and it is terminated by the des-
tination node after the service is used. Interacting compo-
nents of the architecture is illustrated in Fig. 1.

<service name=“printer”>
<keyword attribute=“location”>Engineering B.443</keyword>

<keyword attribute=“color”>no</keyword>

<keyword attribute=“papersize”>A4</keyword>

<keyword attribute=“papercount”>81</keyword>

<keyword attribute=“postscript”>yes</keyword>

<keyword attribute=“maxResolution”>600*600</keyword>

</service>

Figure 2. A valid printer service instance

3.1 Modeling Services

In the architecture, services are defined and represented
as eXtensible Markup Language (XML) [11] instances that
conform to an XML Schema [12], designed to specify struc-
ture and content of the instances. XML provides a flexible,
easy to parse, structured text-only format to access data ef-
ficiently.

Upon deciding to offer a service, the provider creates
a service object instance conforming to the ServiceSchema,
in which a service is defined via its attribute-value pairs as
suggested in SLP by IETF [6]. A well formed and valid
XML instance of ServiceSchema holds all the necessary
information for a host to correctly determine whether its
need for a service can be satisfied by this instance. This
service definition instance travels the network encapsulated
in an appropriate broadcast message together with other in-
formation added by hosts on route and stored in service
table for future references. A service object instance may
be bound to more than one host object instance indicating
the existence of replicated services in the network. A client
who wishes to use the service, binds itself to an instance of
it.

An example printer service definition is given in
Fig.2. Attribute-value pairs of this printer service in the
definition help the service agent to successfully select the
appropriate service, currently available to the host in the
need of the printer service. For the case given, service agent
may try to find another printer instance to be returned to
session manager, if application has requested a printer to
print a colored document of a hundred pages.

3.2 Packet Structure

The packet structure is illustrated in Fig.3. and the descrip-
tion of the fields is given below:

1. Packet Type (ptype): Five packet types are defined.
These are given in Table 1.

2. ClientID: Wireless Link ID of the node on which the
session is initiated. Each packet transmitted in a ses-
sion carries out the initiator node’s ID.

3. SessionID: A locally unique ID generated by the ini-
tiator node. SessionID is zero in announcement and
look-up packets.

Pa
ck

et
 T

yp
e

Cl
ien

t
ID

Se
ss

io
n

 ID

Se
qu

en
ce

 N
um

.

La
st

 F
lag

Pa
ylo

ad
 S

ize

Ro
ut

e H
op

 C
ou

nt

Ti
m

es
ta

m
p

of
Se

rv
ice

 In
st

an
ce

ts

Lo
st

 F
lag

In
st

an
ce

s o
f

 H
os

ts
 o

n
Ro

ut
e

Pa
ylo

ad

1 2 3 4 5 6 7 8 9 10 11

Figure 3. SeMA Packet Structure

4. Sequence No: Sequence number of the packet that is
unique for this session.

5. Last Flag: End of data packets.

6. Lost Flag: Enforces flooding due to route loss.

7. Timestamp (ts): Announcement time of the named
service instance. At each hop, routing agent checks
its local service table to see if there is a fresher an-
nouncement entry for the same service or not. This
information is used for dynamic route optimization.

8. Hop Count: The number of intermediate nodes the
packet has passed through since it has originated.

9. Route: Source route of host instances.

10. Payload Size: Size of the data field.

Upon receiving a packet, one of the cooperating
agents on the node, process it and take appropriate ac-
tions. SeMA Announcement and SeMA Lookup pack-
ets are processed by the service agent (SA). SeMA Data
and SeMA Terminate packets are processed by the routing
agent(RA). If the destination SeMA ID matches the ID of
the agent, the packet is passed to the session manager for
further processing. If the packet has not reached its final
destination yet, RA makes a routing decision based on the
algorithm given in Section 4.

3.3 Service Announcement and Discovery

A set of valid named service instances that a client can ask
for is defined. Each node maintains a local table of service
announcements seen at the node‘s network interface.
Information kept in the table for each service is given
below and illustrated in Fig. 4.

Packet Type Explanation
SeMA Data Carrying user data

SeMA Lookup Broadcast packet for binding request

SeMA Announcement Broadcast service advertisement

SeMA Lookup Reply Sent to the originator of the lookup

SeMA Terminate Terminate indication

Table 1. Packet Types

1. Entry length

2. Host XML instance of service providing node

3. Service XML instance

4. Timestamp of original announcement

5. Number of forwarding hosts

6. Host instances of the forwarding nodes.

Service table maps a service XML instance to a valid
source route through which the announcement was re-
ceived. There may be more than one entry for the same ser-
vice instance as the announcement may arrive via different
routes. Each node maintains a session cache; packets seen
before, to detect duplicates. Duplicates are discarded. A
Client establishes a light-weight session with the resource
using the handle returned to its service request. Initial route
for a session is obtained as a part of the distributed ser-
vice discovery algorithm. Every node collects information
from the network and make their decision using the locally
available information in the service table. Every node is
assumed to be capable of resolving descriptive names to
network addresses, namely; specific name resolvers or di-
rectory services are not needed. The modeling environment
can be characterized as follows:

• network connectivity is highly varying,

• routes for active sessions dynamically change,

• sessions are not preemptive; once a session is estab-
lished for a resource, service handoff with a closer re-
source for the named session is not supported.

As given in service definition, upon deciding to of-
fer a service, the node announces its service XML schema
which is encapsulated in an announcement packet. Service
announcements are initially caught by all the nodes in the
same transmission range of each other. Upon receiving a
service announcement, the node first updates its service ta-
ble, increments the hop count field by one, appends its own
host instance in the route and forward the announcement.
Circular flooding for the announcements are prevented by
keeping a session cache as explained above. The hop count
field is also used to prevent circular flooding. The same an-
nouncement arriving with a hop count greater than the pre-
viously arrived announcement is discarded. Eventually all
reachable nodes in the network get the announcement with
a full route record. The algorithm for the Service Enable()
function is given below. A number of general set defini-
tions are used in the algorithms given in pseudo code like
notation. These are:

M : set of SeMA node instances
S : set of SeMA service instances
T : list of service table entries on a node
C : session cache
I : set of unique id‘s

<> : nodes in the same transmission range

MH
 In
sta

nc
e o

f th
e

Se
rvi

ce
 Pr

ov
idi
ng

Ho
st

Se
rvi

ce
Ins

tan
ce

MH
 in
sta

nc
e o

f th
e

Fo
rw
ard

ing
 Ho

st
(#1

)

En
try

 Le
ng

th

MH
 in
sta

nc
e o

f th
e

Fo
rw
ard

ing
 Ho

st
(#n

)

Tim
es
tam

p

Fo
rw
ard

ing
Ho

p C
ou

nt

1 2 3 4 5 6

Figure 4. Service Table Entry

Service Enable(&packet)
SeMA Packet packet;
packet.ptype = SeMA Anouncement;
m ∈ M, s ∈ S

{
M ′ ⊃ M : m′ ∈ M ′ ∧ m <> m′

∀m′ ∈ M ′ : SeMA Send(packet, broadcast)
}

3.4 Maintaining Service Table

Service announcement packets received are processed by
service agent(SA). It checks if it has seen this announce-
ment packet before or not. New announcements are ap-
pended to the service table. Valid old entries for the same
service are kept as alternative routes. The service agent
appends its link id to the source route list, increments hop-
count and broadcasts the announcement packet. The algo-
rithm for table update is given below.
Service Table Update(&packet)
SeMA Packet packet;
packet.ptype = SeMA Anouncement;
{/* if packet seen before, then drop it, otherwise if service

is not seen before or is fresher than the cached entry,
then update the table.*/
if(∃s ∈ C : s.SeMA ID = packet.SeMA ID)

[DropPacket]
if ∀t ∈ T : (t.service 6= packet.service) ∨

(t.ts < packet.ts){
T ≡ T ∪ packet.service

}
packet.Route = packet.Route∪ local link ID

packet.Hopcount + +
SeMA Send(packet, broadcast)

}

3.5 Service Binding

Service binding is initiated in session manager(SM) when
client makes a service request. A handle for the service in-
stance is obtained. First, service agent searches the local
service table for a valid service entry. A valid service entry
corresponds to a service announced less than a threshold
time earlier than the current time (i.e. current.time - ser-

vice.ts < threshold). If a handle can be obtained locally,
binding is done without generating any additional network
traffic. If there is no local entry for the service then bind-
ing is delayed until a reply to the service lookup packet
returns. SeMA Lookup packet is broadcast to the network.
This packet is first seen by the nodes in the same transmis-
sion range. Each node checks its own table to see if there
is a valid entry for the requested service. If so, returns a re-
ply to the originator and stop flooding. Otherwise, the node
waits for a random amount of time to see if any node will
reply to the request. If not, then broadcasts the request in
its own transmission range by appending its own id to the
packet. Each service entry in the table has a timestamp in-
dicating when the service announcement was initiated. The
service agent may choose the most recently advertised ser-
vice as the “best” instead of the shortest hop path with the
assumption that the probability of the recently advertised
route being up-to-date is greater than an older advertise-
ment. If the lookup message arrives at the service provid-
ing host, it waits for a random period of time for the data
packets to arrive for the service assuming that at least one
node in the network would have a service entry in its table
and would have replied to the request. The random delay
may prevent unnecessary message overflow. The session is
initiated with the initial route returned in the handle. The
route may be updated by an intermediate node if a better
route is known. The algorithm below describes the actions
taken by service agent for binding.
Bind Service(&service)
ServiceXML service;
SeMA Packet packet;
{ /* Find all table entries for service and return the one

with the greatest timestamp.*/
if (∃t ∈ Tlocal : t.service = service) ⇒
∀t′ ∈ Tlocal : (t.service = t′.service) ∧ (t.ts > t′.ts){

return(t)
}else{ /* Generate a lookup packet */

packet.service = service

packet.ptype = SeMA Lookup

packet.SessionID = 0 /* control packet */
packet.ClientID = local link id

SeMA Send(packet, broadcast)
/* collect all replies until timeout */

return()
}

}

3.6 Session Establishment

After obtaining a binding for a service request, SM assigns
a session ID, divides the application data into SeMA Data
packets with a unique sequence number and passes them to
the communication agent for transmission.
Create Session(&service,data)
ServiceXML service;
SeMA Packet packet;
{

Route = Bind Service(&service)
Session ID ∈ I : ∀S ∈ I : Session ID 6= SID

packet.Route = Route

packet.ClientID = Local node link id

packet.ptype = SeMA Data

packet.LostF lag = False

packet.seq# = 0
/* Fragment the data field and generate

SeMA Data packets with unique seq# */
while(data){

SeMA Send(packet, packet.Nexthop)
data = data − packet.data

packet.seq# + +
}

}

4 Route Optimization and Maintenance

An intermediate node on the source route sends SeMA
packets to an appropriate next node. The algorithm tries
to optimize the route for every packet processed. Possible
states for a new arrival are;

• The node might have seen the packet before due to
circular flooding or route loss.

• The packet may have an attached valid route or may
have lost its route (LostFlag set).

• Packet may belong to a terminated session.

RA maintains a cache of seen packets. The session cache
also has an indication for the terminated sessions to prevent
unnecessary packet processing. RA tries to find a fresher
route in its own service table. If there is such an entry then
the route field in the packet is updated and the packet is
forwarded to the next hop in the new route. Otherwise, the
packet is forwarded to the next hop in the arriving source
route. If the lost flag is set in the packet and there is no
entry for this service instance in the service table then the
algorithm switches to flooding until an intermediate node
finds a service entry in its table. Route Packet() algorithm
is given below:
Route Packet(&packet)
SeMA Packet packet;
packet.ptype = SeMA Data;
{/* For a packet seen before, if it is not lost or the session

is terminated then drop it. Otherwise check if there is
a fresher route in the service table */

if(∃s ∈ C : s.SeMA ID = packet.SeMA ID) ∧
((¬packet.LostF lag) ∨ (s.T erminate))

[DropPacket]
/* For a new packet if there is a fresher entry then update

the route in the packet and send it. */
else if(∃t ∈ C : t.Service = packet.service) ∧

(t.ts > packet.ts){
packet.LostF lag = false

/* update route in the packet */

packet.Route = t.Route

SeMA Send(packet, packet.Nexthop)
}/* if there is no fresher entry and packet has no route

then switch to flooding. Otherwise. if the packet has
a route then use it. If the new route is fresher than
the local table entry then update the service table.*/

else if(LostF lag){
SeMA Send(packet, broadcast)

}else{
SeMA Send(packet, packet.Nexthop)
if(∃t ∈ C : (t.Service = packet.service) ∧

(packet.ts > ts)){
t.Route = packet.Route

}
}

4.1 Session Termination

The packet transmission protocol for non-interactive ser-
vices simply offers best effort delivery. Destination node
on which the service is running detects end of packet trans-
mission by checking the LastFlag and Seq# information
in the received packet and generates a termination indica-
tion for the session after the service is completed. Termi-
nation indication message received by intermediate nodes
are recorded and any packet which has a greater timestamp
than the termination packet is discarded. When the termi-
nation message arrives at the client, it is accepted as an
overall acknowledgment for the packets and the client code
returns successfully. SM clears its table and the network is
terminated.

5 Future Work and Concluding Remarks

Multiple session management and service migration are to
be considered for a complete discussion of the topic in the
sense that the creation, maintenance and termination of an
adhoc network should be clearly defined.

Different scenarios of mobility must be used in order
to evaluate the performance of the proposed model. (i.e
mobile hosts acting for common goals or moving based on
daily needs). For this purpose, the simulation environment
is being designed carefully to apply different mobility mod-
els without affecting the service model itself. There are
some important issues to be covered before introducing the
proposed model for wide area usage. First is the need for a
domain restriction (i.e. a domain service resolver) in order
to have a well scaling protocol. The second obvious need
is the integration of a security model to define hierarchical
access structure for services.

In this paper, we have addressed that applications on
hosts of mobile adhoc networks will need a complete ar-
chitecture to access network resources by simply describ-
ing what they are looking for in a highly dynamic topology
where no infrastructure underneath exists. A simulation is

currently being implemented and the results will be pre-
sented somewhere else.

6 Acknowledgment

The authors would like to thank Nurcan Tezcan who has
implemented the simulation trace generator as her senior
project.

References

[1] X. Hong, M. Gerla, G. Pei, and C.C. Chiang, A
group mobility model for adhoc wireless networks, Proc.
ACM/IEEE MSWiM 1999, Seattle, WA, 1999, 53-60.
[2] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva,
A performance comparison of multi hop wireless adhoc
network routing protocols, Proc. ACM/IEEE Mobicom
1998, Dallas, TX, 1998, 85-97.
[3] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek,
and M. Degermark, Scenario based performance analysis
of routing protocols for mobile adhoc networks, Proc.
ACM/IEEE Mobicom 1999, Seattle, WA, 1999, 195-206.
[4] S.R. Das, C.E. Perkins, and E.M. Royer, Performance
comparison of two on demand routing protocols for adhoc
networks, Proc. IEEE Infocom 2000, Tel Aviv, Israel,
2000, 3-12.
[5] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and
R. Katz, An architecture for a secure service discovery
service, Proc. ACM/IEEE Mobicom 1999, New Orleans,
1999, 24-35.
[6] J. Veizades, E. Guttman, C. Perkins, and S. Ka-
plan, Service Location Protocol, IETF, RFC 2165,
http://www.ietf.org/, 1997.
[7] M. Zonoozi and P. Dassanayake, User mobility
modeling and characterization of mobility patterns, IEEE
Journal on Selected Areas in Communications, 15(7),
1997, 1239-1252.
[8] Jini, http://www.sun.com/jini/.
[9] C. Bettstetter and C. Renner, A comparison of service
discovery protocols and implementation of the service
location protocol, Proc. 6th EUNICE Open European
Summer School, Twente, Netherlands, 2000.
[10] W. Winoto, E. Schwartz, H. Balakrishan, and J. Lilley,
The design and implementation of an intentional naming
system, ACM Operating Systems Review, 34(5), 1999,
186-201.
[11] T. Bray, J. Paoli, and C.M.S. McQueen, Extensi-
ble Markup Language (XML), W3C Recommendation,
http://www.w3c.org/, 2000.
[12] D.C. Fallside, XML Schema Part 0: Primer, W3C
Proposed Recommendation, http://www.w3c.org/, 2001.

