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Abstract—Ternary complementary set based UWB signaling  The paper is organized as follows. In Section 2, the multiple
employing a set of orthogonal chip pulses is proposed. Each userparallel channels UWB signaling and the UWB channel model
transmits the same information bit over a set of parallel channels are introduced. In Section 3, we describe the constructions

each characterized by an orthogonal pulse and a spreading ft di f ltiole ch | UWB
sequence from a ternary complementary set. Ternary comple- of ternary spreading sequences for a mufliple channe

mentary sets assigned to two users are mutually uncorrelated in Signaling. Simulation results are presented in Section 4. We

the complementary sense. Hence, the multipath interference as conclude the paper in Section 5.

well as multiple access interference are mitigated. Furthermore,

sequence length selection is significantly more flexible than for

corresponding binary signaling techniques. Thus, the proposed Il. SYSTEM MODEL

signaling is in particular suitable for adaptive high rate systems. We transmit the same information bit ovéd parallel

Construction methods for ternary mutually orthogonal comple- . .
channels. Each bit is modulated by the channel pulse train.

mentary sets are also included. . . . S
The corresponding transmitted signal for ugeis given by

M
I. INTRODUCTION s(F) (t) = Z Z bgk)ch)(t —rT,) 1)

Recently, there has been a considerable interest in ap- r m=1
plying pulsed multicarrier technique [1] to Ultra-wide banqyhere the pulse train for usérand code channeh is
systems [2]. Some example systems have been proposed
in [3] [4], in which a set of orthogonal or nearly orthogonal
chip pulses were suggested. In [5], an approach of generating Pff)(t) - Z Css?nwm(t —nTe) @)
the orthogonal pulses based on modified Hermite polynomial n=0
functions has been proposed. A corresponding example UWBs the index of the information symbols an is the
system can be found in [6]. The orthogonal pulses providength of the spreading sequence. The spreading sequence
additional advantages that can be exploited to help with sor@t {¢,, } 3, for each user is a ternary complementary set.
of the difficult tradeoffs that one is faced with when designing. are binary antipodal symbols transmitted ovdr parallel
high data rate impulse based UWB systems. channels T, is the chip duration time and@, = N7, is the

In this paper, we propose a DS-UWB system with multipleymbol periods),,, (t) is the unit energy signaling pulse chosen
parallel channels based on the orthogonal chip pulses. Tfrem the orthogonal set of pulses and assumed known to the
same information bit of the user is transmitted over a segceiver.
of parallel channels characterized by orthogonal pulses andrhe impulse response of the UWB channel withresolv-
spreading sequences from a complementary set. The complele paths is
mentary sets assigned to any two users are uncorrelated in the L1
complementary sense. Thus, both the multipath interference h(t) = Z a§(t —m) ©)
and multiple access interference are alleviated. 1=0

We study ternary direct sequence based UWB (TS-UWB)herea; and; denote the channel gain and the propagation
[7] [8] signaling which includes epochs of zero signal amdelay of thel;;, path, respectively.
plitude as a natural extension of binary antipodal signaling. When sufficient multipath resolution is available, small
With ternary signaling, it is possible to construct the spreadimfpanges in the propagation time only affect the path delay
sequences or spreading sequence sets with good correlatiod path component distortion can be neglected. Under these
properties for a larger number of lengths than for binamgssumptions, path coefficienis can be modelled as indepen-
sequences. Constructions of ternary complementary set aeat real valued random variables whose sign is a function of
ternary mutually orthogonal complementary sets are includdte material properties and, generally, depends on the wave
in this paper. polarization, angle of incidence, and the frequency of the

N-1



propagating wave [9]. We quantize the multipath delay into + 0 0 - 0 - +
bins, i.e.; = IT,. + + 0 0 — 0 -—
For an asynchronous UWB system withh users, the . -+ + 0 0 — 0
corresponding received signal model is: {emtpma =] 0 — + + 0 0 -
- 0 — 4+ + 0 0
K L-1 0O - 0 - + + 0
rt) =Y sV -1 —®) 40 @ [0 0 — 0 - + +

k=1 1=0 where’+’ denotesl and’—’ denotes—1.

where 7(*) accounts for propagation delay and lack of syn- )
chronism between transmitters(¢) is a white Gaussian noiseB- Ternary MO Complementary Set Design

process. For the system with short sequences, the déldys  We describe two approaches for constructing of ternary MO
assumed to be uniformly distributed in the inteY@&IN7:.), complementary sets, namely recursive approach and combina-
and in this paper, we quantize it into bins. tion approach.

Large family size MO complementary sets can be con-
structed from small family size MO complementary sets using
a recursive procedure [12]. Lét(®) be a matrix of sequences

Let 6, ., denotes the aperiodic autocorrelation function d¥ ith M (P()pgows, each row containg/ (*) sequences with equal
sequences; with length N. A set of M sequencega;} length NP), The(prfl():urs_lve proz(:sdure provides a larger matrlx
is said to be a complementary set of sequences, if the SBFns(g)quenceﬂ _with 2M (p)rows, each row contains
of the aperiodic autocorrelation functions of thé sequences 23" sequences with length\V'». That is,
vanishes for every # 0, i.e.

y # A+ _ AP @ AP AP g AP @
_A@ AP AP g AP

IIl. TERNARY SPREADING SEQUENCESDESIGN

M M N-—-1-1
> baia(l) = Z > Gintint =0V £0. (5) where—A(®) denotes the matrix whosigth entry is theijth
=t =t =0 entry negation ofA(?) and’®’ denotes interleaving. Two

wherea; ,, denotes therth element in the sequencs. sequences: = {ai,as,as,...} andb = {by,bs,bs,...} are

A set of complementary sequenciis} | is a mate of the interleaved aga®b = {a1, b1, az, bs, ...}. The two matrices of
set{a;}M, if the length ofb; is equal to the length af;, for Sequences are interleaved by interleaving their corresponding
1<i< M, andzﬁ”il 04,5, (1) = 0 for anyl. Complementary S€quences as described in Example 2.
sets of sequences are said to be mutually orthogonal (MO)The matrixA(*+1) can be partitioned into MO complemen-
complementary sets if any pair of them are mates. tary sets of twice the family size corresponding/té®).

In the following section, we describe approaches of gener-Starting with a ternary complementary pair (TCP)
ating ternary complementary and ternary MO complementafg1: ¢2} [13], the seed matrix\(*) is constructed as follows,
sets.

AO | & ®)
C2 —C1
A. Ternary Complementary Set Design where &; denotes the reverse of the sequemrgeand —¢;

denotes the sequence whodk element is the negation of
AR element in sequencér. The, A© can be partitioned
nto two MO complementary set§c;,c} and {&z,—¢1}.
Following (7), we can recursively construct larger MO com-
plementary sets based on the seed matyig .

Ternary complementary sets can be constructed from perf
ternary sequences [10]. Lebe a perfect ternary sequence [11
with length N, for which its periodic autocorrelation function
R, . satisfies

rR.y={M if (! modN)=0 ©) hExam(;:)Ie 2 Let {C}vcz}b: {+ + —,+0+}. Based on (8),
e T 0 if I modN)#0 the seed matrix is given by
[ - 0
where N, is the number of non-zero elements of the ternary AO) = ++g+ :_Jr_
sequence. Then all its different cyclic time shifted versions
form a complementary set. Note that A is comprised of two mutually orthogonal
Example t Perfect ternary sequen¢e00 — 0 —+] and all + 4 — +0+
its cyclic shifts form a ternary complementary set of Sequem%%mplementary sequence Séts+0+ ) and( +—-— )



Based on the following recursive procedure,

Now taking another two uncorrelated complementary sets:

—~ - 40+ ®+0+ + - - -
A©) o A0) — ++ -+ + + Ay — Ay — 12
® H0+®+0+ +-——-®@+-—-— T+ o+ 2T -+ (12)
and Repeating the structur@a) — 9(d), we generate another MO
A A0 | - LRt —0—®4 0+ complementary sets comprised of four sets labellelasB,:
T 0-®+0+ —++®+-—-— [+ - - -] [+ - - -]
From (7), we obtain the mutually orthogonal complementary( 3, ) -+ - F (B3) -+ -+
setsA() = - - ot -
-+ - ] |+ - + + ]
++++-—— +40++ —+—++— —+00—+
++0++ ++-—— —+0-4+ —++-—+- - - - -
44— — 00—+ A+ ++00++ -t - - T - Tt
-+0-+ —++—-+= ++00++ ++-—— - - - + + + + -
B B 13
| | B |~ — . Ty DT T T @y
Hence, from any starting TCP with sequence lenitt?), 4 o4+ o+ -+ o+ 4

we can construct the seed matriX?). Repeating the recursive
approachp times, we obtair2?*! MO complementary sets
with equal sequence lengtN® = 2?2 N(©) Note that, the
starting TCP sequence lengtW(®) can be any positive
integer. But the sequence length of binary complement

From the above eight sets with sequence lenyth= 4, by
employing the following structures based &fu) — 9(d), we
generate the MO complementary sets with sequence length

pairs is given byN = 2910°26¢, wherea, b, ¢ are nonnegative (a) +A; +By 0 [ +4;, —B, ]
integers. Thus, the ternary signaling provides more flexibility +By —A; | +Bs +A; |
in the spreading sequence design than binary signaling does.
o (© [ +As +B | (@ [ +A, —B1 ]
The co_mbl_natlon method [14] [15] MO complementary set +B; —A4 +B; +A,
construction is based on the following structure: ) ) .
+A1 +A2 +A1 +A2 [ +A2 +B3 | [ _AQ +B3 |
(a) LLAQ —Al} (%) {—AQ +A1} © | By 14, | V| 4By 44, |
—Ay +Ay +A, —A [ +As By | [ —As +B: ] 14
(© {—&-Az +A, } (@) {+A2 +A, } ) D | By a5 | W | 4B 44y | 4

The next example demonstrates the combination approachAll these eight complementary sequence sets are mates of each
Example3 Let the seed matrices be two uncorrelated congther. For example, séti(a) is:

plementary sets:

+ 0 + 0 + — + +
+ 0 4+ 0 o - 0 + + + + -
Agy = |: 0 - :| Ago = |: 0 + :l (10) + 0 — 0 — — 4 =
_ s |0 4+ 0 4+ — + + +
By employing all the structure®(a) —9(d), we generate four {em}tm=1 = + - 4+ 4 — 0 = 0
MO complementary sets with sequence length= 4 and + 4+ 4+ — 0 + 0 -
label them asA; — A,. — - 4+ - — 0 4+ 0
[+ 0 + 0] [+ 0 + 0] -+ + + 0 — 0 — |
0o — 0 + 0o — 0 +
A L o Z o @] 2 o & o IV. ANALYSIS
L0+ 0 + ] L0 — 0 — | We study correlator receiver performance for ternary com-
plementary pair, m-, and perfect ternary sequence in a single
[ — 0 + 0] [+ 0 — 0] user system. For multiuser system, we compare the ternary
A 0 + 0 + A 0o — 0 - 11 complementary sets, Walsh-Hadamard codes, and preferred
(43) + 0 + 0 (A1) + 0 + 0 (11 m-sequence [16]. Bit energy for all signaling schemes is
| 0 + 0 — | | 0 + 0 — | normalized.




The mean power of multipath components are chosen MO complementary sets can allow for efficient suppression
be equal to average value given in [17], which is based @fi both the multipath interference and multiple access interfer-
the indoor line of sight (LOS) measurements performed in Zice. Furthermore, ternary sequence sets with good correlation
homes. In [17], it is observed that the line of sight componeptoperties can be found for a larger number of sequence
and the first 10 paths account for 33% and 75% of the tofahgths than binary sequence based signaling, thus allowing
power, respectively. The sign of the reflected path coefficiefur more flexibility in rate adaptive systems. The approach is
is modelled as a uniformly distributed random variable [18also suitable for RAKE receivers to combine the multipath
The path power is quantized into 0.4 nanosecond bins cenergy, whose analysis has not been addressed here.
responding to a chip duratioi,. We assume that each bin
contains exactly one multipath component (emulating a dense REFERENCES
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Fig. 1. Single User: Parallel channel UWB system with TCP versus Single
channel UWB system with m- and perfect ternary sequence
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Fig. 2. Two Users: Parallel channel UWB system with ternary complementary
sets versus Single channel UWB system with preferred m-sequences
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Fig. 3. Four Users: BER performance for MO ternary complementary sets,
Walsh-Hadamard codes and preferred m-sequences



