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Abstract

Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we
consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The
design algorithm recursively builds a collection 2! mutually orthogonal (MO) complementary set matrices
starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the
companion pair and illustrate how to select an appropriate companion pair to ensure that a given column correlation
constraint is satisfied. Far= 0, companion pair properties directly determine matrix column correlation properties.
For t > 1, reducing correlation merits of the companion pair may lead to improved column correlation properties.
However, further decrease of the maximum out-off-phase aperiodic autocorrelation of column sequences is not
possible once the companion pair correlation merit is less than a threshold determihatfébgilso reveal a design
of the companion pair which leads to complementary set matrices with Golay column sequences. Exhaustive search
for companion pairs satisfying a column correlation constraint is infeasible for medium and long sequences. We
instead search for two shorter length sequences by minimizing a cost function in terms of their autocorrelation and
crosscorrelation merits. Furthermore, an improved cost function which helps in reducing the maximum out-off-phase
column correlation is derived based on the properties of the companion pair. By exploiting the well-known Welch
bound, sufficient conditions for the existence of companion pairs which satisfy a set of column correlation constraints

are also given.

Index Terms

Complementary sets, Golay sequences, peak to average power ratio (PAPR), Welch bound

* This work has been supported in part by the NSF Grant ANI 0338805



I. INTRODUCTION

Complementary sequence sets have been introduced by Golay [1], [2], as a pair of binary sequences with the
property that the sum of their aperiodic autocorrelation functions (ACF) is zero everywhere except at zero shift.
Tseng and Liu [3] generalized these ideas to sets of binary sequences of size larger than two. Sivaswamy [4] and
Frank [5] investigated the multiphase (polyphase) complementary sequence sets with constant amplitude sequenc
elements. Gavish and Lemple considered ternary complementary pairs over the afph@bet } [6]. The synthesis
of multilevel complementary sequences is described in [7]. These generalizations of a binary alphabet lead to new
construction methods for complementary sets having a larger family of lengths and cardinalities. However, all these
studies focus either on the set complementarity or on the design of orthogonal families of complementary sets.
Correlation properties of column sequences of the complementary set matrix (i.e., the matrix whose row sequences
form a complementary set) have not been considered.

In [8]-[10], a technique for the multicarrier direct-sequence code-division multiple access (MC-DS-CDMA)
system [11], [12] that employs complementary sets as spreading sequences has been investigated. Each use
assigns different sequences from a complementary set to his subcarriers. By assigning mutually orthogonal
(MO) complementary sets to different users, both multiple access interference and multipath interference can be
significantly suppressed. Similar to conventional multicarrier systems, one of the major impediments to deploying
such systems is high peak-to-average power ratio (PAPR). We have stressed in [13] that correlation properties of
column sequences of complementary set matrices play an important role in the reduction of PAPR. In this work,
we search for ways of constructing complementary set matrices whose column sequences satisfy a correlation
constraint.

For orthogonal frequency-division multiplexing (OFDM) signaling, Tellambura [14] derived a general upper
bound on the signal peak envelope power (PEP) in terms of the aperiodic ACF of the sequence whose elements
are assigned across all signal carriers. He has shown that sequences with small aperiodic autocorrelation values ca
reduce the PAPR of the OFDM signal. By generalizing earlier work of Boyd [15], Pod@6] has demonstrated
that PAPR corresponding to any binary Golay sequence (i.e., a sequence having a Golay complementary pair) is
at most two. This has motivated Davis and Jedwab to explicitly determine a large class of Golay sequences as a
solution to the signal envelope problem [17]. Here, we consider sequence sets which are characterized by both theil
complementarity and a desired column correlation constraint.

We describe a construction algorithm for the desigr2’dft MO complementary set matrices of si2én by



2t+P+1 in Section Ill, wheret andp can be any non-negative integer, andis an even number. The construction
process is based on a set of sequence/matrix operations, starting from a two column matrix formed by a companion
sequence pair. These operations preserve the alphabet (up to the sign) of the companion pair. In Section IV, we
illustrate how, by selecting an appropriate companion pair we can ensure that column sequences of the constructec
complementary set matrix satisfy a correlation constraint.tFer), companion pair properties directly determine
matrix column correlation properties. For> 1, reducing correlation merits of the companion pair may lead

to improved column correlation properties. However, further decrease of the maximum out-off-phase aperiodic
autocorrelation of column sequences is not possible once the correlation of the companion pair is less than a
threshold determined by. We also present a method for constructing the companion pair which leads to the
complementary set matrix with Golay column sequences.

In Section V, an algorithm for searching for companion pairs over lengttequences of a desired alphabet is
described. However, exhaustive search is infeasible for medium and long sequences. We instead suggest finding
companion pairs with a small, if not minimum, column correlation constraint. In Section VI, by exploiting
properties of the companion pair, we convert the problem into a search for two sequences ofrig¢agthith
low autocorrelation and crosscorrelation merits, a long standing problem in literature (e.g. see [18]-[21]). We
further derive an improved cost function and show how it leads to reduced achievable maximum out-off-phase
column correlation constraint. Sufficient conditions for the existence of companion pairs which satisfy various

column correlation constraints are also derived. We conclude in Section VII.

Il. DEFINITIONS AND PRELIMINARIES

Throughout this paper, sequences are denoted by boldface lowercase letters)(etgeir elements by
corresponding lowercase letters with subscript3,(boldface uppercase letters denote matride€s &nd calligraphic

letters denote either sets of numbers or sets of sequeAdes (

A. Correlation functions

Let a = (ag,aq,-..,a,—1) denote a sequence of lengthwith a; € C, 0 < i < n — 1, where(C is the set of

complex numbers. The aperiodic and periodic ACF& @afre

n—1-1

Aa(l) = Z aa;,;, 0<1<n—1 (1)
i=0
n—1

Pul) = D aalg,, 0<I<n-—1, )

1=0



TABLE |

CORRELATION MERITS

A= max{|Aa(),1<1<n—1}  S& = St Aa()
AP = max{|Pa(D,1<i<n—1}  SP = IR
My = maxi{|dap@), 1] <n—1} S = S0, [Aan()]
Mo = max{[Pap(),0<1<n—1} SLy = Y7 [Pan(l)]

wherea* denotes the complex conjugate mfand @,, denotes modulo-n addition. It follows that
Pa(l) = Aa(l) + Aa(n—1), 0<Ii<n-1. (3)

Let b = (bg, by, ...,bn—1), Whereb;, € C, 0 < i < n— 1. The aperiodic and periodic crosscorrelation functions of

a andb are defined, respectively, as,

( n—1-1
> aibi,y, 0<I1<n-1
i=0
n—1+41
Aap(l) = > oaibl, 1-n<Ii<0 (4)
0, | >n
n—1
Pap(l) = > aibfg ;, 0<1<n—1. (5)
=0

Table | lists the correlation function parameters which are commonly used to judge the merits of a sequence
design, and are termaxbrrelation merits ', Ay, 53, andS;’ are autocorrelation merits, and',,, AL}, Sz, and
SPb are common crosscorrelation merits. For example, it is well known that binasgquences satisfy! = 1,
and the sequences witk! < 1 are called Barker sequences. Furthermore, a small valu&!afan significantly

reduce the PAPR of OFDM signals, if the elementsaadre assigned across all carriers [13], [14].

B. Complementary sets and column correlation constraints

A set of m sequencesay, as, ..., a,,}, each of lengtm, is called a complementary set if
> Aa()=0, 1<I<n-1. (6)

Whenm = 2, the binary sequence sé4;,as} is called a Golay complementary pair aad i = 1,2, are Golay
sequences. They are known to exist for all lengths 22107267, wherea, 5,7 > 0 [22], [23]. Complementary

sets{bi, by, ...,b,,} and{a;, as, ..., a,,} are mates if

> Aa b, (1) =0, (7)
=1



for everyl. The MO complementary set is a collection of complementary sets in which any two are maﬂhfﬁfn!net
denote the MO complementary set consistingtafomplementary sets each havingcomplementary sequences
of lengthn. For binary sequences, cannot exceedan [23], that is, the maximum number of mutually orthogonal
complementary sets is equal to the number of complementary sequences in a setMigncis, calleda complete
complementary code of orden [24].

A complementary set can be represented usiegraplementary set matrix

- - - 4T - -
ry Co 10 €11 - Clp-—1
ry Ci1 Co0 €1 - C2np—1
'm Cpn—1 Cm0 Cm,1 " Cmn-—1
- = - - - - mXxXn
where T' denotes the matrix transposRow sequences; = (¢i0,¢i1,¢i2," * ,Cin-1), 1 < i < m, are

complementary sequences, that¥sj", A, (1) =0, 1 <1 < n— 1. The main focus of this paper are properties of
column sequences; = (¢1,,¢2,,¢35, * ,Cmy), 0<j<n—1.

A set of £ mutually orthogonal complementary sef€;;, Cs, ...Cy}, form a MO complementary set matrix

an,n: Cl CQ Ck (9)

mxkn

and its column sequences are denoted;a8 < 7 < kn— 1. An upper bound on an autocorrelation merit of column
sequences is termdate column correlation constraintf there exists at least one MO complementary set matrix
satisfying a given column correlation constraint, then this constraint is caltedchievable column correlation

constraint For example, let
Ay =max {\],0<i<kn-—1}, (10)

if A4 <24, theanm is called a MO complementary set matrix satisfying a column correlation conskréjmind
M4 is an achievable column correlation constraint. We also consider column sequences which are Golay sequences

i.e., Golay column sequences.

C. Companion pair

Let a be a sequence of length, wherem is an even number. We define a sequehcas a companion i if
T

C— (11)



is a complementary set matrix which consistsnof2 complementary pairsC is calleda companion matrixand

(a,b) is calleda companion pair
TABLE Il

SEQUENCEOPERATIONS

‘a = (@n—1,0n-2,...,G1,0a0)

—a = (—aog,—a1,..., —An-1)

a* = (ap,al,..,an_1)

ab = (@0,a1,.er, Gn—-1,b0,b1, ..., b—1)

a®b = (ao,bo,a1,b1,...,an-1,bn_1)

a-b = agbo+aib1 +... +an—1bn-1

fi(d) = (a1,—ao,as,—az,...,an—1, —an—2)

fe(@) = (az,azi1,..,an-1,—a0,—a1,...,—az_1)

D. Operations and extensions

1) Sequence and matrix operations1 Table II, we list the following sequence operations: reversal, negation,

complex conjugation, concatenation, interleaving, and inner product. Furthermore, we introduce two sequence

reshaping functiong;(-) and f.(-) defined on sequences of even length.

Let C = [¢;;] and D be two matrices of equal dimensions, théf = ¢} ;] and —C = [—¢; ;]. C® D is the

matrix whoseith row sequence is obtained by interleaviilg row sequences of andD. CD denotes the matrix

whoseith row sequence is the concatenationithf row sequences df andD.

Let us also define a sequence @{t”), which is a collection of row sequences of matM”) recursively

constructed from a sequencgas follows,

o R((:vfl)Rgvfl)
RY = L v=1,2,3...
Rgv—l)(_Rgv—l))

where

2xXm

(12)

(13)

Let RY) = RY U Rff) which consists of2°+2 sequences of lengt@m. For example,RY) = {c,—c},

c,d

Rg)) = {d, —d}, andRS& ={c,d,—c,—d}.



2) Complementary set matrix extension operatiokiide describe two operations for extending complementary
set matrices, namelyength-extensiomand size-extensian

Lemma 2.123]: Let {a,b} be a complementary pair, theib*, —a*} is its mate, and bothab*, b(—a*)} and

— — i

{a®b*,b® (—a*)} are complementary pairs.

Proof: See Appendix A. ]

Lemma 2.2 Let {aj,b;}, {a2,b2}, ..., {an,b,} be m complementary pairs of lengtm. Then,
{a1,b1,a2,bo,...,a,, b, } is a complementary set @&n complementary sequences.

Proof: >, (Aa, (1) + Ap,(1)) =0, 1 <I<n-—1. [

Lemmas 2.1-2.2mply that, if a complementary set consistsaf/2 complementary pairs, the sequence length

can be recursively doubled as follows. Let

_ rgp) - - ?gp) -
rgp) 7<ng)
cP) = : and D = : (14)
rgg)fl ?%})
rt?) —F®
L d mxn® L 4 mxn®

be, respectively, ann by n®) complementary set matrix and its mate, whereis an even number, and
e Py P 2Py () + ) are assumed to be complementary pairs. A complementary set IGAtiX)

of dimensionm by n(+1) = 2, can be constructed recursively as either,
crt) — o p®) (15)
or ctrtl) — ¢ gp®, (16)
We term (15) and (16length-extension operations

Lemma 2.93]: A MO complementary set matrid2* ., can be constructed recursively as either,

2m,2n

M3, 2, = e e (17)
(=M, )ME, My, MY,
or
M. = M, @ME . (-ME YoME, a8)
(=M}, ) @My, MY, @My,
Proof: Refer to the proof ofTheorem 12-13n [3]. ]

We term (17) and (18%ize-extension operations



IIl. CONSTRUCTION OF COMPLEMENTARY SET MATRICES FROM A COMPANION PAIR
A. Recursive construction

Let X(m) denote a sequence set which consists of all lengtbequences whose elements are from the alphabet

X. We summarize a recursive construction of a MO complementary set Mgﬁ,&l

m,2t

n» With elements from¥’,
wheren® = 2/*1 m is an even number, andp =0, 1,2, ....
Step 1 The construction starts from a companion pajrand c; which are inX'(m). They form anm by 2

companion matrix

Co
cO = . (19)
c1
Step 2 By employing the length-extension operatjptimes, we exten®(©) to anm by n(®?) = 271 complementary

set matrixC®). C(» and its mateD® constructed from Eq. (14) form a MO complementary set matrix

M?n,n“’) = [ c® Do } ) (20)
mx2p+2

t+1
tim, 2t (P)

Step 3 Starting withM? we can construct the MO complementary set malv

m,n(p)?

by repeating the
size-extension operationtimes, wherep,t =0,1,2, ....
In this paper, we will alternately use either “the constructed MO complementary set matrix” or, simply,

M%Z; 2 When referring to the above constructed MO complementary set matrix.

B. Companion pair design and properties
Proposition 3.1 Let us arrange the elements@f = (c1,0, 2,0, -..cm,0) INt0 m /2 arbitrary pairs, €.9.(cz.0, ¢y,0)-
Then, its companion sequence = (ci1.1,¢2.1,...Cm,1) Can be constructed as either
Col = Chor  Cyl = —Cpg (21)
or Cx1 = —Cygs  Cyl = Cyg (22)
Proof: Let us assume; is constructed using (21). In this case,

) _ | . 23)
cq C;o —c;p

Here,r{”) = (¢2,0,¢p0) and rg(,o) = (cy0,—C} ), respectively, therth and theyth row sequence o€(© form a

complementary pair, since

Ao (D) + A0 =0,1<1<2. (24)



Based orLemma 2.2C) is a complementary set matrix consistingref2 complementary pairs. Hence; and
¢, form a companion pair. ]

Example 3.1 f*(co) is a companion oty, since
T T
Co €10 €0 €0 €40 -+ Cm—10 Cm,0

c = = (25)
fi (<o) Go €l Clo B0 - Cmo  “Cm-10

is a companion matrix. It can be verified théit(cy) is also a companion aody.

The companion pair has the following properties,

Property 1 (Commutative propertylf cq is a companion oty, thenc; is also a companion af.

Proof: In Eqg. (11),C is still a companion matrix when the column sequengesdb are switched. [ |

Property 2 (Inner product property)f cy andc; form a companion pair, theey - ¢c; = 0.

Proof: Based on Egs. (21) and (22),;" , cioci,1 = 0. [

Corollary 3.1 Binary sequences, andc; form a companion pair, if and only i, - ¢; = 0.

Proof: From Property 2¢y - ¢; = 0 is for any companion pair. Furthermore,df andc; are binary sequences
such thatcy - ¢; = 0, there must existn /2 pairs of (z,y) satisfyingc, oc.,1 + ¢y0cy,1 = 0, wherel <z < m and
1 < y < m. Hence, row sequences 6% can be arranged inte/2 pairs, where each paiéo) = (¢z,0,¢z,1) @nd

r?(,o) = (¢y,0, ¢y,1) satisfiesAd o () + A 0 () =0,1 <1< 2. ConsequentlyC(® is a companion matrix. [ |

C. Column sequence properties

Lemma 3.1All column sequences of the constructed complementary set nfefix ,, = [C?) D®)] are in

Rf:g),cl = {%cp, +c1}, where(cp, c1) is the companion pair for the construction.

Proof: Let
_ - T
C(()p)
(p)
C
cw — ! (26)
Ciﬁ?n)_l
For C(»+1) constructed by the length-extension (15), we have,
) 0<i<n® -1
o =8 e ) << 3 -1 (27)
Cz@nm %n(p) <i<2n® —1



It follows that column sequences @t are equal to, or are a negation of, column sequences®f Since
column sequences @& arec, andc;, all column sequences &, p =0,1,2, ..., are inRg]J),cl. In addition,
for C?*1) constructed using the length-extension (16), the interleaving of the corresponding row sequences doesn’t
change the column sequences and, thus, its column sequences are?&ﬁ%l}linAny column sequence db®

can be found irC®+) and, consequently, it is iR\, as well. |

Lemma 3.2All column sequences of the constructed MO complementary set rri‘algi&l gtp are in R‘(:?,cl,
where(cy, c;) is the companion pair andp = 0,1, 2, ....

Proof: Let {ugt),o <i<r=2%1p} denote column sequences M, ', . The size-extension (17)

implies,
(t+1) (t+1) (t) (t)
u; =-u;,’ =u; (-u;’)
42 (28)
) =l =l
where( < ¢ < r. Based onLemma 3.1u§0), i.e., column sequences Mil ) = [C(P) D(P)] , are in RE?,),Q.
From (12), (13), and (28), we have that
u e RO, t=0,1,2,.. (29)
When Mgt; i IS CONStructed using size-extension (18), the proof is analogous. ]

IV. PROPERTIES OF THE CONSTRUCTED COMPLEMENTARY SET MATRIX

In this section, column correlation properties of the constructed MO complementary set matrix are related to
ACFs of the companion pair. We illustrate how to satisfy a column correlation constraint by selecting an appropriate
companion pair. We also construct the companion pair which leads to complementary set matrices with Golay
column sequences. Since number of zeros in an energy-normalized sequence can affect its PAPR (see e.g. [6], [9])

we also discuss the number of zeros in column sequences at the end of this section.

A. Column correlation properties

Theorem 4.1MO complementary set matrM%f;’Qtnm satisfies a column correlation constraint, if and only if
the companion paifcg, c1) is selected so that all sequencesﬂéﬂcl satisfy the constraint.

Proof: The proof is a direct consequenceladdmma 3.2 [ ]

Corollary 4.1 Complementary set matric&s(® andD®) constructed from a companion pdit, c, ), satisfy a

column correlation constraint, if and only ¢f, and ¢; satisfy the constraint.



Proof: The proof follows by setting = 0 in Theorem 4.1 ]
The minimum achievable column correlation constraint for the constructed MO complementary set matrix

M2 () is a function of its size and alphabet and can be expressed as follows,

2tm,2t

Amin(t, m) = min {max {)\C i ce Rg?,cl} : (cp, c1) is a companion pair aneh,c; € X(m)} , (30)

where ) is any autocorrelation merit. The followirigemma 4.1is a key in relating column correlation constraints
to the correlation of the companion pair. In particular, it leads to the minimum achievable column correlation
ey A
constraint\’. . (¢, m).
2t+1

Lemma 4.1The ACF of any column sequenmét) of M5, 5.,» Can be expressed in terms of the ACFogf

or ¢y , recursively, as follows,

2Au(‘u)(l) + Au<v)(8 — l), 0< l < S;

Au(_wrl) (l) == (31)

:I:Augv)(l —3), s <1< 2s.
where 4’ holds for j =i+ or j =i+ 3r, ‘=" holds for j =i or j =i + 2r, when size-extension (17) is used;
‘+’ holds for j = 2¢ + 1, ‘=’ holds for j = 2i, when size-extension (18) is employeog,o) € {co,c1,—cp,—cC1};
0<i<r=22tp® ¢=92%nm andv=0,1,2,...,t— 1.
Proof: Eg. (31) can be derived based on (28). Note théq), € Rt(;[o)),cl = {co, c1, —cp, —c1 } and the negation
of a sequence doesn’t change its ACF. ]
Similar recursive equations can be found for periodic ACFs based on Eq. (3).

Proposition 4.1(A sufficient condition fors4): Let 52 < Sgt, S4 < Sg!, and A, (0) = A, (0) = E, where

t1
tm,2tn(p)

(co, c1) is @ companion pair. Then, a sufficient condition Mﬁ to satisfy the column correlation constraint
Siis
SA > 4tst 4ot (2t — 1)E. (32)

(

Proof: Let {u",0 < i < 22¢+1n(®)} be the column sequencesMf2 . ,, . Clearly,ul”’ € {c,c1, —co, —c1}.

Then, based on (31), we have that
S4 = max {Sf@,() <i< 22t+1n(p)}

2tm—1
= max{ > A 0<i< 22t+1n<p>}

=1
< 4tSg 422t —1)E, (33)

fort=0,1,2,.... Hence, (32) is sufficient fos > S2 which proves the proposition. ]



Proposition 4.2(A sufficient condition ford): Let A2 < A, A2 < Ay, and A, (0) = A, (0) = E, where
(co, c1) Is @ companion pair. Then, a sufficient condition M@ﬁzwp) to satisfy the column correlation constraint

M s
At > max {2 - 1)E, 27 - 1A'} (34)

Proof: Let {u!”,0 < i < 22+1,()} be the column sequences B2, . (31) implies

u

M = max {Aﬁm,o <i< 22t+1n(p)}
1 i
= max {|Au(t)(1)\, 1<1<2m0<i< 22t+1n<p>}
52 i

< max{(2' - 1)E, (2" - )7} (35)
wheret =0, 1,2, .... Hence, if (34) holds, we havle;“ > A;j‘. [ |

Proposition 4.3(A necessary condition fox4): Let A, (0) = A, (0) = E, where(cy, c;) is a companion pair.

An achievable column correlation constrait of M2, , must satisfy

2tm,2tn (P

M > (28 - 1E. (36)

Proof: (31) implies that A, (m)| = (2" — 1)E for k = 22+1n(P) — 1. Hence A > maxy  {|A w (I),1 <1<
2'm, 0 < i < 22+1p)) > (28 —1)E. |
Corollary 4.2 Let A¢,(0) = Ac,(0) = E and A} = max{\2, A2}, where(co, c;) is a companion pair. For

M2 t > 1, when

2tm,2tn(p)?

M\ < 21

0 = ot+1 _ 1E’ (37)

the minimum column correlation constraint

Apin(t,m) = (2" = 1)E (38)

is achievable.
Proof. If (37) holds, based orProposition 4.2 M%ﬁjnl 2t (®) satisfies the column correlation constraﬁrﬁ =
(2t — 1)E. On the other hand?roposition 4.3states that\/ > (2! — 1)E must hold. [

Example 4.1 To construct the complex-valued complementary set maticé8 and D® with a column
correlation constrainA® = 1, we can choose a companion paif= (+,7, —,j) andc; = fi(co) =, —,7.+),

where+ denotesl, — denotes-1, j = v/—1 denotes the imaginary unit anddenotes—j, which satisfy)\é_ <1,



i =0,1. Then, the companion matrix is

(40)

By employing length-extension (15), the complementary set méttix and its mateD(!) can be obtained as

+ 7 - J - Jj - J
co_ |7 — I~ D — j o+ i - (41)
- J + J + 7 +
- J + J +-‘4X4 - J - +-‘4X4

Based orCorollary 4.1, C(Y) andD() are complementary set matrices with a column correlation consfraiat 1.
Example 4.2Let againcy = (+, j, —, j) ande; = f7(co) = (j, —, j, +), then, any sequengein Rg),cl satisfies
A < A1 = 4. starting withM? , = [C() D] constructed irfExample 4.1and applying the size-extension (17),

we obtainMy ¢ as shown in (39). Based ofheorem 4.1M{ ¢ satisfies a column correlation constraint = 4.

On the other handCorollary 4.2 implies thatMg{8 achieves its lower bound = F = 4, since 4 =1 < %
Example 4.3Let us consider how to construblly ; satisfying a column correlation constraifitt = 12. Since

t = 1 andm = 4, based onProposition 4.1 a sufficient condition forS{‘ =12 is Sg‘ < 2, for E = 4. The

companion paif(co, 1) in Examples 4.1-4.3atisfiesSs < 53t = 2, for i = 0,1. Thus,M{ in (39) must also

satisfy a column correlation constraifit' = 12. Let {u§1>,o < i < 31} denote column sequencesl’&aflg{8 in (39),

wecanveMyﬂmmmx{S§U¢y§¢§31}:12

+j—Jj—i—1J
j—J—Jj+i-
—j+i+i+i
jAI+i—i+
—j+i+i+
JAi+i—i+

+ji—j—j—3J

| T-i-i+i-

+j—j—i—1J
j—i—Ji+i-
—j+j+i+i
j+i+i—J+
+i—j—Jj—1J
j—Jj—J+i-
—j+j+i+i

j+i+i—i+

—j+i+i+i
Jj+i+i—i+
+j—j—J—J
J—J—J+i-
+j—j—Ji—J
j—Jj—J+i-
—j i+

j+i+i—j+

+j—Jj—Ji—1J
j—J—J+i-
—j+i+i+J
j+i+i—Ji+
+j—Jj—Ji—1J
j—Jj—Ji+i-
—j+i+i+J

j+i+i—i+

8x32

(39)



Remark For the caseé = 0, Corollary 4.1implies that the correlation constraint for the companion pair is also
the column correlation constraint off2 ., = [C(®?) D®)]. Fort > 1, based orProposition 4.1 small S§' may
also help in reducing the column correlation constraifit However,Corollary 4.2implies that it is not necessary

to search for the companion pair with smallgl, once the lower bound? . (¢, m) = (2! —1)E has been achieved.

man

B. Golay column sequences

Theorem 4.2Column sequences of complementary set matieés andD® are Golay sequences, if and only

if the companion sequenceg andc; are both Golay.

Proof: Lemma 3.Istates that column sequences@?® and D) are either+c, or +c;. Note that, a negation

of a Golay sequence is also a Golay sequence. ]

We present a constructive method to obtain the companion pair from whightann complementary set matrix

with Golay column sequences can be constructed, where29t! n = 2P+ . ¢ =0,1,2....

Theorem 4.3Let

h(Q) h(Q*l)h(Q*l)
H(q) _ %,0 _ %,0 1,1 (42)
hy? b (-h ™)

2x24

whereh!?) and hz(ql) are two row sequences #'?, i = 0, 1. The initial matrices are

+ +

H = , B = . (43)

+ - + +
2x2 2x2

Then,{h((fg, h((f{} and {h%, h(l‘f{} are respectively Golay complementary pairs and, furthernyfa(héf’())) = hgq())

and f;(h{")) = ~h?), for ¢ = 0,1,2....

Proof: See Appendix C. ]
Example 4.4Let ¢ = 2, thency = h623 =(++—-+—-——+)andc; = hﬁ)) =(+—++—+++). Based on
Theorem 4.3{cy, hé?} and{cy, hﬂ} are, respectively, Golay complementary pairs, wl‘h%?{e =(+————+—-)

and hﬂ = (+ + + — — — +—). Thus, the companion sequenagsand c; are Golay sequences. The length-



extension (16) fop = 2 allows for constructing the following complementary set matrix

c® = (44)

L 4 8x8

whose column sequences are Golay. Hence, the PAPR of all column sequen@és isfat most two [17].

C. Number of zeros

Proposition 4.4 Let the companion sequencg be a lengthn sequence with zeros, then, any column sequence

m

t41 .
of M2, 2n® contains2’z zeros.

Proof: Based on Egs. (21) and (23); and its companiore; have the same number of zeros. The number of
zeros in each column sequence does not change after each length-extension operation. Each size-extension operati

doubles the length of column sequences, as well as the number of zeros. ]

Example 4.51n this example, we consider a ternary complementary set matrix and its mate with a column
correlation constrainf“ = 5. Let us setn = 8 andz = 1. We can find the companion pai§ = (+——+-++ 0+)

andc; = fi(cg) = (— — + + 4+ — 4+ 0) which satisfyS2 <5, i = 0,1. The companion matrix is

0 +—-—=+++ 0+
co — . (45)

——+++-—+0



Using length-extension (15), we exte@? as

[ [
- - -+ o+ 4 - 4+ -+ o+ -

— o+ -+ - - - -+ 4
co_| T T T T T 7 and DO—| T 7 7 7 77 (46)
4+ -+ - - - 4 - -+ - - - - 4
+ - - - -+ - - — o+ -+ - -
0+ 0 + 0 — 0 + 0 — 0 -0 — 0 +
£ 0 -0 -0 -0 — 0 4+ 0 -0 — 0
L 4 8x8 L -4 8x8

Based orTheorem 4.1complementary set matric€s?) andD(?) satisfy the column correlation constrait = 5.
Furthermore, by setting = 0 in Proposition 4.4 we have that any column sequence@?® and D® has only

one zero.

V. SEARCH FOR COMPANION PAIRS
A. Exhaustive search algorithm

Let X' (n,A) denote a subset of all sequencesifn) which satisfy the correlation constraint For example,
let B(2'm) = {c|¢; € B,1 <i < 2'm}, thenB(2m, S4) = {c|c € B(2!m),S4 < S4}, whereB = {+1,—1}.

Clearly, all column sequences of binary MO complementary set mmfﬁ(; 9 With @ column correlation

t4+1
tm,2tn(p)

constraintS4 can be found inB(2'm, S4). Hence, to construct a MO complementary set maivi%
whose column sequences areAtf{n, \), we need to find a companion pdit, c;) such thal’Rffo),C1 C X(n,\)
(seeLemma 3.2

Let us index allK = |X(m)| sequences as;, for 1 <i < K. When a column correlation constraiktis given,
desired companion pairs can be obtained by exhaustive computer searcki(avgras described in Table IlI.

Note that the ACFs of sequences?ﬁ? can be computed recursively using (31). For binary sequences, we can

simply check ifx -y = 0 to determine the companion pair.

B. Minimum achievable column correlation constraint

The exhaustive search algorithm in Table Il can be easily modified to search for the companion pair with a

minimum achievable column correlation constraint. However, the computing load is heavy, especially fon large



TABLE Il

EXHAUSTIVE SEARCH ALGORITHM

i=0;
for i=1,2,3,...., K loop
it RY Cx(2m,N),
J=it+ Ly =x
for I=5—-1,7—2,...1,
check if (y;,y:) is @ companion pair;
end
end

end loops

andt. Lett = 0 in (30), the companion pair for the construction lof? [C®) D®)] with a minimum

mun®

achievable column correlation constraint is

(co,c1) = arg (mm) {max {\x, Ay } : (x,y) is a companion pair and,y € X' (m)}. 47)

)

Based onPropositions 4.1-4.3the above companion pair may also lead to the MO complementary set matrix
Mgﬁjnlz,,n(p) with a reduced column correlation constraint for 1. Hence, in the following, we consider companion
pairs leading to an achievable or a minimum achievable column correlation constgiriin) = A\pin(t = 0,m)
for the caset = 0 only. Table IV lists binary companion pairs with minimum achievable column correlation
constraints\4. (m) and S2. (m). It can be observed that most of these companion pairs can ackigyém)
and S4. (m) simultaneously.

Whenm is large, the exhaustive computer search is infeasible. Hence, the existence of a companion pair satisfying

a correlation constraint is an important problem considered in the next section.

VI. THE EXISTENCE OF COMPANION PAIRS

The existence of a sequence of a desired correlation constraint has been studied in literature. For example, binary
sequences with4 = 1 exist only for length®, 3,4,5,7, 11 and13, and are called binary Barker sequences; binary
m-sequences [23] with?” = 1 exist for lengthm = 2! — 1, 1 = 2,3, 4.... In this section, we exploit the correlation

properties of companion pairs and analyze their existence for correlation consiaiatsl \”.



BINARY COMPANION PAIRS

TABLE

v

m | A, | SA.. | companion pair m | A, | S4.. | companion pair
—+ thtt—t =ttt
2 1 1 12 2 8
++ ——t - +—+
-——+ e ++——+
4 1 2 14 2 13
—+++ e T S
— -+ e =+t
6| 2 5 16| 2 V%
—— -+t Fo—t ettt ————— +
—t————++ tt——t++++—F—+——+
8 2 6 16 / 12
ttt——+—+ R T e S e e
e FHtt————t - ——++——+
10 2 9 18 2 17
———t et ——t+—+ —t—tt—t————- ++——++

A. Correlation properties of the companion pair constructed using two arbitrary sequences

In the following Cases 1 and 2 we illustrate how a companion pair of lemgtian be formed using two arbitrary
sequences, ands; of lengthm /2. We study the correlation properties of the companion (&jrc;) constructed
from sy ands;.

Case l:iLetcyp =sp®s; andc; = s} ® (—s{). Thenc; is a companion oty sincec; = f;(co).

In this case, ACFs of the companion pair can be expressed in terms of the AGRsanid s; and their

crosscorrelation functions,

A (l) ASO7S1(1_TI> + Aso,sl(#), [ € odd (48)
Co
L ASO(%)—I_ASl(%)a l € even
A (l) AS(hsl(lTl) ASO,SI(#), l e Odd (49)
ASO(%) + Asl(é% l € even
= (l) PSo,Sl(l_Tl) + Pso,sl(m_Tl_l>, l S Odd (50)
Co
SO(%)—I_PSl(%)? | € even
Psy s, (51 — Py o, (M=) 1 € odd
Pcf(l) 7 ( 2 ) ’ ( 2 ) (51)

[ € even

where0 <! <m — 1.



Lemma 6.1Let ¢y = sp ® s; andc} = s; ® (—sp), then

)\é < max{)\;‘}] + )\;41, 2)\‘;] Sl}
’ (52)
)\f:, < max{)\éz + )\5, 2)\;51}
and
S < 8A+58 + 548
C; So S1 Sp,S1 (53)
SE <8P+ 8P +a2sP
wherei =0, 1.
Proof: See Appendix C. [ |
Case 2:Let ¢y = sgs; andc; = sj(—sf;). Thenc; is a companion ot sincec; = f(co).
The aperiodic ACFs of the companion pair can be expressed as
Ay (D) + A, (1) + Agy 5, (1 =), 0<I< 2
Aey(1) ) @ A7) ’ (54)
Asys, (1 =) F<l<m
A, (1) + A5, (1) = Agy, (B 1), 0<I<
Ae, () | ) S ’ (55)
_Aso,sl(% - l) % < L<m
Lemma 6.2Let cp = sps; andc] = s1(—sp), then
AN M M, i=01 (56)
Proof: The proof is along the lines of the proof bémma 6.1 ]

B. Existence

Without loss of generality, we assume thaaire complex-valued sequences of lengtf2 and As, (0) = P, (0) =
m/2,i=0,1.
Lemma 6.3Welch bound [25]): Let{s;,: = 0,1,..., K — 1}, denote a set of{ complex-valued sequences of

length V. If Ag,(0) = Ps,(0) = N for all 4, then,

i

K—-1
Prax > N 57
NK -1 (57)
K-1
Ama:p Z N ANt T 1 4
INK — K —1 (58)
where
Pmax — PP
0<ig SRit P X} (59)
Amax — Aaa .
0<igeRits e, (60)

Proof: The proof can be found in [25]. ]



1) Column correlation constrainf“: The following Theorems 6.1-6.2estate the companion pair existence
conditions fromTheorems 4.1-4.th terms of the{sg, s;} pair existence conditions fromemmas 6.1-6.2

Theorem 6.1MO complementary set matriM%l’n(,,) with a column correlation constraint® exists if there
exists a sequence paigo, s1} With Apee = A4

Proof: Theorem 4.%tates that MO complementary set mamibfn e satisfying the column correlation constraint

A exists, if and only if we can find a companion péi, c1), such that,
AL <t i=0,1 (61)

Based on (52), a sufficient condition for (61) is,

A A
M <Z i=01and 2 < (62)
S; 2 S0,S1 2
Based on (56),
A A
AL < % i=0,1 and )3, < % (63)
Hence, by comparing (62) and (63), we can del,, = %)\A. ]

Proposition 6.1 Sequence paifsg, s; } of length % with A,,,, = %)\A exists only if

M (64)
2m — 3
Proof: Let Aner = 3A4, K =2, andN = 2 in (58) of Lemma 6.3then (64) follows. [ ]

Corollary 6.1 Let cy = sp ® s; andc; = s; ® (—sg) be a binary companion pair of length, andu; denote

column sequences of the construcwnmm, 0<i<2n®. Then, M}, <A < A4, where

xo= max a0 < i< 200} (65)

g o= max{A} + 20,200 ), (66)
m

¥ A T 67

v Nereri ©D

Proof: X{A‘, is derived fromTheorem 6.1and (64) by noting thah: is an integer for binary sequence’sg
follows from Lemma 6.1 [ |

2) Column correlation constraint\”

Theorem 6.2MO complementary set matrianvn(p) with a column correlation constraint” exists, if there
exists{so,s1} of lengthm/2 with P,,,, = AL,

Proof: The proof follows along the lines of the proof ®heorem 6.Jand is omitted. ]



Proposition 6.2 A length m /2 sequence paifsg, s1 } with P4, = %AP exists only if,

N2 (68)

Proof: Setting Pq, = 3A”, K =2 and N = 2 in (57) leads to (68). [ ]

C. Achievable column correlation constraints

Theorems 6.1-6.3uggest searching for sequenegsand s; of length m/2 with good autocorrelation and

crosscorrelation merits to form a companion pair with a small achievable column correlation constraint. Former is

A

So0,S1

a long standing problem (e.g. see [18]-[21]). In [20], good binary sequence pairs With)§?f)na1l;“1 and A
were found by using simulated annealing search algorithm, and were listed in Tables | and Il. B&aalzry

6.1, we present/\ﬁ, and /\g of their corresponding binary companion pairs in Table V, where the reference [20]
indicates that data is obtained by using sequences from this reference. However, the cost function for the simulated

annealing in [20] is not optimal in our case. We instead minimize the cost function

f(so,81) = rnaoc{/\;4 + 4 o

0 S17? S0,81

(69)

to obtain an improved.
In Table VI, sequence pairss, s1} of lengthm /2 = 63,84 and 100 obtained using simulated annealing based
on (69) are presented. The corresponding ACF mutits calculated and compared to that of the sequence pairs

from [20]. The proposed sequence pairs lead to companion pairs with an improved autocorrelation correlation merit.

TABLE V

A, AND A\ FORLONG BINARY SEED SEQUENCES

m 62 | 74| 82| 106 | 118 | 122 | 126 | 134 | 146 | 158 | 168 | 182 | 186 | 200 | 218 | 240

Ay 6| 7|7| 8| 8| 8| 8| 9| 9| 9 |10|10]| 10| 11 | 11 | 11

A3[20] || 16 | 18 | 16 | 18 | 20 | 22 | 22 | 22 | 24 | 24 | 28 | 24 | 24 | 28 | 30 | 28

A\ 13|15 |15| 18 | 18 | 18 | 19 | 20 | 22 | 22 | 24 | 24 | 24 | 27 | 28 | 28

VII. CONCLUSION

We have considered a construction algorithm for MO complementary set matrices satisfying a column correlation

constraint. The algorithm recursively constructs the MO complementary set matrix, starting from a companion pair.



We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an
appropriate companion pair to satisfy a given column correlation constraint. We also reveal a method to construct the
Golay companion pair which leads to the complementary set matrix with Golay column sequences. An exhaustive
computer search algorithm is described which helps in searching for companion pairs with a minimum achievable
column correlation constraint. Exhaustive search is infeasible for relatively long sequences. Hence, we instead
suggest a strategy for finding companion pairs with a small, if not minimum, column correlation constraint. Based
on properties of the companion pair, the strategy suggests a search for any two shorter sequences by minimizing e
cost function in terms of their autocorrelation and crosscorrelation merits, from which the desired companion pair
can be formed. An improved cost function is derived to further reduce the achievable column correlation constraint
A4, By exploiting the well-known Welch bound, sufficient conditions for the existence of companion pairs are also
derived for column correlation constraints' and \”.

We have left the general problem of finding MO complementary set matrices with a minimum column correlation
constraint as an open question. An important step towards solving the general problem is to find new construction
approaches for MO complementary set matrices. A design algorithm based on N-shift cross-orthogonal sequences

can be found in [24]. However, their column correlation properties are intractable.

TABLE VI

ACHIEVABLE A\“ FORLONG BINARY SEED SEQUENCES

m merits so (Orsi) s1 (or sp)
As =19
. +—F—F——F—F—F++++++——+ ++—F++—F+——F+————F+—++
\a =17
126 ——t 44+ -+ ———+++———++ —+++——++++—-—+++++—+—+
A\j = 22 [20]
——t++t—Ft+————t++—F———F++ +++—F————F++—F—+—F+———+
Ay =17 [20]
\p =24 +——F+——+++++————+—F++—-= +———+—-——=—= ++———++++-
L68 Ai =20 +—++-——++-——++—F+————++ ——t———++—+++———+—+—++
g = 28 [20] —+++—F+—-+———+++—F++++-—— —+—+——+++++-———F+++++-
i =21 [20] +—F++ -+ —FF+—-————= +-————= ++—-++—+++—+—F++—F+——F——
N —t+++++—+++++————+—++ -ttt -+t ———F++——++
g =27
++———++—F+—-+—F++——+—++ +—F+4+-——F—F——F——+—F+——=
A =23
200 ++++-——F4+++—+-+——+—+ | ————= ++——t+————+++-——+
A\j = 28 [20]
—+++++ -+ ———+—F++—-—+- —+++++————++——F+ -+ ++-
A =25 [20]
—+——44+++———+—F—+—+++ —++—F+—-++—F++—F+—F+++——+




APPENDIX
A. Proof of Lemma 2.1
Let us first prove thal{t?, —(zF} is a mate of{a,b}. A proof for binary sequences can be foundTiheorem

11 of [3]. For complex-valued sequences, the complementaritﬁ%f—?} follows from

Az +A () = (Ag0)) +(A_g(®)

for 1 <1 <n-—1, wheren denotes the sequence length. We further show that the{(‘p_éjr—g} is orthogonal to

{a,b} in the complementary sense, as follows

A+ A, =) = A=) A =)

a, b,—a*

for everyl.
Refer to the proofs offheorem 6and Theorem 13rom [3]. If {a;,b;} is a complementary pair anfhs, bs}
is one of its mates, then botfa;as,b;bs} and{a; ® az,b; ® be} are complementary pairs. This completes the

proof of Lemma 2.1

B. Proof of Theorem 4.3

HO h) REa
A I e
and
e e N
] |+ +1,,



It can be verified tha{hé?()], hg?}} and{hf&, h&?{} are respectively Golay complementary pairs. Basetdamma
2.1, {hé‘f()],hg‘f{} and {h%‘%,hf}}, q=1,2,3..., constructed from (42) are guaranteed to be Golay complementary
pairs.

We observe thafi(hé?())) = hgo()) and fi(h(()?}) = —hﬂ. Let fi(hé‘f())) = hgqg fi(h((f%) = —hg‘g, then,
«— — —

M) = Hm 1) = £(08Y) (—fi(h) = h{% nl? = n .

) )

In a similar way, we have thayti(h(()‘ffl)) = —hg‘ffrl). This ends the proof.

C. Proof of Lemma 6.1
We give the proof for\] < max {A] + A, 2AL _ } and 52 < 824 + 52 4 52 . Other proofs are similar.
= max {|Pe,(1)], 1 <1 <m—1}

- mlaX{|PS0(l) +Ps1(l)”1 <i< - 1; ‘Psoasl(l) —"_PSUuSl(_l - 1)|7O <Ii< % B 1}

< max {|P ()] + [P (D 1 < L <

= max {)\50—1—)\]3 o\P

S17 S0,81

and

m m
1 ]

= Z |A50751 (l) + ASO,Sl(_l - 1)’ + Z |ASO (l) + ASl (l)‘
=0 =1

m_ 1 m_q m_g

< D ss O+ D Ass I+ D A + Y 145, (D)
=1 =1

1=0 l=—2+1
= S5+ 55+ 54

So0,81

REFERENCES

[1] M. J. E. Golay, “Multislit spectrometry,J. Opt. Soc. Amervol. 39, pp. 437-444, 1949.

[2] M. J. E. Golay, “Complementary serie$EEE Transactions on Information Theoryol. 7, pp. 82—87, Apr. 1961.

[3] C. C. Tseng and C. Liu, “Complementary sets of sequendEEE Transactions on Information Theogryol. 18, pp. 644—652, Sep.
1972.

[4] R. Sivaswamy, “Multipahse complementary coddEEE Trans. Information Theorwol. IT-24, pp. 546-552, Sept. 1979.

[5] R. L. Frank, “Polyphase complementary coddEEE Trans. Information Theoryol. IT-26, pp. 641-647, Nov. 1980.

[6] A. Gavish and A. Lempel, “On ternary complementary sequendE&E Transactions on Information Theogryol. 40, pp. 522-526,
Mar. 1994.



[7] M. Darnell and A. Kemp, “Synthesis of multilevel complementary sequenégds¢tronics Lettersvol. 24, pp. 1251-1252, Sep. 1988.

[8] S. M. Tseng and M. Bell, “Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequeldes,”
Transactions on Communicatigngol. 48, pp. 53-59, Jan. 2000.

[9] D. Wu, P. Spasoje@ and |. Seskar, “Ternary complementary sets for orthogonal pulse based UYéBférence Record of the
Thirty-Seventh Asilomar Conference on Signals, Systems and Commater®, pp. 1776-1780, Nov. 2003.

[10] H. Chen, J. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations
of wideband wireless communication$EEE Communications Magazineol. 39, pp. 126-135, Oct. 2001.

[11] S. Kondo and L. B. Milstein, “Performance of multicarrier DS CDMA systemlEEE Transactions on Communicationgol. 44,
pp. 238-246, Feb. 1996.

[12] E. Sourour and M. Nakagawa, “Performance of orthogonal MC CDMA in a multipath fading chanBEE Transactions on
Communicationsvol. 44, pp. 356-367, Mar. 1996.

[13] D. Wu, P. Spasojevic, and I. Seskar, “Ternary complementary sets for multiple channel DS-UWB with reduced peak to average power
ratio,” IEEE Global Telecommunications Conference 20@3. 5, pp. 3230-3234, Nov. 29 - Dec. 3 2004.

[14] C. Tellambura, “Upper bound on peak factor of n-multiple carrieEd¢’ctronics Lettersvol. 33, pp. 1608-1609, Sept. 1997.

[15] S. Boyd, “Multitone signals with low crest factodEEE Transactions on Circuits and Systemp. 1018-1022, 1986.

[16] B. M. Popovt, “Synthesis of power efficient multitone signals with flat amplitude spectriffE Transactions on Communicatigns
vol. 39, pp. 1031-1033, 1991.

[17] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-MulléEE&des,”
Transactions on Information Thearyol. 45, pp. 2397-2417, Nov. 1999.

[18] U. Somaini, “Binary sequence with good autocorrelation and crosscorrelation propeli&E’ Transactions on Aerospace and
Electronic Systemsvol. AES-11, pp. 1226-1231, Nov. 1975.

[19] D. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequelsE, Transactions on Information Thegmpol. 25, pp. 720—
724, Nov 1979.

[20] H. Deng, “Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated anB&&ing,”
Transactions on Aerospace and Electronic Systesh 32, pp. 98-107, Jan. 1996.

[21] W. H. Mow and S. R. Li, “Aperiodic autocorrelation and crosscorrelation of polyphase sequelfidels, Transactions on Information
Theory vol. 43, pp. 1000-1007, May 1997.

[22] R. J. Turyn, “Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave edcodings,”
Combin. Theory (A)vol. 16, pp. 313-333, 1974.

[23] P. Fan and M. DarnellSequence Design for Communications Applicatialehn Wiley & Sons INC., 1996.

[24] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequend&EE Transactions on Information Theoryol. 34, pp. 143-146, Jan.
1988.

[25] L. R. Welch, “Lower bounds on the maximum cross correlation of signd&fE Transactions on Information Thegryol. IT-20,

pp. 397-399, May 1974.



