

Wan Accelerators: Optimizing
Network Traffic with

Compression

Bartosz Agas, Marvin Germar &
Christopher Tran

Introduction

A WAN accelerator is an appliance that can maximize the services of a point-to-point(PTP)
connection. It provides high quality performance using minimal resources. There are various
methods that a WAN accelerator uses to optimize resources such as caching repetitive data,
compression, and latency optimization. The basic approach to wan optimization lies in lossless
data compression.

Data compression involves encoding data into a compact size without losing the original
information. Given a set of strings, a new string can be created using data compression whose
length is smaller, but contains the same information. This application is important in transferring
and storing data. However, implementing lossless data compression requires time. It uses a
technique that learns redundant data after initial data transmission to improve performance. Data
compression begins with an encoder that represents data more concisely. The original data is
compressed and will be decompressed with a decoder. As the encoder and decoder channels data
between connections, a dictionary is being formed. The dictionary stores initial data, but as data
transfer increases the amount of redundant data also increases. Therefore the size and time of the
transmission will be smaller since the information is already stored in the dictionary. Lossless
data compression analyzes data to construct a dictionary that minimizes file transfer size.

These transfer sizes are decreased because redundant data is eliminated during data transmission.
One method of reduction is deduplication which removes identical information in a data packet.
Instead, a reference is sent from the dictionary that represents the identical information rather
than sending the actual data itself. The references are smaller so it shrinks the transfer size.
There are other techniques that optimize network traffic. Caching reduces the transfer size by
storing data that is repeatedly accessed in the local cache. Since transfer size is reduced the cost
and space required is also reduced. As a result data transmission is more efficient.

There are different ways to implement lossless data compression. A popular algorithm is the
Lempel-Ziv compression. It uses an encoder and decoder to build a dictionary. Another
algorithm is Huffman coding which also uses an encoder and decoder to build a dictionary.
Huffman coding will be focused to study WAN accelerator and lossless data compression.

With such foregoing means, a WAN accelerator can analyze data packets being transferred over
a PTP connection and only send the critical or compressed differentials. Consider two local
networks where network_1 is connected to network_2 via a PTP connection and the networks
frequently send each other similar data packets such as IP headers, emails, and documents. A lot
of these data packets contain repetitive data segments that do not need to utilize the resources of
the PTP connection. Via the aforementioned methods, a WAN accelerator significantly improves
the transfer process and minimizes monetary expenses. Companies can save time and money

required for higher PTP connections if they can use a T1 connection to do what used to require a
T3 connection. This is the basis of a WAN accelerator causing interest in investigating this
technology.

Literature Review

When choosing a service provider, several companies are faced with the decision as to what type
of bandwidth to select for their network. These choices include a T3 line, multiple T1s, a single
T1, or a fractional T1. Organizations with a large number of sites will tend to vary the speeds
they offer each office based on their size and usage. By implementing a WAN accelerator, the
amount of bandwidth required for the various locations goes down dramatically. This can save
an organization a significant amount of money as the different services vary greatly in price. T1s
typically cost between $350 and $600 with the mean price being about $500 per month. A T3 is
comprised of 28 T1s and can therefore reach a couple thousand dollars per month.

Being able to make a downgrade in bandwidth without actually having any production being
slowed down can save a great deal of money down the line. Consider a scenario with
Company XYZ who wishes to implement a WAN accelerator offered by Cisco (Cisco WAAS).
It is an organization comprised of 50 offices of varying sizes with at least 10 users for small
offices and about 200 for three large offices. Their current contracts offer bandwidths of 256kbps
for small offices and 1.5mbps (T1) for the three large offices. On average, their current monthly
cost, per office, is about $1,700 per month or $20,400.

After implementing Cisco WAAS their bandwidth requirements are reduced by 55%. There
current average cost per month for each office is now $765 or $9,180. The total average annual
cost for company XYZ prior to implementing Cisco WAAS was about $1,020,000 (20,400 * 50).
After implementation it is reduced to $459,000. As you can see the drop is dramatic as the
savings just keep increasing as time goes by. There are initial costs for setting up the service as
well annual costs for the service itself. As the table below shows for company XYZ, the costs for
the WAN optimization service cannot even compare to the savings that can be achieved over a
three year span. The total three year bandwidth savings total up to about 1.4 million dollars.

As mentioned earlier, WAN optimizers also offer a speed boost as the actual data being sent out
is reduced. The table below shows the drastic improvements of opening a variety of files with
different sizes and how long the process would take on the initial run and the ones following it.

Figure 1: The table above shows the costs of implementing Cisco’s WAAS solution

Figure 2: This is an example of how much faster files can be sent over a network with a WAN

accelerator

Approach and Methodology

A WAN accelerator is a network optimizing solution that requires hardware and software to be
deployed at all branches of a company. The accelerator needs to be installed in a way that it can
encode data right before it leaves a network and decode it as soon as it enters a network. The
WAN accelerator adapts and learns data redundancy of a network by updating a dictionary to be
referenced when sending data differentials between point-to-point connections. The frequency in
which dictionaries are updated can be configured depending on what the user wants. This is
advantageous because customers can choose to train a dictionary for their most common files
without worrying about the occasional batch of rare data streams distorting the dictionary. Below
is an overview of how a WAN accelerator would operate.

Figure 3: Visual representation of where compression takes place between companies’ networks

The software driving the hardware uses a compression algorithm known as Huffman coding, a
lossless data compression algorithm that creates a binary tree of nodes to reduce the number of
bits to represent information during data transfer. The set of data strings that occur frequently
are represented with shorter codes than those strings that are less frequent. The dictionary stores
the references and rankings of what data streams show up most often for the encoder and decoder
to use.

Encoder
In a general way, the encoder takes an input file, scans it, and builds a Huffman tree. Once it has
the tree, it puts the tree at the front of the ‘header’. It then attaches an EOF (end of file) marker
at the end of the header and then writes it to the beginning of the encoded version of the
file. After this, the program encodes the file using the built Huffman tree and writes it to the end
of the file (starting after the EOF marker). The encoder also updates the dictionary to reflect the
new probabilities of the more frequent string of data.

Decoder
The decoder is straightforward as well. The decoder scans the header portion of the file and
knows where the encoded data begins through the EOF marker. Once it scans in the header, it
builds its own tree and then decompresses the data based on that tree. The decoder reads the file
and decompresses it using the trained dictionary from the encoder.

Dictionary
The modified Huffman code creates a binary tree with nodes that contain the symbols to be
encoded. It develops an ongoing dictionary that a WAN accelerator can use. An ongoing
dictionary adapts to the data being transferred by stressing the priority of data that is sent most
frequently. A WAN accelerator’s dictionary learns from all data transfer and is updated unlike
normal compression methods that deletes it dictionary after it outputs a file. By using an
updateable dictionary, a company can use a WAN accelerator to optimize their network because
the dictionary is trained specifically for the company’s common files. Huffman coding produces
a dictionary that persist over numerous data transmissions.
Example: Given a 6 symbol alphabet with the following symbol probabilities:

A = 1, B = 2, C = 4, D = 8, E = 16, F = 32

Step 1. Combine A and B into AB with a probability of 3.
Step 2. Combine AB and C into ABC with a probability of 7.
Step 3. Combine ABC and D into ABCD with a probability of 15.
Step 4. Combine ABCD and E into ABCDE with a probability of 31.
Step 5. Combine ABCDE and F into ABCDEF with a probability of 63.
The Following tree results:

To summarize this example, because ‘F’ has the highest probability from the letters in this
alphabet, we want to represent it with the shortest bit string possible, in this case just ‘0’.

For the WAN accelerator used in this project, it was coded in such a way where the user would
manually choose when the dictionary should be updated or trained with a new batch of files. This
would involve the user feeding the program a set of common files that the dictionary should be
optimized around.

How the Huffman Algorithm reduces costs
Companies use mass amounts of bandwidth to keep their services going and fast and reliable
point-to-point (PTP) connections costs a lot of money. Sending less data over the PTP pipe
would be a great way to reduce costs. The Huffman Algorithm implemented in this particular
WAN accelerator takes in a batch of common files supplied by the company using it, and trains
the dictionary. The dictionary is updated by making a Huffman Tree as explained earlier. The
strings of data that appeared most frequently now only have to be represented by smaller byte
strings such as ‘0’, ‘10’, and ‘110’. The output of the encoder is sent over the network and is
much smaller than the raw, original file. The decoder will read the compressed string of bytes
and references the dictionary every time it sees one of these combinations and decrypt the file
accordingly. It is easy to understand how using a system such as a WAN accelerator could allow
companies to purchase slower PTP connection pipes and ultimately making more money.

Obstacles with Compression and WAN accelerators
A WAN accelerator can be implemented using any one of numerous compression algorithms and
there is a reason that Huffman is used for this particular case. Compression applications typically
read in one file, compress it, and then decompress it. A WAN accelerator on the other hand must
constantly read in files and adapt by building its dictionary synchronously between the encoder
and decoder. If an encoder and decoder use different dictionaries, then the output of the decoder
will not produce the original file. Initially, Lempel-Ziv-Welch (LZW) was the algorithm to be
used because of its high efficiency, but it would take too much time to overcome the obstacles
that came with it. LZW source codes, such as the one made by James Schumacher III, are very
complex and particular about how it compresses redundant byte streams. Modifying source
codes like this would require so much effort that it might make sense just to implement LZW
from scratch. However, coding LZW from the ground up also takes a significant amount of time
due to the nature of its complex yet efficient design.

To overcome the problems with using LZW, Huffman coding was used instead as it is much
easier to understand and code in a shorter amount of time. The issues that Huffman coded
presented dealt with extracting its dictionary to be “ongoing” so that the WAN accelerator could
adapt when it needed to. The Huffman source code used as a foundation for this project sent the
probabilities and references of reoccurring data streams to the header of the encoder’s output.
This code was modified to take the encoder’s header and store it in a common dictionary that
could be used by the decoder as well. As a result of not needing to store the header, less
bandwidth is needed to send the data from point-A to point-B.

Results

The WAN accelerator implemented with the Huffman algorithm uses Michael Dipperstein’s
single file compression source code as a basis. After coding the encoder and decoder,
preliminary test are run to determine lossless data compression efficiency. To do so, a new
dictionary is built for each file type. Figure 4 and Figure 5 show implementation that uses a
dictionary which optimizes each file. Overall, the compressed file sizes are smaller than the
original data. However, there are compressed file sizes that increased. More tests are run to
study which file types are optimized by Huffman coding. Despite the mixture of file sizes, the
original file sizes are the same as the decompressed file sizes as Figure 4 illustrates. The encoder
and decoder work, but not all file types are encoded concisely.

Further tests are run with an individual dictionary for each file type. Table 1 displays the
efficiency of the different file types. Similar results ensued where certain files are better
compressed than others. Efficiency shows the potential that each file type possess after using a
Wan accelerator.

Figure 4: Original file sizes with compressed file sizes. Figure 5: Original file sizes with decompressed file sizes.

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

b
ib

le
.t
x
t

ch
a
n
d
o
o
.x

ls

ch
a
n
d
o
o
.x

ls
x

d
a
rk

n
e
t5

.d
o
c

d
a
rk

n
e
t5

.d
o
cx

E
th

ic
s.

tx
t

N
u
m

A
c
cS

e
t.
x
ls

N
u
m

A
c
cS

e
t.
x
ls

x

R
a
il
ro

a
d
.j
p
g

R
a
il
ro

a
d
.p

n
g

S
a
m

p
le

P
la

n
.d

o
c

S
a
m

p
le

P
la

n
.d

o
cx

w
o
rl
d
.j
p
g

w
o
rl
d
.p

n
g

Compression of Different File Types

Original Data Size

Compressed Data Size

Table 1: Efficiency of Different File Types

Graph 1: Compression of Different File Types

The graph above is illustrates which file types are optimized using Huffman coding. It is clear
that certain file types are better compressed than others. Thus, better compression depends on
the data that is being compressed. The files that are better compressed are .txt, .doc, and .xls.
Other file types such as .pdf, .docx, .xlsx, .jpg, and. png, did not compress as well because they
are already in compressed format. Compressing a compressed file does not compress it further.

Original Data Size Compressed
Data Size

Decompressed
Data Size

Efficiency

bible.txt 4,295 KB 2,449 KB 4,295 KB +42.9%
chandoo.xls 1,809 1,639 1,809 KB +9.4%

chandoo.xlsx 1,473 1,472 1,473 KB +0.1%

darknet5.doc 1,080 KB 818 KB 1,080 KB +24.3%
5 darknet5.docx 484 KB 484 KB 484 KB 0%

Ethics.txt 1,261 KB 726 KB 1,261 KB +42.4%

NumAccSet.xls 741 KB 489 KB 741 KB +34.0%

NumAccSet.xlsx 209 KB 201 KB 209 KB +3.8%

Railroad.jpg 1,794 KB 1,779 KB 1,794 KB +0.8%

Railroad.png 2,606 KB 2,582 KB 2,606 KB +0.9%

SampleBusinessPlan.doc 2,435 KB 2,198 KB 2,435 KB +9.7%

SampleBusinessPlan.doc
x

1,008 KB 1,008 KB 1,008 KB 0%

world.jpg 2,489 KB 2,431 KB 2,489 KB +2.3%

world.png 3,064 KB 3,052 KB 3,064 KB +0.4%

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

b
ib

le
.t
x
t

C
a
n
te

r.
tx

t

ch
a
n
d
o
o
.x

ls

d
a
rk

.d
o
c

d
a
rk

.d
o
c
x

E
th

ic
s.

tx
t

e
v
a
c.

d
o
c

fw
4
.p

d
f

M
o
n
te

.t
x
t

N
u
m

A
c
c.

x
ls

N
u
m

A
c
c.

x
ls

x

S
a
m

p
B
u
s.

d
o
c

S
h
a
k
e
.t
x
t

W
a
rP

e
a
ce

.t
x
t

w
o
rl
d
.j
p
g

w
o
rl
d
.p

n
g

Compression with Combined Dictionary

Orignal Size

Compressed Data Size

Using a WAN accelerator takes times before benefits can be seen. Table 2 implements a
combined dictionary for all the data types. As noted before, compressed file types do not
compress effectively. However, as companies send redundant data packets with highly
compressible files, a WAN accelerator can be advantageous. Overall efficiency increases
drastically as Table 2 illustrate. A WAN accelerator proves to be valuable for data transmission.

Original Data Size Compressed Data Size Efficiency

bible.txt 4,295 KB 3,071 KB +28.5%
Canterbury.txt 1,459 KB 1,043 KB +28.5%

chandoo.xls 14,519 KB 14,088 KB +2.9%

darknet5.doc 1,080 KB 914 KB +15.4%

darknet5.docx 484 KB 519 KB -7.2%

Ethics.txt 1,261 KB 910 KB +27.8%

evacuagationguide.doc 1,893 KB 1,885 KB +0.4%

fw4.pdf 107 KB 105 KB +1.9%

Monte.txt 2,624 KB 1,890 KB +27.9%

NumAccSet.xls 741 KB 627 KB +15.4%

NumAccSet.xlsx 209 KB 224 KB -7.2%

SampleBusinessPlan.doc 2,435 KB 2,480 KB -1.8%

Shakespeare.txt 5,460 KB 3,974 KB +27.2%

WarandPeace.txt 3,212 KB 2,303 KB +28.3%

world.jpg 2,489 KB 2,640 KB -6.1%

world.png 3,064 KB 3,257 KB -6.3%

Table 2: Efficiency of Different File Types

Graph 2: Compression with Combined Dictionary

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Lempel-Ziv Compression

Original Size

Compressed Data Size

Original Data Size Compressed Data Size Efficiency

bible.txt 4,295 KB 1570 KB +63.4%
book.pdf 11,300 KB 11,708 KB -3.6%

darknet5.doc 1080 KB 527 KB +51.2%

NumcAccSet.xls 741 KB 235 KB 68.3%

world.png 3064 KB 3379 KB -10.3%

Lempel-Ziv is another lossless data compression algorithm. Much like Huffman coding,
documents and text files are better compressed. Other file types that are already compressed do
not compress further. When using Lempel-Ziv, these file types become bigger. In comparison
to Huffman coding, Lempel-Ziv does a better job compressing uncompressed data types.
Nonetheless, both algorithms do not compress highly compressed data types such as .pdf and
.png.

Table 3: Lempel-Ziv Compression

Graph 3: Lempel-Ziv Compression

Conclusion

Optimizing a WAN accelerator is a relatively new field of study that has high potential in data
storage and transmission. Based on the findings, its ability to compress files has significant
impact on network traffic. With implementation, its application can expedite data transfers with
reduced file sizes. This not only gives faster transmission, but it also decreases monetary
expenses since less space is used. Furthermore, by minimizing the file sizes, it widens the
capacity of the medium. Thus, using lossless data compression is beneficial because it optimizes
available resources.

Huffman coding is one algorithm that uses lossless data compression. It uses an encoder and
decoder to build a binary tree of node as a dictionary. The dictionary analyzes data transfer and
adapts to redundant data. Strings that appear more frequently are referenced with shorter code
than those that are less frequent. Therefore, repetitive data are accessed with smaller bits leading
to smaller transmission size. Similar to Huffman coding, Lempel-Ziv compression also
minimizes the data being transfer. In the study, documents and text files benefit the most from a
WAN accelerator because they are highly compressible. Already compressed file types such as
.pdf and .png, are not compressed further. Huffman coding and Lempel-Ziv are two out of many
lossless data compression algorithm that produce efficient throughput in data storage and
transmission. As results show, a WAN accelerator optimizes network traffic with compression.

References

“Cisco Wide Are Application Services SSl Acceleration Technical Overview.” Cisco Public
Information. June 2012. Web. 11 January 2012.
<http://www.cisco.com/en/US/prod/collateral/ps6712/ps6718/solution_overview_c22-
532534.pdf>.

Dipperstein, Michael. "Huffman Code Discussion and
Implementation."Michael.dipperstein.com. Michael Dipperstein. Web. 2 Apr. 2012.
<http://michael.dipperstein.com>.

"Free EBooks by Project Gutenberg." Project Gutenberg. Web. 02 April 2012.
<http://www.gutenberg.org/>.

“Huffman Coding.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 04 April
2012. Web. 11 January 2012. <http://en.wikipedia.org/wiki/Huffman_coding>.

“Lempel-Ziv-Welch.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 03 May
2012. Web. 11 January 2012. <http://en.wikipedia.org/wiki/Lempel-Ziv-Welch>.

“Lossless Data Compression.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc.
30 March 2012. Web. 11 January 2012.
<http://en.wikipedia.org/wiki/Lossless_data_compression>.

Nelson, Mark and Jean-Loup Gailly. The Data Compresssion Book, Second Edition. Cambridge,
MA: IDG Books Worldwide, Inc. 1995.

Schumacher III, James. "Lempel Ziv Compression." PlanetSourceCode. Exhedra Solutions, Inc.,
18 Apr. 2010. Web. 30 Mar. 2012.< http://www.planet-source-code.com>.

 “Wan Optimization.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 23 April
2012. Web. 11 January 2012. < http://en.wikipedia.org/wiki/WAN_optimization>.

“Wide Area Application Services.” Cisco. Web. 11 January 2012.
<http://www.cisco.com/en/US/products/ps5680/Products_Sub_Category_Home.html#~feat-
prod>.

