Wan Accelerators: Optimizing
Network Traffic with
Compression

Bartosz Agas, Marvin Germar &
Christopher Tran

Introduction

A WAN accelerator is an appliance that can maxinttze services of a point-to-point(PTP)

connection. It provides high quality performancengsminimal resources. There are various
methods that a WAN accelerator uses to optimizeuregs such as caching repetitive data,
compression, and latency optimization. The baspr@ach to wan optimization lies in lossless
data compression.

Data compression involves encoding data into a emtngize without losing the original
information. Given a set of strings, a new straagn be created using data compression whose
length is smaller, but contains the same infornmatidhis application is important in transferring
and storing data. However, implementing losslests dompression requires time. It uses a
technique that learns redundant data after irdih transmission to improve performance. Data
compression begins with an encoder that represttts more concisely. The original data is
compressed and will be decompressed with a decddethe encoder and decoder channels data
between connections, a dictionary is being formé&be dictionary stores initial data, but as data
transfer increases the amount of redundant davaratseases. Therefore the size and time of the
transmission will be smaller since the informatieralready stored in the dictionary. Lossless
data compression analyzes data to construct adarty that minimizes file transfer size.

These transfer sizes are decreased because retldatiars eliminated during data transmission.
One method of reduction is deduplication which reesoidentical information in a data packet.
Instead, a reference is sent from the dictionaay tepresents the identical information rather
than sending the actual data itself. The referermre smaller so it shrinks the transfer size.
There are other techniques that optimize netwafi¢t Caching reduces the transfer size by
storing data that is repeatedly accessed in the tarhe. Since transfer size is reduced the cost
and space required is also reduced. As a redalttitansmission is more efficient.

There are different ways to implement lossless datapression. A popular algorithm is the
Lempel-Ziv compression. It uses an encoder and dircto build a dictionary. Another
algorithm is Huffman coding which also uses an eleccand decoder to build a dictionary.
Huffman coding will be focused to study WAN accaler and lossless data compression.

With such foregoing means, a WAN accelerator caalyae data packets being transferred over
a PTP connection and only send the critical or ceisged differentials. Consider two local
networks where network_1 is connected to networkia2a PTP connection and the networks
frequently send each other similar data packets asadP headers, emails, and documents. A lot
of these data packets contain repetitive data setgntieat do not need to utilize the resources of
the PTP connection. Via the aforementioned meth@m@¥AN accelerator significantly improves
the transfer process and minimizes monetary exgerid@mpanies can save time and money

required for higher PTP connections if they canai§éd connection to do what used to require a
T3 connection. This is the basis of a WAN acceteratausing interest in investigating this
technology.

Literature Review

When choosing a service provider, several compar@$aced with the decision as to what type
of bandwidth to select for their network. Theseicks include a T3 line, multiple T1s, a single

T1, or a fractional T1. Organizations with a lamgenber of sites will tend to vary the speeds
they offer each office based on their size and eisBy implementing a WAN accelerator, the

amount of bandwidth required for the various lomasi goes down dramatically. This can save
an organization a significant amount of money asdifferent services vary greatly in price. T1s
typically cost between $350 and $600 with the mg@re being about $500 per month. A T3 is

comprised of 28 T1s and can therefore reach a edbplsand dollars per month.

Being able to make a downgrade in bandwidth witheetually having any production being
slowed down can save a great deal of money dowlntheConsider a scenario with

Company XYZ who wishes to implement a WAN accelaratffered by Cisco (Cisco WAAS).

It is an organization comprised of 50 offices ofyiag sizes with at least 10 users for small
offices and about 200 for three large offices. Tharrent contracts offer bandwidths of 256kbps
for small offices and 1.5mbps (T1) for the threséaoffices. On average, their current monthly
cost, per office, is about $1,700 per month or 420,

After implementing Cisco WAAS their bandwidth remgments are reduced by 55%. There
current average cost per month for each officeois 765 or $9,180. The total average annual
cost for company XYZ prior to implementing Cisco W& was about $1,020,000 (20,400 * 50).
After implementation it is reduced to $459,000. ¥ can see the drop is dramatic as the
savings just keep increasing as time goes by. Taerénitial costs for setting up the service as
well annual costs for the service itself. As thaegbelow shows for company XYZ, the costs for
the WAN optimization service cannot even comparéhosavings that can be achieved over a
three year span. The total three year bandwidtimgavotal up to about 1.4 million dollars.

As mentioned earlier, WAN optimizers also offerpeead boost as the actual data being sent out
is reduced. The table below shows the drastic ingrents of opening a variety of files with
different sizes and how long the process would takéhe initial run and the ones following it.

Total costs Initial Year 1

Cisco WAAS hardware $498,875 $0 $0 $0 $498,875
and enterprise licenses *

Cisco professional $3,000 $0 $0 $0 $3,000
services fees for planning,
training, and
implementation *

Cisco annual support $0 $32,435 832,435 $32,435 $97,305
costs*

Internal preparation and $14,400 $0 $0 S0 $14,400
planning labor

Total costs $516,275 $32,435 $32,435 $32,435 $613,580

Figure 1: The table above shows the costs of imgheimg Cisco’s WAAS solution

SSL-Encrypted Microsoft SharePoint Accelerated by Cisco WAAS
)perations over a T1 ine with 120-ms Round-Trip Time and 05% Packet Loss

20 Seconds 40 Seconds 60 Seconds 80 Seconds

[
Open 1-MB
PowerPoint

Open 500-XB
PowerPoint

Open 200-XB
PowerPoint

Open 1-MB
Excel Spreadsheet

Open 500-KB
Excel Spreadsheet

Open 200-KB
Excel Sam;}dzhcel

Open 1-MB
Word Document

Open 500-XKB
Word Document

Open 200-KB
Word Document

LLALLEALI

|
|
|
|
|
\

Figure 2: This is an example of how much fastessfdan be sent over a network with a WAN
accelerator

Approach and M ethodology

A WAN accelerator is a network optimizing solutithat requires hardware and software to be
deployed at all branches of a company. The acdelenaeds to be installed in a way that it can
encode data right before it leaves a network ambdke it as soon as it enters a network. The
WAN accelerator adapts and learns data redundan&yetwork by updating a dictionary to be
referenced when sending data differentials betvpeami-to-point connections. The frequency in
which dictionaries are updated can be configurepedding on what the user wants. This is
advantageous because customers can choose tatdationary for their most common files
without worrying about the occasional batch of rdaéa streams distorting the dictionary. Below
is an overview of how a WAN accelerator would opera

Company A Company B

A A

Original File Original File
Network A Network B

Encoder: Compresses . - Decoder: Decompress
File Using Dictionary File Using Dictionary
ictionary

o e

Sends Metadata over
PTP Connection

s~

o

Figure 3: Visual representation of where compressakes place between companies’ networks

The software driving the hardware uses a compnesaigorithm known as Huffman coding, a
lossless data compression algorithm that createsaay tree of nodes to reduce the number of
bits to represent information during data transféhe set of data strings that occur frequently
are represented with shorter codes than thosgsttivat are less frequent. The dictionary stores
the references and rankings of what data streaowg sp most often for the encoder and decoder
to use.

Encoder

In a general way, the encoder takes an inputddans it, and builds a Huffman tree. Once it has
the tree, it puts the tree at the front of the tdera It then attaches an EOF (end of file) marker
at the end of the header and then writes it tolt&ginning of the encoded version of the

file. After this, the program encodes the filengsthe built Huffman tree and writes it to the end

of the file (starting after the EOF marker). Theeder also updates the dictionary to reflect the
new probabilities of the more frequent string ofeda

Decoder

The decoder is straightforward as well. The decadans the header portion of the file and
knows where the encoded data begins through the le@%ker. Once it scans in the header, it
builds its own tree and then decompresses thebdatd on that tree. The decoder reads the file
and decompresses it using the trained dictionamy fihe encoder.

Dictionary
The modified Huffman code creates a binary tredhwibdes that contain the symbols to be

encoded. It develops an ongoing dictionary thatVAN accelerator can use. An ongoing
dictionary adapts to the data being transferredtbgssing the priority of data that is sent most
frequently. A WAN accelerator’s dictionary learinem all data transfer and is updated unlike
normal compression methods that deletes it dictioradter it outputs a file. By using an
updateable dictionary, a company can use a WANl@@&ter to optimize their network because
the dictionary is trained specifically for the coamy’s common files. Huffman coding produces
a dictionary that persist over numerous data trassans.

Example: Given a 6 symbol alphabet with the following syrmpmbabilities:
A=1,B=2,C=4,D=8,E=16,F=32

Step 1. Combine A and B into AB with a probabiloify3.

Step 2. Combine AB and C into ABC with a probabitf 7.

Step 3. Combine ABC and D into ABCD with a probayibf 15.

Step 4. Combine ABCD and E into ABCDE with a prabgbof 31.
Step 5. Combine ABCDE and F into ABCDEF with a @oitity of 63.
The Following tree results:

ABCDEF
/\
(0)F ABCDE
/ \
(10)E ABCD
/ \
(110)D ABC
/ \
(1110)C AB
/\

(11110)A B(11111)

Figure 1: Huff man Tree Example

To summarize this example, because ‘F' has theelsigprobability from the letters in this
alphabet, we want to represent it with the shotigsitring possible, in this case just ‘0'.

For the WAN accelerator used in this project, iswaded in such a way where the user would
manually choose when the dictionary should be wgutlat trained with a new batch of files. This
would involve the user feeding the program a setomhmon files that the dictionary should be
optimized around.

How the Huffman Algorithm reduces costs

Companies use mass amounts of bandwidth to keépsiices going and fast and reliable
point-to-point (PTP) connections costs a lot of eynSending less data over the PTP pipe
would be a great way to reduce costs. The Huffmigorkhm implemented in this particular
WAN accelerator takes in a batch of common filgspdied by the company using it, and trains
the dictionary. The dictionary is updated by maka¢luffman Tree as explained earlier. The
strings of data that appeared most frequently noly bave to be represented by smaller byte
strings such as ‘0", ‘10’, and ‘110’. The output thie encoder is sent over the network and is
much smaller than the raw, original file. The demodill read the compressed string of bytes
and references the dictionary every time it seas ainthese combinations and decrypt the file
accordingly. It is easy to understand how usingsdesn such as a WAN accelerator could allow
companies to purchase slower PTP connection pipeesilimately making more money.

Obstacles with Compression and WAN accelerators

A WAN accelerator can be implemented using anyafneimerous compression algorithms and
there is a reason that Huffman is used for thiqdar case. Compression applications typically
read in one file, compress it, and then decompte8sWAN accelerator on the other hand must
constantly read in files and adapt by buildingdistionary synchronously between the encoder
and decoder. If an encoder and decoder use diffdretionaries, then the output of the decoder
will not produce the original file. Initially, Lengd-Ziv-Welch (LZW) was the algorithm to be
used because of its high efficiency, but it wowd#let too much time to overcome the obstacles
that came with it. LZW source codes, such as theeroade by James Schumacher lll, are very
complex and particular about how it compresses nédnt byte streams. Modifying source
codes like this would require so much effort thatight make sense just to implement LZW
from scratch. However, coding LZW from the groummalso takes a significant amount of time
due to the nature of its complex yet efficient gasi

To overcome the problems with using LZW, Huffmardiog was used instead as it is much

easier to understand and code in a shorter amdutime. The issues that Huffman coded

presented dealt with extracting its dictionary &“bngoing” so that the WAN accelerator could

adapt when it needed to. The Huffman source codd as a foundation for this project sent the
probabilities and references of reoccurring dataashs to the header of the encoder’s output.
This code was modified to take the encoder’'s headdrstore it in a common dictionary that

could be used by the decoder as well. As a reduliob needing to store the header, less
bandwidth is needed to send the data from poird-paint-B.

Results

:\Capstone\Huf fman\Re lease >dir original
Uolume in drive C has no labhel.
Uolume Serial Number is ACAS-B1S5F

Directory of C:\Capstone\Huffman\Release\original

P4/28,/2012 H <DIR>
P4/28/2012 H <DIR> .
P2/24/2004 4,397,286 bhible.txt
11,902,610 bhook.pdf
1,105,920 darknet5.doc
494,989 darknet5.docx
758,784 NumfAccSet.xls
213,281 NumfAccSet.xlsx
2,548,503 world.j
=33 3,136,664 world.pnyg
8 Filed(s> 24,557,957 hytes
2 Dird(s)> 36,431,.273,984 hytes free

A3,/06/,/2012
N4,/22/2012
A3/06/2012
N4,/22/2012
N4,/22/2012
A3/06/2012

:\Capstone\Huf fman\Re lease >dir compressed
Uolume in drive C has no labhel.
Uolume Serial Number is ACAS-B1SF

Directory of C:\Capstone\Huffman\Release\compressed

P4/28/2012 H <DIR>
P4/28/2012 H <DIR> ..
R4/22/2012 2,507,333 bhibletxt_comp
W4/22/2012 : 11,907,185 bookpdf_comp
N4/22/2012 s 494,987 darknetdocx_comp
N4/22/2012 837,389 darknetdoc_comp
N4/22/2012 Numxlsx_comp
Numxls_comp
worldjpg_comp
worldpng_comp
22,066,830 bhytes
36,431,273,984 hytes free

4,22/2012
P4,22/2012

IC:\Capstone\Huf fman\Release>dir original
Uolume in drive C has no label.
Uolume Serial Number is ACAS-B1S5F

Directory of C:\Capstone\Huffman\Release\original

<DIR>
<DIR> .
4,397,286 bhible.txt
11,902,610 book.pdf
1,105,928 darknet5.doc
494,989 darknet5.docx
758,784 NumAccSet.xls
213,281 NumfAccSet.xlsx
2,548,503 world. jpy
3,136,664 world.png
8 File(s> 24,557,957 bhytes
2 Dirds) 36,431,269.888 hytes

B3/06,/2012

C:\Capstone\Huf fman\Re lease>dir decompressed
Uolume in drive C has no lahel.
Uolume Serial Number is ACAS-B15SF

Directory of C:\Capstone\Huffman\Release\decompressed

04,/28/2012 H <DIR>
04,/28/2012 : <DIR>
04/22/2012 :
4,22/2812
04,22/2012
84,22/2012
04,22/2012
84,22/2012
04,22/2012
04,22/2012

4,397,286 bhible_decomp.txt
11,902,610 bhook_decomp.pdf
1,105,920 darknetS5_decomp.doc
494,989 darknetS5_decomp.docx
758,784 NumAccSet_decomp.xls
213,281 NumAccSet_decomp.xlsx
2,548,503 world_decomp.jpyg
3,136,664 world_decomp.png
24,557,957 bytes
36,431,269,.888 bhytes free

Figure 4: Original file sizes with compressed file size Figure 5: Original file sizes with decompressed file sizes.

The WAN accelerator implemented with the Huffmagaoaithm uses Michael Dipperstein’s
single file compression source code as a basiser Adbding the encoder and decoder,
preliminary test are run to determine lossless datapression efficiency. To do so, a new
dictionary is built for each file type. Figure 4dafigure 5 show implementation that uses a
dictionary which optimizes each file. Overall, thempressed file sizes are smaller than the
original data. However, there are compressedsiites that increased. More tests are run to
study which file types are optimized by Huffman icmd Despite the mixture of file sizes, the
original file sizes are the same as the decompudtsesizes as Figure 4 illustrates. The encoder
and decoder work, but not all file types are endoctncisely.

Further tests are run with an individual dictiondoy each file type.
Similar g@ts ensued where certain files are better

efficiency of the different file types.

Table 1 displays the

compressed than others. Efficiency shows the patahat each file type possess after using a

Wan accelerator.

Original Data Size Compressed Decompr essed Efficiency
Data Size Data Size

bible.txt 4,295 KB 2,449 KB 4,295 KB +42.9%
chandoo.xls 1,809 1,639 1,809 KB +9.4%
chandoo.xlsx 1,473 1,472 1,473 KB +0.1%
darknet5.doc 1,080 KB 818 KB 1,080 KB +24.3%
darknet5.docx 484 KB 484 KB 484 KB 0%
Ethics.txt 1,261 KB 726 KB 1,261 KB +42.4%
NumAccSet.xls 741 KB 489 KB 741 KB +34.0%
NumA ccSet.xlsx 209 KB 201 KB 209 KB +3.8%
Railroad.jpg 1,794 KB 1,779 KB 1,794 KB +0.8%
Railroad.png 2,606 KB 2,582 KB 2,606 KB +0.9%
SampleBusinessPlan.doc | 2,435 KB 2,198 KB 2,435 KB +9.7%
SampleBusinessPlan.doc | 1,008 KB 1,008 KB 1,008 KB 0%
world.jpg 2,489 KB 2,431 KB 2,489 KB +2.3%
world.png 3,064 KB 3,052 KB 3,064 KB +0.4%

Table 1: Efficiency of Different File Tvr

Compression of Different File Types
5,000
4,500
4,000 -
3,500 -
3,000 -
2,500 -
1500 -
1,000 - B Origi -
508 i Original Data Size
- B Compressed Data Size
558354 EPET R P
T 5 X O s 5 X > amo = a
28838888 gs:c3s
EC-UGJHHUWSO—(_QOB
s c S LI O==G%Gz 3
Ss¥L TImTFELT T3
£ T o =
O £ © - E o< o ok
°T3 25 E €

Graph 1: Compression of Different File Ty

The graph above is illustrates which file types @pémized using Huffman coding. It is clear
that certain file types are better compressed tthars. Thus, better compression depends on
the data that is being compressed. The filesahatbetter compressed are .txt, .doc, and .xIs.
Other file types such as .pdf, .docx, .xIsx, .jagd. png, did not compress as well because they
are already in compressed format. Compressingrgpiassed file does not compress it further.

Original Data Size Compressed Data Size Efficiency
bible.txt 4,295 KB 3,071 KB +28.5%
Canterbury.txt 1,459 KB 1,043 KB +28.5%
chandoo.xls 14,519 KB 14,088 KB +2.9%
darknet5.doc 1,080 KB 914 KB +15.4%
darknet5.docx 484 KB 519 KB -7.2%
Ethics.txt 1,261 KB 910 KB +27.8%
evacuagationguide.doc 1,893 KB 1,885 KB +0.4%
fw4.pdf 107 KB 105 KB +1.9%
Monte.txt 2,624 KB 1,890 KB +27.9%
NumAccSet.xls 741 KB 627 KB +15.4%
NumA ccSet.xIsx 209 KB 224 KB -7.2%
SampleBusinessPlan.doc 2,435 KB 2,480 KB -1.8%
Shakespear e.txt 5,460 KB 3,974 KB +27.2%
War andPeace.txt 3,212 KB 2,303 KB +28.3%
world.jpg 2,489 KB 2,640 KB -6.1%
world.png 3,064 KB 3,257 KB -6.3%

Table 2: Efficiency of Different File Tvr

Compression with Combined Dictionary

16,000

14,000

12,000

10,000

8,000

6,000

M Orignal Size

4,000 -

2,000 -

bible.txt
Canter.ixt
chandoo.xls

dark.doc
dark.docx

Ethics.txt
evac.doc
fwa.pdf
Monte.txt
NumAcc.xls

NumAcc.xlsx

SampBus.doc

Shake.txt
WarPeace.txt

world.jpg
world.png

B Compressed Data Size

Graph 2: Compression with Combined Dictior

Using a WAN accelerator takes times before beneis be seen. Table 2 implements a
combined dictionary for all the data types. Asedbbefore, compressed file types do not
compress effectively. However, as companies se&ulindant data packets with highly
compressible files, a WAN accelerator can be adhgadus. Overall efficiency increases
drastically as Table 2 illustrate. A WAN accelergtooves to be valuable for data transmission.

Original Data Size Compressed Data Size Efficiency
bible.txt 4,295 KB 1570 KB +63.4%
book.pdf 11,300 KB 11,708 KB -3.6%
darknet5.doc 1080 KB 527 KB +51.2%
NumcAccSet.xIs 741 KB 235 KB 68.3%
world.png 3064 KB 3379 KB -10.3%

Table 3: Lemp«Ziv Compressic
Lempel-Ziv Compression
14,000
12,000
10,000
8,000
6,000
4,000 - B Original Size
2,000 - B Compressed Data Size
0 .
I A
o &° &(\Q‘ (yg;(’ $O“
R éoé‘

Lempel-Ziv is another lossless data compressioorihgn.
documents and text files are better compressetierGite types that are already compressed do
not compress further. When using Lempel-Ziv, thidsetypes become bigger. In comparison

to Huffman coding, Lempel-Ziv does a better job poessing uncompressed data types.
Nonetheless, both algorithms do not compress highiypressed data types such as .pdf and

.png.

Graph 3: Lempe¢Ziv Compressio

Much like Huffman coding,

Conclusion

Optimizing a WAN accelerator is a relatively newld of study that has high potential in data
storage and transmission. Based on the findirgsabhility to compress files has significant
impact on network traffic. With implementations gpplication can expedite data transfers with
reduced file sizes. This not only gives fastengraission, but it also decreases monetary
expenses since less space is used. Furthermomnirbmizing the file sizes, it widens the
capacity of the medium. Thus, using lossless datapcession is beneficial because it optimizes
available resources.

Huffman coding is one algorithm that uses losskst® compression. It uses an encoder and
decoder to build a binary tree of node as a diatipn The dictionary analyzes data transfer and
adapts to redundant data. Strings that appear fremaently are referenced with shorter code
than those that are less frequent. Thereforetiteeedata are accessed with smaller bits leading
to smaller transmission size. Similar to Huffmaading, Lempel-Ziv compression also
minimizes the data being transfer. In the studgutnents and text files benefit the most from a
WAN accelerator because they are highly compressilready compressed file types such as
.pdf and .png, are not compressed further. Huffowting and Lempel-Ziv are two out of many
lossless data compression algorithm that produdieiesit throughput in data storage and
transmission. As results show, a WAN accelerapinuzes network traffic with compression.

References

“Cisco Wide Are Application Services SSI AcceleoatiTechnical Overview.Cisco Public
Information.June 2012. Web. 11 January 2012.
<http://www.cisco.com/en/US/prod/collateral/ps6fi&718/solution_overview_c22-
532534.pdf>.

Dipperstein, Michael. "Huffman Code Discussion and
Implementation Michael.dipperstein.conMichael Dipperstein. Web. 2 Apr. 2012.
<http://michael.dipperstein.com>.

"Free EBooks by Project Gutenbergroject GutenbergWeb. 02 April 2012.
<http://www.gutenberg.org/>.

“Huffman Coding.”Wikipedia, The Free Encyclopedi&Vikimedia Foundation, Inc. 04 April
2012. Web. 11 January 2012. <http://en.wikipedgwiki/Huffman_coding>.

“Lempel-Ziv-Welch.” Wikipedia, The Free Encyclopedi&Vikimedia Foundation, Inc. 03 May
2012. Web. 11 January 2012. <http://en.wikiped@wiki/Lempel-Ziv-Welch>.

“Lossless Data CompressioWikipedia, The Free Encyclopedi&Vikimedia Foundation, Inc.
30 March 2012. Web. 11 January 2012.
<http://en.wikipedia.org/wiki/Lossless_data_compres>.

Nelson, Mark and Jean-Loup Gailljhe Data Compresssion Book, Second Edi@ambridge,
MA: IDG Books Worldwide, Inc. 1995.

Schumacher lll, James. "Lempel Ziv CompressiétahetSourceCodd=xhedra Solutions, Inc.,
18 Apr. 2010. Web. 30 Mar. 2012.< http://www.plasetirce-code.com>.

“Wan Optimization.”"Wikipedia, The Free Encyclopedi&Vikimedia Foundation, Inc. 23 April
2012. Web. 11 January 2012. < http://en.wikipedgwiki/\WAN_optimization>.

“Wide Area Application Services.” Cisco. Web. 1hdary 2012.
<http://www.cisco.com/en/US/products/ps5680/Produstd Category Home.html#~feat-
prod>.

