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Problem 7.1.4
Theorem 7.2 which says that

Var W] = Var [X] + Var[Y] +2Cov [X, Y]

The first two moments of X are

//1 X2xdydx / 2X(1—x)dx=1/3

E[X?] = /00 22 dydx = /2x21 X)dx=1/6

Thusthevarianceof X isVar [X] = E [X?] — (E[X])? = 1/18. By symmetry, it should be apparent that
E[Y] =E[X]=1/3and Var[Y] = Var [X] = 1/18. To find the covariance, wefirst find the correlation

E[XY] = /)1/)1_X2xydydx _ /le(lx)zdx — 112
The covarianceis
Cov[X,Y] = E[XY] —E[X|E[Y] = 1/12—(1/3)®> = —1/36
Finally, the variance of thesumW = X+Y is
Var W] = Var [X] + Var[Y] —2Cov[X,Y] = 2/18 — 2/36 — 1/18

For this specific problem, it's arguable whether it would easier to find Var W] by first deriving the
CDF and PDF of W. In particular, for 0 <w <1,

W W—X W
FW(W):P[X+Y§W]:/ / 2dydx:/ 2(w—x) dx = w?
o Jo 0
Hence, by taking the derivative of the CDF, the PDF of W is

iy (W) = 2w 0<w<1
WY 0 otherwise

From the PDF, the first and second moments of W are
1 1
E[W]:/ WPdw=2/3 EW] :/ wPdw = 1/2
0 0

Thevariance of W is Var W] = E[W?] — (E[W])? = 1/18. Not surprisingly, we get the same answer
both ways.



Problem 7.2.1

2 0<x<y<l1
0 otherwise

fxy (Xy) = {

We wish to find the PDF of W whereW = X +Y. First we find the CDF of W, Ry (w), but we must
realize that the CDF will require different integrations for different values of w.

Y
For values of 0 < w < 1 we look to integrate the shaded area in the i’ r=x
figure to theright. w

FW(W):/OVZV/XWXZdydx:g

Areca of
Integration

X+Y=w
» X

For values of win theregion 1 <w < 2 welook to integrate over
the shaded region in the graph to the right. From the graph we
see that we can integrate with respect to x first, ranging y from O
to w/ 2, thereby covering the lower right triangle of the shaded re-
gion and leaving the upper trapezoid, whichisaccounted for inthe
second term of the following expression:

5y 1 pw-y
/ / 2dxdy+ / / 2dxdy
o Jo w Jo

w2 w
= 2w—1— —
2

Putting all the parts together gives:

Y=X

Area of
Integration

Fw (W)

X+Y=w

»

w<0

o<w<i1
—1-Y 1<w<2

w> 2

Fus () =

[l g,\,ﬁvo

And the PDF is found by taking the derivative with respect to w:
w o0<w<l1

fww)=< 2—w 1<w<2

0 otherwise

Problem 7.3.3

[ 1/n k=12...,n
P (k)_{ 0  otherwise



The corresponding MGF of K is

W (s) = E[e¥] :%(es+ezs+---+e”3)

_ %S (1+6 o)

(™1

- ne—-1)
We can evaluate the moments of K by taking derivatives of the MGF. Some algebrawill show that
doc(s)  ne™2s— (n4 1)elmDs 4 es

ds n(es—1)2

Evaluating dgx (s)/ds at s= 0 yields 0/0. Hence, we apply |I'Hopital’s rule twice (by twice differ-
entiating the numerator and twice differentiating the denominator) when we write

dc(s)|  _ . nn+ 2)elM2)s _ (n+41)2%eM+Ds 1 g8
ds |y s0 2n(es—1)
i Nt 2)2eM2)s _ (n4-1)%eMs 8
s—0 2nes
=(n+1)/2

A significant amount of algebrawill show that the second derivative of the MGF is

d?pc(s)  nPeM3s— (2n2 4 2n— 1)e™2S 4 (n4 1)2eMDs — 5 — 8
a2 n(es—1)3

Evaluating d? (s)/ds’ at s= 0yields 0/0. Because (€ — 1)° appearsin the denominator, we need
to use I'Hopital’s rule three times to obtain our answer.

Pec(s)| im n?(n+3)3e™3s — (22 4+ 2n— 1)(n+2)%e™25 4 (n41)° — 86> — €
d? |, s0 6nes
- m(n+3°3—(2n+2n—1)(n+2)3+ (n+1)°>°—9
N 6n
—(2n+1)(n+1)/6

We can use these results to derive two well known results. We observe that we can directly use the
PMF P (k) to calculate the moments

E[K] = %kzlk E[K?] =

]
Sl

n

> K
K1
Using the answers we found for E[K] and E [K?], we have the formulas

. nn+1) d k2:n(n+1)(2n+1)
6

k=1



Problem 7.4.4
By Theorem 7.10, we know that @y (s) = [gk(s)]".

(8 Thefirst derivative of @y (s) is

We can evaluate dgy (s) /ds at s= 0 to find E[M].

) g (gra0ats

s = nE[K]

E[M]

s=0

(b) The second derivative of @y (s) is

2 2 2
T =nin- oo 2“5 ) o2

Evaluating the second derivative at s= 0 yields

_ dPqu(s)

—q2 | =nin-1 (E[K])* + nE[K?]

s=0

E[M?]

Problem 7.5.2
Using the moment generating function of X, ¢x(s) = €9°/2_ We can find the nth moment of X, E[X"]

by taking the nth derivative of @x(s) and setting s= 0.

E[X] = o’/ 0
s=0
E[X? = 02e9°5/2 1. 045260252/2‘ .
s=0
Continuing in this manner we find that
E[X?) = (30%s+0°s") &/ —0
s=0
E[XY] = (30%+60° +0%") &%/ 2’ .= 30*
.
Problem 7.6.4
random sum of random variables
where; has the exponential PDF
1 ay/15
€ y>0
_J 15
f ) { 0 otherwise



Following Examples 7.7 and 7.10, the MGFs of Y and K are

151 e
()= 1755 118 (S =€

From Theorem 7.14,V has MGF
Qv (S) = @ (IN@y(5)) = K (99 — 3005/(1-159)

The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate the
mean and variance. |n particular,

doy(s _ 300
e = 19 Sf )| _ oosa | =30

s=0 s=0

d’qy(s)

BV =g
s=0
300 \? 9000
_ 300s/(1-15s) 300s/(1-15s) _ MY =
e <(1_153)2> +e (- 1597 i 99,000

Thus, V has variance Var [V] = E [V?] — (E[V])? = 9,000 and standard deviation oy = 94.9.
A second way to calculate the mean and variance of V is to use Theorem 7.15 which says

E[V] = E[K]E]Y] = 20(15) = 200
Var V] = E[K] Var[Y] + Var [K](E[Y])? = (20)15% + (20)15° = 9000

Problem 7.6.5
have one of (%) combinations, the probability aticket isawinner is
q= 1
— 46\
(5)

Let Xj = 1if theith ticket sold is awinner; otherwise X; = 0. Since the number K of tickets sold has
a Poisson PMF with E[K] = r, the number of winning ticketsis the random sum

V=Xt + X
From Appendix A,
() =(1-q+g (5=€"
By Theorem 7.14,
o/ (s) = (Ingx(s)) = glox(s)-1 _ ga(e-1)

Hence, we seethat V has the MGF of a Poisson random variable with mean E[V] = rq. The PMF of
Vis

[ (rg)e"9/ v v=0,1,2,...
Rilv) = { 0 otherwise



Problem 7.6.7
Theway to solvefor the mean and variance of U isto use conditional expectations. GivenK =Kk,
U=X;+--+ X and

k
EUIK =K = E[Xy+ -+ XXa 4+ X =K = 3 EXi[Xg 4+ X0 =K
i=1

Since X; isaBernoulli random variable,

PX=15X% =k 1
P[zg‘zlxj :k}

Notethat 3, X; isjust abinomial random variablefor ntrialswhile ¥ j.;; X; isabinomial random
variablefor n— 1 trials. Inaddition, X and § ; ;; X are independent random variables. Thisimplies

E[m|x1+---+xn=kJ=P[>q=1| 3 X =k] =
=1

P =P[5 i X =k—1]
P[] 1% =K
PGP ta—p kY
(WP (L—p)k

EX[Xi 4+ X =K =

A second way to find this result is to use symmetry to argue that E[X;|X; + - - - + X, = k] should be
the samefor eachi. In particular, if wesay E[X;| Xy +---+ X, =K| =Y, then

nyz'ZE[NIXﬁ“*Xn:k] =EXg 4+ XX+ + X =K =k

Thusy = k/n. At any rate, the conditional mean of U is

< Kk K2
E[U\K:k]=_ZlE[Xa\X1+---+Xn:k]:_Zlﬁ:F

This says that the random variable E[U|K] = K?/n. Using iterated expectations, we have
E[U] = E[EU|K]] = E[K?/n]
Since K isabinomial random varaiable, we know that E[K] = np and Var [K] = np(1— p). Thus,

E[U] = %E[Kz} :%

(Var[K] + (E[K])?) = p(1~ p) +np’

Onthe other hand, V isjust and ordinary random sum of independent random variablesand the mean
of E[V] = E[X|E[M] = np?.



Problem 7.6.8
played, we can write the total number of points earned as the random sum

Y:X]_—I—Xz—l——I—XN

(8 It istempting to use Theorem 7.14 to find @y (s); however, this would be wrong since each
X; is not independent of N. In this problem, we must start from first principles using iterated
expectations.

ov(s) =E [E [e5<xl+"'+XN>\N” - i Py (n)E [e5<xl+"'+xn>|N - n}
n=1

GivenN = n, Xy, ..., X, areindependent so that
E [ %) N — n| — E[¥4|N = n|E[e%¢N = n] - E[¢™|N 1]

Given N = n, we know that games 1 through n — 1 were either wins or ties and that game n
wasaloss. Thatis, givenN=n, X, =0and fori < n, X; = 0. Moreover, for i < n, X; hasthe
conditional PMF

Pin=n () = Pxjx 20 (X) = { é/ ? é;ei\;ﬁse
These factsimply
E[eN=n]=€"=1
and that fori < n,
E[e%|N=n| = (1/2)€° + (1/2)e® = €%/2+ /2
Now we can find the MGF of Y.

(5= 5 Pu () E[eIN = rE[e N =] - [ E[IN =1

_ i Py (n) [e/2+€%/2]""
n=1

_ 1 < s /oM
MY nleN (n) [e/2+€*/2]
_ 1 - Inj(e+¢%)/2)
=~ i nzle (n)€"

B on(In[e’/24-€3/2))

- e8/2+e58)2
The tournament ends as soon as you lose a game. Since each gameis aloss with probability

1/3 independent of any previous game, the number of games played has the geometric PMF
and corresponding MGF

(2/3"1(1/3) n=12,... (1/3)e
P = { 0 otherwise W)= 7= (2/3)es




Thus, the MGF of Y is
1/3
“S =TT
(b) To find the moments of Y, we evaluate the derivatives of the MGF @y (s). Since
dy(s) e+ 2%

ds  9g[1—es/3—e%/3°
we see that

doy(s) 3

ds |, e@mEe

If you're curious, you may notice that E[Y] = 3 precisely equals E[N]E[X], the answer you
would get if you mistakenly assumed that N and each X; were independent. Although this
may seem like a coincidence, its actually the result of theorem known as Wald's equality.
The second derivative of the MGF is

Rv(s)  (1—€5/3—€25/3)(65+ 46%) + 2(e5+ 26%5)2/3

E[Y] =

ds? 9(1-e5/3—¢€%/3)3
The second moment of Y is

d?y(s) _5/3+6 _ -
& |, 13

Thevariance of Y isVar[Y] = E[Y?] — (E[Y])?=23—-9=14.

E[Y?] =

Problem 7.7.2

Knowing that the probability that voice call occursis 0.8 and the probability that a data call occurs
is 0.2 we can define the random variable D; as the number of data callsin asingle telephone call. It
isobvious that for any i there are only two possible values for D;, namely 0 and 1. Furthermore for
al i the D;'s are independent and identically distributed withe the following PMF.

{ 0.8 d=0
Po(d)={ 02 d=1
0 otherwise
From the above we can determine that
E[D]=02  Var[D]=0.2-0.04=0.16
With the previous descriptions, we can answer the following questions.
(@ E[Kiyo] = 100E[D] = 20
(b) Var[Kigo] = 1/100Var [D] = 16 = 4
(©) P[Kio> 18 =1— @ (2872) =1 d(-1/2) = (1/2) = 0.6915
(d) P[16 < Ky < 24] = @ (2520) — ¢ (1220) = p(1) — P(—1) = 2d(1) — 1= 0.6826




Problem 7.8.1
In Example 7.12, we learned that a sum of iid Poisson random variables is a Poisson random vari-

able. Hence W, is a Poisson random variable with mean E[W,| = nE[K] = n. ThusW, has variance
Var W] = nand PMF

R/vn(W):{ nve "/wl w=0,1,2,...

0 otherwise
All of thisimpliesthat we can exactly calculate
PWh = n] =Ry, (n) =n"e™"/n!

Since we can perform the exact calculation, using a central limit theorem may seem silly; however
for large n, calculating n" or n! isdifficult for large n. Moreover, it's interesting to see how good the

approximation is. In this case, the approximationis

P[\%:n}:P[ng\%gn}z¢<w\/:_n)¢<$\/:_n>:2¢<2_\1/ﬁ>1

The comparison of the exact calculation and the approximation are given in the following table.

PW, = n] n=1 n=4 n=16 n=64
exact 0.3679 0.1954 0.0992 0.0498
approximate | 0.3829 0.1974 0.0995 0.0498




