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Problem 7.1.4
Theorem 7.2 which says that

Var
�
W ��� Var

�
X ��� Var

�
Y ��� 2Cov

�
X � Y �

The first two moments of X are

E
�
X ���	� 1

0
� 1 
 x

0
2xdydx ��� 1

0
2x � 1 
 x � dx � 1 � 3

E X2 �	� 1

0
� 1 
 x

0
2x2 dydx �	� 1

0
2x2 � 1 
 x � dx � 1 � 6

Thus the variance of X is Var
�
X ��� E X2 
�� E �X ��� 2 � 1 � 18. By symmetry, it should be apparent that

E
�
Y ��� E

�
X ��� 1 � 3 and Var

�
Y ��� Var

�
X ��� 1 � 18. To find the covariance, we first find the correlation

E
�
XY ��� � 1

0
� 1 
 x

0
2xydydx � � 1

0
x � 1 
 x � 2 dx � 1 � 12

The covariance is

Cov
�
X � Y ��� E

�
XY ��
 E

�
X � E �Y ��� 1 � 12 
�� 1 � 3 � 2 ��
 1 � 36

Finally, the variance of the sum W � X � Y is

Var
�
W ��� Var

�
X ��� Var

�
Y ��
 2Cov

�
X � Y ��� 2 � 18 
 2 � 36 � 1 � 18

For this specific problem, it’s arguable whether it would easier to find Var
�
W � by first deriving the

CDF and PDF of W . In particular, for 0 � w � 1,

FW � w ��� P
�
X � Y � w��� � w

0
� w 
 x

0
2dydx � � w

0
2 � w 
 x � dx � w2

Hence, by taking the derivative of the CDF, the PDF of W is

fW � w ��� 2w 0 � w � 1
0 otherwise

From the PDF, the first and second moments of W are

E
�
W ��� � 1

0
2w2 dw � 2 � 3 E W2 � � 1

0
2w3 dw � 1 � 2

The variance of W is Var
�
W ��� E W2 
�� E �W ��� 2 � 1 � 18. Not surprisingly, we get the same answer

both ways.
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Problem 7.2.1

fX  Y � x � y ��� 2 0 � x � y � 1
0 otherwise

We wish to find the PDF of W where W � X � Y . First we find the CDF of W , FW � w � , but we must
realize that the CDF will require different integrations for different values of w.

For values of 0 � w � 1 we look to integrate the shaded area in the
figure to the right.

FW � w ���	� w
2

0
� w 
 x

x
2dydx � w2

2
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For values of w in the region 1 � w � 2 we look to integrate over
the shaded region in the graph to the right. From the graph we
see that we can integrate with respect to x first, ranging y from 0
to w � 2, thereby covering the lower right triangle of the shaded re-
gion and leaving the upper trapezoid, which is accounted for in the
second term of the following expression:

FW � w �@� � w
2

0
� y

0
2dxdy �A� 1

w
2

� w 
 y

0
2dxdy

� 2w 
 1 
 w2

2
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Putting all the parts together gives:

FW � w ��� 0 w \ 0
w2

2 0 � w � 1
2w 
 1 
 w2

2 1 � w � 2
1 w ] 2

And the PDF is found by taking the derivative with respect to w:

fW � w ��� w 0 � w � 1
2 
 w 1 � w � 2
0 otherwise

Problem 7.3.3

PK � k �^� 1 � n k � 1 � 2 �U_U_U_`� n
0 otherwise
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The corresponding MGF of K is

φK � s ��� E esK � 1
n

es � e2s ��aUaUaK� ens

� es

n
1 � es � e2s ��aUaUa%� e b n 
 1 c s

� es � ens 
 1 �
n � es 
 1 �

We can evaluate the moments of K by taking derivatives of the MGF. Some algebra will show that

dφK � s �
ds

� ne b n d 2 c s 
�� n � 1 � e b n d 1 c s � es

n � es 
 1 � 2
Evaluating dφK � s �U� ds at s � 0 yields 0 � 0. Hence, we apply l’Hôpital’s rule twice (by twice differ-
entiating the numerator and twice differentiating the denominator) when we write

dφK � s �
ds s e 0

� lim
s f 0

n � n � 2 � e b n d 2 c s 
�� n � 1 � 2e b n d 1 c s � es

2n � es 
 1 �� lim
s f 0

n � n � 2 � 2e b n d 2 c s 
�� n � 1 � 3e b n d 1 c s � es

2nes��� n � 1 �U� 2
A significant amount of algebra will show that the second derivative of the MGF is

d2φK � s �
ds2 � n2e b n d 3 c s 
�� 2n2 � 2n 
 1 � e b n d 2 c s �g� n � 1 � 2e b n d 1 c s 
 e2s 
 es

n � es 
 1 � 3
Evaluating d2φK � s �U� ds2 at s � 0 yields 0 � 0. Because � es 
 1 � 3 appears in the denominator, we need
to use l’Hôpital’s rule three times to obtain our answer.

d2φK � s �
ds2

s e 0
� lim

s f 0

n2 � n � 3 � 3e b n d 3 c s 
g� 2n2 � 2n 
 1 �U� n � 2 � 3e b n d 2 c s ��� n � 1 � 5 
 8e2s 
 es

6nes

� n2 � n � 3 � 3 
g� 2n2 � 2n 
 1 �U� n � 2 � 3 ��� n � 1 � 5 
 9
6n�h� 2n � 1 �U� n � 1 �U� 6

We can use these results to derive two well known results. We observe that we can directly use the
PMF PK � k � to calculate the moments

E
�
K��� 1

n

n

∑
k e 1

k E K2 � 1
n

n

∑
k e 1

k2

Using the answers we found for E
�
K� and E K2 , we have the formulas

n

∑
k e 1

k � n � n � 1 �
2

n

∑
k e 1

k2 � n � n � 1 �U� 2n � 1 �
6
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Problem 7.4.4
By Theorem 7.10, we know that φM � s ��� �

φK � s �i� n.

(a) The first derivative of φM � s � is

dφM � s �
ds

� n
�
φK � s �j� n 
 1 dφK � s �

ds

We can evaluate dφM � s �U� ds at s � 0 to find E
�
M� .

E
�
M��� dφM � s �

ds s e 0
� n

�
φK � s �i� n 
 1 dφK � s �

ds s e 0
� nE

�
K �

(b) The second derivative of φM � s � is

d2φM � s �
ds2 � n � n 
 1 � � φK � s �j� n 
 2 dφK � s �

ds

2 � n
�
φK � s �i� n 
 1 d2φK � s �

ds2

Evaluating the second derivative at s � 0 yields

E M2 � d2φM � s �
ds2

s e 0
� n � n 
 1 ��� E �K�k� 2 � nE K2

Problem 7.5.2
Using the moment generating function of X , φX � s ��� eσ2s2 l 2. We can find the nth moment of X , E

�
Xn �

by taking the nth derivative of φX � s � and setting s � 0.

E
�
X �m� σ2seσ2s2 l 2

s e 0
� 0

E X2 � σ2eσ2s2 l 2 � σ4s2eσ2s2 l 2

s e 0
� σ2

Continuing in this manner we find that

E X3 � 3σ4s � σ6s3 eσ2s2 l 2

s e 0
� 0

E X4 � 3σ4 � 6σ6s2 � σ8s4 eσ2s2 l 2

s e 0
� 3σ4

Problem 7.6.4
random sum of random variables

V � Y1 ��aUaUa%� YK

where Yi has the exponential PDF

fYi � y ��� 1
15e 
 yl 15 y n 0
0 otherwise
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Following Examples 7.7 and 7.10, the MGFs of Y and K are

φY � s ��� 1 � 15
1 � 15 
 s

� 1
1 
 15s

φK � s ��� e20 b es 
 1 c
From Theorem 7.14, V has MGF

φV � s ��� φK � lnφY � s �U�o� e20 b φY b s cp
 s c � e300sl b 1 
 15s c
The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate the
mean and variance. In particular,

E
�
V ��� dφV � s �

ds s e 0
� e300sl b 1 
 15s c 300� 1 
 15s � 2 s e 0

� 300

E V2 � d2φV � s �
ds2

s e 0� e300sl b 1 
 15s c 300� 1 
 15s � 2 2 � e300sl b 1 
 15s c 9000� 1 
 15s � 3
s e 0

� 99 � 000

Thus, V has variance Var
�
V ��� E V2 
g� E �V �q� 2 � 9 � 000 and standard deviation σV r 94 _ 9.

A second way to calculate the mean and variance of V is to use Theorem 7.15 which says

E
�
V ��� E

�
K� E �Y ��� 20 � 15 �s� 200

Var
�
V ��� E

�
K� Var

�
Y ��� Var

�
K�k� E �Y ��� 2 �	� 20 � 152 ��� 20 � 152 � 9000

Problem 7.6.5
have one of 46

6 combinations, the probability a ticket is a winner is

q � 1
46
6

Let Xi � 1 if the ith ticket sold is a winner; otherwise Xi � 0. Since the number K of tickets sold has
a Poisson PMF with E

�
K��� r, the number of winning tickets is the random sum

V � X1 �gaUaUa%� XK

From Appendix A,

φX � s �o�h� 1 
 q �`� qes φK � s ��� er t es 
 1u
By Theorem 7.14,

φV � s �o� φK � lnφX � s �U��� er t φX b s cp
 1u � erq b es 
 1 c
Hence, we see that V has the MGF of a Poisson random variable with mean E

�
V ��� rq. The PMF of

V is

PV � v ��� � rq � ve 
 rq � v! v � 0 � 1 � 2 �U_U_U_
0 otherwise
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Problem 7.6.7
The way to solve for the mean and variance of U is to use conditional expectations. Given K � k,

U � X1 ��aUaUav� Xk and

E
�
U wK � k��� E

�
X1 ��aUaUaK� Xk wX1 ��aUaUa%� Xn � k��� k

∑
i e 1

E
�
Xi wX1 �gaUaUa%� Xn � k�

Since Xi is a Bernoulli random variable,

E
�
Xi wX1 ��aUaUaK� Xn � k��� P Xi � 1 w n

∑
j e 1

X j � k � P Xi � 1 � ∑ j xe i X j � k 
 1

P ∑n
j e 1 X j � k

Note that ∑n
j e 1 X j is just a binomial random variable for n trials while ∑ j xe i X j is a binomial random

variable for n 
 1 trials. In addition, Xi and ∑ j xe i X j are independent random variables. This implies

E
�
Xi wX1 ��aUaUa%� Xn � k��� P

�
Xi � 1� P ∑ j xe i X j � k 
 1

P ∑n
j e 1 X j � k

� p n 
 1
k 
 1 pk 
 1 � 1 
 p � n 
 1 
 b k 
 1 c

n
k pk � 1 
 p � n 
 k� k

n

A second way to find this result is to use symmetry to argue that E
�
Xi wX1 �gaUaUav� Xn � k� should be

the same for each i. In particular, if we say E
�
Xi wX1 ��aUaUaK� Xn � k��� γ, then

nγ � n

∑
i e 1

E
�
Xi wX1 ��aUaUa%� Xn � k��� E

�
X1 ��aUaUaK� Xn wX1 ��aUaUaK� Xn � k��� k

Thus γ � k � n. At any rate, the conditional mean of U is

E
�
U wK � k��� k

∑
i e 1

E
�
Xi wX1 ��aUaUa%� Xn � k��� k

∑
i e 1

k
n
� k2

n

This says that the random variable E
�
U wK��� K2 � n. Using iterated expectations, we have

E
�
U ��� E

�
E
�
U wK�8��� E K2 � n

Since K is a binomial random varaiable, we know that E
�
K��� np and Var

�
K��� np � 1 
 p � . Thus,

E
�
U ��� 1

n
E K2 � 1

n
Var

�
K����� E �K�k� 2 � p � 1 
 p �`� np2

On the other hand, V is just and ordinary random sum of independent random variables and the mean
of E

�
V ��� E

�
X � E �M��� np2.
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Problem 7.6.8
played, we can write the total number of points earned as the random sum

Y � X1 � X2 �gaUaUav� XN

(a) It is tempting to use Theorem 7.14 to find φY � s � ; however, this would be wrong since each
Xi is not independent of N. In this problem, we must start from first principles using iterated
expectations.

φY � s ��� E E es b X1 dzy y y d XN c wN � ∞

∑
n e 1

PN � n � E es b X1 dzy y y d Xn c wN � n

Given N � n, X1 �U_U_U_�� Xn are independent so that

E es b X1 dzy y y d Xn c wN � n � E esX1 wN � n E esX2 wN � n aUaUa E esXn wN � n

Given N � n, we know that games 1 through n 
 1 were either wins or ties and that game n
was a loss. That is, given N � n, Xn � 0 and for i \ n, Xi {� 0. Moreover, for i \ n, Xi has the
conditional PMF

PXi | N e n � x ��� PXi | Xi xe 0 � x ��� 1 � 2 x � 1 � 2
0 otherwise

These facts imply

E esXn wN � n � e0 � 1

and that for i \ n,

E esXi wN � n ��� 1 � 2 � es ��� 1 � 2 � e2s � es � 2 � e2s � 2

Now we can find the MGF of Y .

φY � s ��� ∞

∑
n e 1

PN � n � E esX1 wN � n E esX2 wN � n aUaUa E esXn} 1 E esXn wN � n

� ∞

∑
n e 1

PN � n � es � 2 � e2s � 2
n 
 1

� 1
es � 2 � e2s � 2

∞

∑
n e 1

PN � n � es � 2 � e2s � 2 n

� 1
es � 2 � e2s � 2

∞

∑
n e 1

PN � n � en ln t b es d e2s c l 2u
� φN � ln � es � 2 � e2s � 2�k�

es � 2 � e2s � 2

The tournament ends as soon as you lose a game. Since each game is a loss with probability
1 � 3 independent of any previous game, the number of games played has the geometric PMF
and corresponding MGF

PN � n ��� � 2 � 3 � n 
 1 � 1 � 3 � n � 1 � 2 �U_U_U_
0 otherwise

φN � s ��� � 1 � 3 � es

1 
�� 2 � 3 � es
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Thus, the MGF of Y is

φY � s ��� 1 � 3
1 
�� es � e2s �U� 3

(b) To find the moments of Y , we evaluate the derivatives of the MGF φY � s � . Since

dφY � s �
ds

� es � 2e2s

9
�
1 
 es � 3 
 e2s � 3� 2

we see that

E
�
Y ��� dφY � s �

ds s e 0
� 3

9 � 1 � 3 � 2 � 3

If you’re curious, you may notice that E
�
Y �o� 3 precisely equals E

�
N� E �Xi � , the answer you

would get if you mistakenly assumed that N and each Xi were independent. Although this
may seem like a coincidence, its actually the result of theorem known as Wald’s equality.

The second derivative of the MGF is

d2φY � s �
ds2 � � 1 
 es � 3 
 e2s � 3 �U� es � 4e2s �`� 2 � es � 2e2s � 2 � 3

9 � 1 
 es � 3 
 e2s � 3 � 3
The second moment of Y is

E Y2 � d2φY � s �
ds2

s e 0
� 5 � 3 � 6

1 � 3 � 23

The variance of Y is Var
�
Y ��� E Y2 
�� E �Y ��� 2 � 23 
 9 � 14.

Problem 7.7.2
Knowing that the probability that voice call occurs is 0.8 and the probability that a data call occurs
is 0.2 we can define the random variable Di as the number of data calls in a single telephone call. It
is obvious that for any i there are only two possible values for Di, namely 0 and 1. Furthermore for
all i the Di’s are independent and identically distributed withe the following PMF.

PD � d ��� 0 _ 8 d � 0
0 _ 2 d � 1
0 otherwise

From the above we can determine that

E
�
D��� 0 _ 2 Var

�
D��� 0 _ 2 
 0 _ 04 � 0 _ 16

With the previous descriptions, we can answer the following questions.

(a) E
�
K100��� 100E

�
D��� 20

(b) Var
�
K100��� 100Var

�
D���	~ 16 � 4

(c) P
�
K100 n 18��� 1 
 Φ 18 
 20

4 � 1 
 Φ �U
 1 � 2 ��� Φ � 1 � 2 �s� 0 _ 6915

(d) P
�
16 � K100 � 24��� Φ 24 
 20

4 
 Φ 16 
 20
4 � Φ � 1 ��
 Φ �U
 1 �^� 2Φ � 1 �`
 1 � 0 _ 6826

8



Problem 7.8.1
In Example 7.12, we learned that a sum of iid Poisson random variables is a Poisson random vari-
able. Hence Wn is a Poisson random variable with mean E

�
Wn ��� nE

�
K��� n. Thus Wn has variance

Var
�
Wn ��� n and PMF

PWn � w ��� nwe 
 n � w! w � 0 � 1 � 2 �U_U_U_
0 otherwise

All of this implies that we can exactly calculate

P
�
Wn � n��� PWn � n ��� nne 
 n � n!

Since we can perform the exact calculation, using a central limit theorem may seem silly; however
for large n, calculating nn or n! is difficult for large n. Moreover, it’s interesting to see how good the
approximation is. In this case, the approximation is

P
�
Wn � n��� P

�
n � Wn � n� r Φ

n � 0 _ 5 
 n~ n

 Φ

n 
 0 _ 5 
 n~ n
� 2Φ

1
2 ~ n


 1

The comparison of the exact calculation and the approximation are given in the following table.

P
�
Wn � n� n � 1 n � 4 n � 16 n � 64

exact 0 _ 3679 0 _ 1954 0 _ 0992 0 _ 0498
approximate 0 _ 3829 0 _ 1974 0 _ 0995 0 _ 0498
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