
Random Notes on CDMA

C. Rose

November 18, 2010

1 CDMA
The basic idea behind CDMA is to assign each user a signature (also called a code-
word), sm(t). Users will use antipodal signaling (i.e., multiplying their signatures
by ±1 to send data. Thus, what the receiver sees is (idealistically)

r(t) =
∑
m

bmsm(t) + w(t)

where the bm are the users’ bits (again, ±). We also generally assume that the
system is interference limited so that the noise term is inconsequential. That is,
we assume

r(t) ≈
∑
m

bmsm(t)

From the perspective of a receiver trying to decode, say, user 1 we have

r(t) = b1s1(t) +
∑
m6=1

bmsm(t)

and we do the usual matched filtering (correlator receiver) where we multiply r(t)
by s1(t) and integrate so that the decision paramater we use to guess what b1 is
looks like

r1 = b1Es1 +
∑
m 6=1

bm

∫ T

0

s1(t)sm(t)dt

where we’ve assmed the bit interval is (0, T). What’s not necessarily obvious is
that we’ve ALSO assumed that all the users signals arrive at the receiver in lock-
step (their individual bit intervals start and stop at the same time). This actually

1

takes a little bit of doing owing to the finite speed of light and that a distance of
1000 feet introduces approximately a 1µs delay. Thus, for a CDMA system to
be synchronous the system (base) must essentially tell users to advance or delay
their transmissions so that all transmissions arrive at the base synchronously. This
is not a big deal – TDMA systems do it all the time, but it’s worth mentioning
(which is obvious because I mentioned it I guess :)).

(Also please note that we’re purusing a baseband development. These signals
sm(t) are actually the product of a baseband signature and a carrier at some
high frequency. But it’s easier to see what’s going on in baseband – and math-
ematically, since you already understand signal space, the two are completely
equivalent approaches.)

So, now the question is how are those signatures chosen. We could have some
“signature authority” that carefully chose the signatures. Ideally, we’d like to
have users interfere with each other as little as possible. One approach would be
to make the sm(t) orthogonal (time division, frequency division or a combination
of both called frequency hopping are very easy conceptually). One could also
simply assign each user a basis function from some arbitrary orthogonal basis.

However, such optimal approaches make the mobile handset a bit more com-
plicated – it has to be able to synthesize the requisite waveforms upon command.
This is not a big deal these days, but in the olden times of 1990 when I became
a professor, the idea was to make things as simple as possible from a hardware
perspective. In addition, there are serpents in the garden of which we have not
yet spoken – the radio channel can do some ugly things to you since radio waves
bounce all over the place. We can certainly deal with these things via equalization,
but it adds another layer of complexity to the hardware.

And one last thing that’s not been mentioned yet – there are SYSTEMS issues
as well. If you assign waveforms that are orthogonal, nearby bases have to know
which ones you’re using so that your transmissions don’t interfere with theirs.
So there’s also a coordination problem when you try to get too anally rententive
optimal. :)

Now all that said, what we’re about to do is theoretically no better than any-
thing else you could do. Of course, that did not stop the raging debate about
CDMA/TDMA/FDMA at the beginning of the cellular revolution (these debates
were actually rather heated!). In fact, there are aspects of CDMA that seem down-
right boneheaded when you’re trying to conserve precious spectrum resources.
Nonetheless, there’s a certain analytic elegance an simplicity about what follows
that’s appealing, and it just so happens that in this particular VHS/Beta battle
(VCR tapes – which are increasingly a technology that seems modern to me, but

2

you may not even remember!), it looks like CDMA is winning out by and large.
So, how do you choose your waveforms sm(t)? RANDOMLY! What does

that mean? Aren’t random waveforms hard to compose? DEFINITELY, so we
restrict the waveforms to a particular easy to construct format. We divide the bit
interval up into L equal duration “chips” and for a given signature, we randomly
choose between ±1 for each of them! Thus, if p(t) is a unit-energy square pulse
on (0, T/L) we have

sm(t) =
L−1∑
`=0

cm,`p(t− `
T

L
)

Where all the cm` are iid equiprobably ±1. What you should notice immediately
is that by virtue of chopping up our waveform into little chips, we’ve increased
the bandwidth it occupies by a factor of L. For this reason, this approach is also
called spread spectrum.

This all sounds crazy right? Won’t random codewords interfere with each
other? Yup, they do. Didn’t you just increase the bandwidth used by every user?
Yup, we did. However, remember that in a cellular system you have multiple
bases. So even if you tried to make your waveforms orthogonal, other bases doing
the same thing would mess you up unless they used different frequencies. In a
CDMA system, all the bases share the same bandwidth and we simply have to
tolerate it. So, oddly enough, at the end of the day it all ends up working out
rather well (and with that statement I’m sweeping at least a full decade of fierce
debate under the rug).

Now, let’s go back to our detection problem. We immediately see that Es1 = L
and that the sum – or interference – is a sum of a bunch of random variables,
many of them independent. So, to extract user 1’s info we do a matched filter on
signature s1(t) as in

r1 =

∫ T

0

M∑
m=1

bmsm(t)s1(t)dt =

∫ T

0

M∑
m=1

bm

L−1∑
`=0

cm,`p(t−`
T

L
)

L−1∑
n=0

c1,np(t−n
T

L
)dt

We rearrange as

r1 ==
M∑

m=1

∫ T

0

L−1∑
`=0

L−1∑
n=0

p(t− `T
L

)p(t− nT
L

)bmcm,`c1,ndt =
M∑

m=1

L−1∑
`=0

bmcm,`c1,`

because the p(t− `T
L
) are all mutually orthonormal. We can also rewrite this as

r1 =
∑
m

bmc>1 cm

3

We then rewrite r1 as

r1 = b1L+
∑
m6=1

bm

L−1∑
`=0

c1,`cm,` = b1L+
∑
m 6=1

bmc>1 cm

and all these sums make us immediately think AHA! Gaussian! So for a rea-
sonable number of users and chips, we assume that the sum term looks Gaussian
enough for government work. In that case we only need it’s mean and variance
to be able to determine the average error probability for user 1 (and thus for all
users since we’ve set the problem up symmetrically – all users have random wave-
forms).

(You’ll notice that it is assumed that the base knows the users’ waveforms –
which seems rather odd since we’re assuming random chips. More on that a little
later.)

MEAN:

E

[∑
m 6=1

bm

L−1∑
`=0

c1,`cm,`

]
=

∑
m6=1

E[bm]E

[
L−1∑
`=0

c1,`cm,`

]
= 0

VARIANCE:

σ2 = E

[∑
m6=1,k 6=1

bmbk

L−1∑
`=0,r=0

c1,`cm,`c1,rck,r

]
=

∑
m 6=1,k 6=1

E[bmbk]
L−1∑

`=0,r=0

E [c1,`c1,r]E [cm,`ck,r]

Since the bm and bk are independent when k 6= m and they can only take on values
±1 we have

σ2 =
∑
m6=1

L−1∑
`=0,r=0

E [c1,`c1,r]E [cm, `cm,r]

The same argument for the chips ci,j leads to

σ2 =
∑
m 6=1

L−1∑
`=0

= (M − 1)L

So the signal to noise ratio is

SNR =
L2

(M − 1)L
=

L

M − 1

4

TADA! This is an interesting expression. As the number of chips L goes up, we
get better SNR. The number L is called the “processing gain” for this reason. We
also notice that for a fixed number of chips, this expression tells us how many
users we can tolerate before exceeding some SNR threshold.

For instance, suppose you can tolerate a bit error rate of 10−2. How big an SNR
do you need? Well, we can look up values for the Gaussian CDF (which is often
written in terms of the error function which I find confusing) and we see that the
signal amplitude needs to be about 2.3 times less than the noise standard deviation.
That means that the SNR needs to be 2.32 = 5.29. So, for a CDMA system with
L = 128 chips (standard) you can in principle support M − 1 = 128/5.23 ≈ 24,
which means M = 25 users at a BER of 0.01.

Now, there are all sorts of other things I could regale you with. You’ll notice
that chips are SHARP (unit steps) which means they have ROTTEN spectral char-
acteristics if you’re trying to conserve bandwidth. So what’s often done is to use
things like raised cosine pulses instead of square pulses and all that other usual
stuff that’s done to decrease bandwidth.

There’s also a kinda hidden (but now to be revealed!) cuteness about CDMA
(this is called direct sequence CDMA because we assume that each bit stream
is modulated with random chips (i.e., user codewords change from bit to bit).
Because we use correlator receivers and because radio channels have echoes, you
can imagine that time-shifted versions of the signal arrive at the receiver (faint
echoes). Well, what if you delayed the signal into your receiver by a few chip-
durations. Your receiver (ideally) would ignore the direct path signal and pick
up only the echo! If there are multiple echoes, you could pick out each echo
path because the codewords when shifted are UNCORRELATED WITH EACH
OTHER because the chips themselves are independent!!!

Now, suppose you had a really cool receiver that could do multiple correlations
at once. For a given user, you could take the output of these receivers, add them
together and thereby increase your SNR even when the channel is trying its best
to make your life miserable with echoes. This sort of receiver is called a RAKE
receiver (for reasons that are simple to explain with a picture of the actual device –
piezo-electric-acoustic properties are employed and the device surface looks like
the fingers of a rake).

Now, how to generate the sequence of chips in a simple way. True randomness
is really hard to do. But I’ve already shown you (in class) a simple structure that
generates rather random-looking bit sequences (pseudorandom bitstreams) called
a feedback shift register. You can look up the exact structure on the web – there
are many different configurations and lengths – but the basic ideas is that every

5

transmitter and every receiver can have one of these simple babies on board. The
base station assigns a differnt starting “seed” to each user and since the base knows
the seed, it can generate that user’s chips sequence at the receiver.

It also turns out that the cross correlation properties of sequences can be made
better (truly random sequences have delta function correlation – shift by one chip
and the sequences are uncorrelated) by using “Gold Codes” (named after the in-
ventor).

And that’s about it for our brief treatment of CDMA.

6

