
Memory Management – Thrashing,

Segmentation and Paging

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

2

Summary of Page Eviction Algorithms

 OPT (MIN)

 Random

 FIFO (Use a List to maintain the pages as allocated)

Suffers from belady’s anomaly

 LRU

Using a 32 bit timestamp (Not Efficient)

 LRU Approximations

Counter Implementation

Clock Implementation (Second Chance)

Counter + Clock (Nth Chance)

Rutgers University

3

Physical Memory Map

In Linux,

 44 bytes of state maintained per page

If we have 4GB of RAM with each page being 4KB, we will have 2^20 pages

44*2^20 pages = 44MB of storage

Rutgers University

4

Swap Files

 What happens to the page that we choose to evict?

Depends on what kind of page it is and what state it's in!

 OS maintains one or more swap files or partitions on disk

Special data format for storing pages that have been swapped out

Rutgers University

5

Page Eviction

 How we evict a page depends on its type.

 Code page:

Just chuck it from memory – can recover it from the executable file on disk!

 Unmodified (clean) data page:

If the page has previously been swapped to disk, just chuck it from memory

oAssuming that page's backing store on disk has not been overwritten

If the page has never been swapped to disk, allocate new swap space and write the page

to it (This is just an optimization since swapping the page in is faster from swap space)

Exception: unmodified zero page – no need to write out to swap at all!

 Modified (dirty) data page:

If the page has previously been swapped to disk, write page out to the swap space

If the page has never been swapped to disk, allocate new swap space and write the page

to it

Rutgers University

6

Physical Frame Allocation

 How do we allocate physical memory across multiple processes?

When we evict a page, which process should we evict it from?

How do we ensure fairness?

How do we avoid one process hogging the entire memory of the system?

 Fixed-space algorithms

Per-process limit on the physical memory usage of each process

When a process reaches its limit, it evicts pages from itself

 Variable-space algorithms

Physical size of processes can grow and shrink over time

Allow processes to evict pages from other processes

 One process paging can impact performance of entire system!

One process that does a lot of paging will induce more disk I/O

Rutgers University

7

Thrashing

 As system becomes more loaded, spends more of its time paging

Eventually, no useful work gets done!

 System is overcommitted!

If the system has too little memory, the page replacement algorithm doesn't matter

 Solutions?

Change scheduling priorities to “slow down” processes that are thrashing

Identify process that are hogging the system and kill them?

8

Reasons for Thrashing

 Process doesn’t reuse memory, so caching doesn’t work

(past != future)

 Process does reuse memory, but it does not “fit”

 Individually, all processes fit and reuse memory, but too many for

system

This could be solved !

Rutgers University

9

Dealing with Thrashing

 Approach 1: Working set

How much memory does the process need in order to make reasonable

progress (its working set)?

Only run processes whose memory requirements can be satisfied

 Approach 2: Page Fault Frequency

PFF = page faults / instructions executed

If PFF rises above threshold, process needs more memory

oNot enough memory on the system? Swap out.

If PFF sinks below threshold, memory can be taken away

Rutgers University

10

Working Set

 A process's working set is the set of pages that it currently “needs”

 Definition:

WS(P, t, w) = the set of pages that process P accessed in the time interval [t-w, t]

“w” is usually counted in terms of number of page references

oA page is in WS if it was referenced in the last w page references

 Working set changes over the lifetime of the process

Periods of high locality exhibit smaller working set

Periods of low locality exhibit larger working set

 Basic idea: Give process enough memory for its working set

If WS is larger than physical memory allocated to process, it will tend to swap

If WS is smaller than memory allocated to process, it's wasteful

This amount of memory grows and shrinks over time

Rutgers University

11

Estimating the Working Set

 How do we determine the working set of a process?

 Simple approach

Approximate with interval timer + a reference bit

Example: t = 10,000 instructions

Interrupts after every 5000 instructions.

Keep in memory 2 bits for each page.

Whenever a timer interrupts, shift the bits to right and copy the reference bit

value onto the high order bit and sets the values of all reference bits to 0.

If one of the bits in memory = 1 page in working set.

Why is this not completely accurate?

oNot sure when exactly in the last 5000 time units was this page accessed

Improvement = 10 bits and interrupt every 1000 instructions.

Rutgers University

12

Working Set

 Now that we know the working set, how do we allocate memory?

If working sets for all processes fit in physical memory, done!

Otherwise, reduce memory allocation of larger processes

oIdea: Big processes will swap anyway, so let the small jobs run.

Very similar to shortest-job-first scheduling: give smaller processes better

chance of fitting in memory

 How do we decide the working set limit T?

If T is too large, very few processes will fit in memory

If T is too small, system will spend more time swapping

Rutgers University

13

Page-Fault Frequency Scheme

 Page Fault Rate = (#Page Faults)/No of Executed Instructions

 Establish “acceptable” page-fault rate

If actual rate too low, process loses frame

If actual rate too high, process gains frame (or is swapped out)

14

Variable Partitions – Remember ?

 Allow variable sized partitions

Now requires both and base and a limit register

 Problem with segmentation: external fragmentation

Holes left in physical memory when segments are destroyed

Rutgers University

15
Rutgers University

Segmentation

Memory-management scheme that supports user view of memory.

A program is a collection of segments. A segment is a logical unit

such as:

main program,

functions

local variables, global variables,

common block,

stack,

heap

symbol table, arrays

16
Rutgers University

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

17

Why use segments?

 Segments cleanly separate different areas of memory

e.g., Code, data, heap, stack, shared memory regions, etc.

Use different segment registers to refer to each portion of the address space

 Allows hardware to enforce protection on a segment as a whole

e.g., Segment descriptor can mark the entire code segment as read only

 Note that using page tables can accomplish the same result...

But requires the OS to carefully maintain page table entries for entire

“segments”

Rutgers University

18

Combined Segmentation and Paging

 A segment is a contiguous span of virtual addresses

... rather than physical addresses, as on the previous slide

Described by a segment descriptor

Segment descr has total segment size, access rights, base virtual address

 Each segment can have a corresponding page table!

Segment broken into pages internally

Can use either one- or two-level paging on each segment

 Virtual address now looks like:

Segment number may be part of the address, or stored in a separate register

Value of current segment register used to determine which segment to access

Rutgers University

19

Virtual address space with segments

Rutgers University

20

Intel X86 Segments

 Multiple segment registers

CS: Code Segment

DS: Data Segment

SS: Stack Segment

Also ES, FS, and GS ... “other” segments

 Each instruction uses one of these segment registers

For example, instruction fetch implicitly uses segment pointed to by CS

Push/pop instructions implicitly use segment pointed to by SS

 Segment descriptor information:

Virtual base address and size of segment

Segment access rights (read, write, execute)

 All segments share the same linear address space!

This means there is one set of page tables for all segments in a process

Segments can overlap in linear address space, too.

Rutgers University

21

Intel X86 address translation

Rutgers University

Logical/Virtual

address

Linear address

Physical address

22

Do we need Segmentation and Paging ?

 Short answer: You don’t – just adds overhead

Most Operating systems use “flat mode” – set base = 0, bounds = 0xffffffff in

all segment registers, then forget about it

 Linux x86: One segment for user code, another segment for user

data

Both segments cover the same virtual address range! (0 ... 3GB)

Another pair of segments for kernel virtual addresses (3GB ... 4GB)

Rutgers University

23
Rutgers University

Summary

Virtual memory is a way of introducing another level in our memory hierarchy in

order to abstract away the amount of memory actually available on a particular

system

This is incredibly important for “ease-of-programming”

Imagine having to explicitly check for size of physical memory and manage it in each

and every one of your programs

It’s also useful to prevent fragmentation in multi-programming environments

Can be implemented using paging (sometime segmentation or both)

Page fault is expensive so can’t have too many of them

Important to implement good page replacement policy

Have to watch out for thrashing!!

