Memory Management - Demand Paging and
Multi-level Page Tables

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science
Rutgers University

Rutgers Sakal: 01:198:416 Sp11
(https://sakai.rutgers.edu)



Topics for the day

What happens when a page Is not in memory ?

How do we prevent having page tables take up a huge amount of
physical memory themselves ?

N 2 Gayathri Chandrasekaran
Rutgers University



Questions from last week that needs clarification

Question 1: With 20 bits allocated to the number of pages, the
number of page table entries could be : 4bytes * 2?2%pages = 4MB

Is this entire 4MB space allocated contiguously in Physical Memory ?
(My Answer was Yes, But the answer is NO. We will see how it is held today)

Are all processes having 4MB of Page Tables ?

They “could” have, but in practice, they are allocated at the time of process
creation to be “size of code” + fixed size partitions. The number of page tables
entries would be the “Maximum” number of pages allocated to this process.

When there is a page fault, can a process kick out frames belonging
to other process ?

Yes, the OS handles Page replacement. Therefore, it can access the process’s
page tables and mark the entry corresponding to the frame as “invalid”.

N 3 CS416 — Operating Systems
Rutgers University



Page Faults

Page fault!!

Virtual Translation Physical
address mapping address

When a virtual address translation cannot be performed, it’s called a
page fault

o 4 Gayathri Chandrasekaran
Rutgers University



Handling Page Fault

Trap to the OS
Save user Register and Process State

Check whether the page reference was legal and determine the
location of the page on memory

Issue a read from disk to a free frame
Block for the disk operation to be complete

On receiving “Interrupt” for disk transfer completion, save other
process state

Serve the interrupt from the disk and Fix the page table entry
Walit for the CPU to be allocated to this process again

Restore state and continue execution

. S CS416 — Operating Systems
Rutgers University



Page Faults

V|iM|R prot page frame number

Valid Bit indicates whether a page translation is valid

If Valid bit is set to O, then a page fault will occur

Protection Bits tells whether a page is readable, writeable, executable
Page fault occurs when we attempt to write a read-only page

This is sometimes called ““Protection Fault”

N 6 CS416 — Operating Systems
Rutgers University



Demand Paging

Does it make sense to read an entire program into memory at once
No! Remember we talked about an example where some code never executes

For example, 1f you never use the “Save as PDF” function 1n office

Virtual address space Physical Memory
(Reserved for OS)
What are these holes |
In the virtual address
space mean ? v

. 7 CS416 — Operating Systems
Rutgers University



What are these holes ?

Three kinds of holes 1n a process’s page tables:

Pages that are on disk
Swapped out to disk due to lack of space in Physical Memory
When a page fault occurs, load the corresponding page from the disk
Pages that have not been accessed yet
For Example, newly allocated memory
When a page fault occurs, allocate a new physical page
Pages that are invalid
For example, the NULL POINTER always points to page at address 0x0

When a NULL address is accessed, we get segmentation fault !

Trying to access 0x0 creates page fault, and the OS kills the offending process

N 8 CS416 — Operating Systems
Rutgers University



Starting up a process

What does a process address space looks like when it starts ?

Stack
i—lia_l;-;—__________: Unmapped pages
UninifiatiZed yetfs

rdlized vars

N 9 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

Reference next instruction

N 10 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

Page fault!!!

. 11 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

OS reads missing page
from executable file on

disk

6

N 12 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

OS adds page to process'’s
page table

N 13 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

| Process resumes at the next instruction

. 14 CS416 — Operating Systems
Rutgers University



Starting up a process

What does the process’s address space look like when 1t first starts up

E—

= Over time, more pages are
brought in from the executable as needed
I

. 15 CS416 — Operating Systems
Rutgers University



Uninitialized Variables and the heap

Page faults bring in pages from the executable file for:
Code (text segment) pages, Initialized variables
What about Un-initialized variables and the heap ?
Say I have a global variable “int ¢” in the program ..What happens
when the process first accesses it ?

Page fault occurs
OS looks at the page and realizes that it corresponds to a Zero Page

Allocates a new frame in the main memory and sets all bytes to ZERO

Maps the frame into the address space

What about the heap ?
malloc() just maps new zero pages into the address space

Brings in new empty pages into the frame only when page fault occurs

N 16 CS416 — Operating Systems
Rutgers University



More Demand Paging Tricks

Paging can be used by processes to share memory

A significant portion of many process’s address space 1s identical

Shell #1 Physical Memory
(Reserved for OS)
v Shell #2
A
Heap (Reszerved for O5)
Uninitialized vars Same pPag E‘
Stack table mapping!
Initialized vars Y
A = Code for zhell
Code
Heap

Uninitialized vars

Initialized vars

Code

. 17 CS416 — Operating Systems
Rutgers University



More Demand Paging Tricks

This can be used to let different processes share memory
UNIX supports shared memory through the shmget/shmat/shmdt system calls
Allocates a region of memory that is shared across multiple processes

Some of the benefits of multiple threads per process, but the rest of the processes
address space is protected

Why not just use multiple processes with shared memory regions?
Memory-mapped files
Idea: Make a file on disk look like a block of memory
Works just like faulting in pages from executable files
In fact, many OS's use the same code for both

One wrinkle: Writes to the memory region must be reflected in the file
How does this work?

When writing to the page, mark the “modified” bit in the PTE

When page is removed from memory, write back to original file

N 18 CS416 — Operating Systems
Rutgers University



Remember fork()

fork() creates an exact copy of a process
What does this imply about page tables?

When we fork a new process, does it make sense to make a copy of
all of its memory?

Why or why not?

What if the child process doesn't end up touching most of the
memory the parent was using?

What happens if a process does an exec() immediately after fork()?

N 19 CS416 — Operating Systems
Rutgers University



Copy on Write

Share the pages among parent and child, but don’t let the child

write to any pages directly

Parents forks a child, Child gets a copy of the parent’s page tables.

Parent

(Reserved for OS)

Stack

\j
A

Heap M

Parent's
page tbl

Uninitialized vars

Initialized vars

Code

Rutgers University

> g

AN

Child

Child's
page tbl

(Reserved for OS)

Stack

\J
A

——]

Heap H

/

Uninitialized vars

Initialized vars

Code

20

CS416 — Operating Systems




Copy on Write

All Pages (both parent and child) marked read-only

Why ?
Parent Child
Parent's Child's
- Lo - o
(Rezerved for OS) page th/ page thl (Rezerved for OS)
Stack RO) RO Stack
Y RQ RQ Y
A RO RO A
Heap B ——> IO N e—— e W
o RO\ R o
Uninitialized vars RO N\ do Uninitialized vars
Initialized vars Initialized vars
Code Code

N 21 CS416 — Operating Systems
Rutgers University



Copy on Write

What happens when the child “writes” the pages

Protection fault occurs

OS copies the page and maps it R/W 1into child’s address space

Rutgers Un

Parent
Parent's
- =
(Reserved for O5) page tbl
Stack RO)
 J EO)
A RO
Heap H _>-%clh
R
Uninitialized vars RO\
Initialized vars
Code Copy page

Child
E:gg ib,f (Reserved for OS)
RO Stack
BR(O) Y
RO A
Heap l

%@%

Uninitialized vars

Initialized vars

Code

1g Systems



Page Tables

virtual address
virtual page #| offset
| physical memory

page

page table frame 0
page

frame 1

— |page frame #—— |page frame #| offset — frgﬁng: 2

page
frame 3

physical address !

Page table entry

page
frame Y

Recall that page tables for every process could be as large as 4MB

N 23 CS416 — Operating Systems
Rutgers University



Multi-Level Page Tables

Can’t hold all of the page tables in memory
Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

virtual address

primary page #|secondary page #| offset

| physical memory

Primary page page
table (1) Secondary page frame 0
tables (N) page

| ' frame 1

| | | Physical address ¢ .
- page table#-—.__* | M. |Page frame #| offset |— frgn'?ez

HuR page
— frame 3

myiy page

— page frame #- frame Y

N 24 CS416 — Operating Systems
Rutgers University



Multi-Level Page Tables

Can’t hold all of the page tables in memory
Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

virtual address

primary page #|secondary page # offset

Secondary page

Primary page tables (N)

table (1)

/. On disk
=+ page table #
. On disk

N 25 CS416 — Operating Systems
Rutgers University



Multi-Level Page Tables

Can’t hold all of the page tables in memory

Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University

virtual address

primary page #|secondary page # offset
Secondary page
Primary page tables (N)
table (1)

—» page table #

. On disk

26

CS416 — Operating Systems



Multi-Level Page Tables

Can’t hold all of the page tables in memory

Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

virtual address

primary page #|secondary page # offset

Primary page
table (1)

= page table #

Rutgers University

d

physical memory

Secondary pagé
tables (N)

. On disk

I —

27

physical address

page
frame 0

page
frame 1

page frame #

page

offset |— e

page
frame 3

page
frame Y

CS416 — Operating Systems



Multilevel page tables

With two levels of page tables, how big is each table?
Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to the page offset
Primary page table is then 2710 * 4 bytes per PTE == 4 KB
Secondary page table is also 4 KB
Hey ... that's exactly the size of a page on most systems ... cool
What happens on a page fault?
MMU looks up index in primary page table to get secondary page table

Assume this is “wired” to physical memory
MMU tries to access secondary page table
May result in another page fault to load the secondary table!

MMU looks up index in secondary page table to get PFN
CPU can then access physical memory address

Issues
Page translation has very high overhead
Up to three memory accesses plus two disk 1/Os!!

TLB usage is clearly very important.

N 28 CS416 — Operating Systems
Rutgers University



Multilevel Paging and Performance

Since each level is stored as a separate table in memory, covering a
logical address to a physical one may take three memory accesses.

CPU Generates an address

Use the first 10 bits to read a memory location (outer page table) — first access
Use the first page table to locate the frame for second page table — Second access
Get the (frame number + offset) and read the actual memory location. — Third access

Average page fault service time = 8ms
Average memory access time = 200ns
Let the probability of page fault be ‘p’

Effective Access time per memory access : (1-p)*200ns + p*8ms

N 29 CS 416: Operating Systems
Rutgers University



Where does caching fit here ?

After the Physical Address is Identified, the CPU first check the
Cache to see if the entire block is already in cache !

If yes, accesses are much faster

If not, the block is transferred to the cache.

HS/ AN
[ = ooE
///////% Cache

7

30 CS416 — Operating Systems

Rutgers University



Inverted Page Table

One entry for each real frame of memory.

Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that

page.

Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

N 31 CS 416: Operating Systems
Rutgers University



Inverted Page Table Architecture

logical .

address v physical
oid | p q : " address
search l } :

9
o
©

page table

N 32 CS 416: Operating Systems
Rutgers University



Next Lecture

Page Replacement Algorithms !

N 33 CS416 — Operating Systems
Rutgers University



