
Memory Management - Demand Paging and

Multi-level Page Tables

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

2

Topics for the day

 What happens when a page is not in memory ?

 How do we prevent having page tables take up a huge amount of

physical memory themselves ?

Rutgers University
Gayathri Chandrasekaran

3

Questions from last week that needs clarification

 Question 1: With 20 bits allocated to the number of pages, the

number of page table entries could be : 4bytes * 220pages = 4MB

Is this entire 4MB space allocated contiguously in Physical Memory ?

(My Answer was Yes, But the answer is NO. We will see how it is held today)

 Are all processes having 4MB of Page Tables ?

They “could” have, but in practice, they are allocated at the time of process

creation to be “size of code” + fixed size partitions. The number of page tables

entries would be the “Maximum” number of pages allocated to this process.

 When there is a page fault, can a process kick out frames belonging

to other process ?

Yes, the OS handles Page replacement. Therefore, it can access the process‟s

page tables and mark the entry corresponding to the frame as “invalid”.

Rutgers University
CS416 – Operating Systems

4

Page Faults

 When a virtual address translation cannot be performed, it‟s called a

page fault

Rutgers University
Gayathri Chandrasekaran

5

Handling Page Fault

 Trap to the OS

 Save user Register and Process State

 Check whether the page reference was legal and determine the

location of the page on memory

 Issue a read from disk to a free frame

 Block for the disk operation to be complete

 On receiving “Interrupt” for disk transfer completion, save other

process state

 Serve the interrupt from the disk and Fix the page table entry

 Wait for the CPU to be allocated to this process again

 Restore state and continue execution

Rutgers University
CS416 – Operating Systems

6

Page Faults

 Valid Bit indicates whether a page translation is valid

If Valid bit is set to 0, then a page fault will occur

 Protection Bits tells whether a page is readable, writeable, executable

Page fault occurs when we attempt to write a read-only page

This is sometimes called “Protection Fault”

Rutgers University
CS416 – Operating Systems

7

Demand Paging

 Does it make sense to read an entire program into memory at once

No! Remember we talked about an example where some code never executes

For example, if you never use the “Save as PDF” function in office

Rutgers University
CS416 – Operating Systems

What are these holes

in the virtual address

space mean ?

8

What are these holes ?

Three kinds of holes in a process‟s page tables:

 Pages that are on disk

Swapped out to disk due to lack of space in Physical Memory

oWhen a page fault occurs, load the corresponding page from the disk

 Pages that have not been accessed yet

For Example, newly allocated memory

oWhen a page fault occurs, allocate a new physical page

 Pages that are invalid

For example, the NULL POINTER always points to page at address 0x0

oWhen a NULL address is accessed, we get segmentation fault !

oTrying to access 0x0 creates page fault, and the OS kills the offending process

Rutgers University
CS416 – Operating Systems

9

Starting up a process

 What does a process address space looks like when it starts ?

Rutgers University
CS416 – Operating Systems

10

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

11

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

12

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

13

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

14

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

15

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

16

Uninitialized Variables and the heap

 Page faults bring in pages from the executable file for:

Code (text segment) pages, Initialized variables

 What about Un-initialized variables and the heap ?

 Say I have a global variable “int c” in the program ..What happens

when the process first accesses it ?

Page fault occurs

OS looks at the page and realizes that it corresponds to a Zero Page

Allocates a new frame in the main memory and sets all bytes to ZERO

Maps the frame into the address space

 What about the heap ?

malloc() just maps new zero pages into the address space

Brings in new empty pages into the frame only when page fault occurs

Rutgers University
CS416 – Operating Systems

17

More Demand Paging Tricks

 Paging can be used by processes to share memory

A significant portion of many process‟s address space is identical

Rutgers University
CS416 – Operating Systems

18

More Demand Paging Tricks

 This can be used to let different processes share memory

UNIX supports shared memory through the shmget/shmat/shmdt system calls

Allocates a region of memory that is shared across multiple processes

Some of the benefits of multiple threads per process, but the rest of the processes

address space is protected

oWhy not just use multiple processes with shared memory regions?

 Memory-mapped files

Idea: Make a file on disk look like a block of memory

Works just like faulting in pages from executable files

 In fact, many OS's use the same code for both

 One wrinkle: Writes to the memory region must be reflected in the file

 How does this work?

oWhen writing to the page, mark the “modified” bit in the PTE

oWhen page is removed from memory, write back to original file

Rutgers University
CS416 – Operating Systems

19

Remember fork()

 fork() creates an exact copy of a process

What does this imply about page tables?

 When we fork a new process, does it make sense to make a copy of

all of its memory?

Why or why not?

 What if the child process doesn't end up touching most of the

memory the parent was using?

What happens if a process does an exec() immediately after fork()?

Rutgers University
CS416 – Operating Systems

20

Copy on Write

 Share the pages among parent and child, but don‟t let the child

write to any pages directly

Parents forks a child, Child gets a copy of the parent‟s page tables.

Rutgers University
CS416 – Operating Systems

21

Copy on Write

 All Pages (both parent and child) marked read-only

Why ?

Rutgers University
CS416 – Operating Systems

22

Copy on Write

 What happens when the child “writes” the pages

Protection fault occurs

OS copies the page and maps it R/W into child‟s address space

Rutgers University
CS416 – Operating Systems

23

Page Tables

 Recall that page tables for every process could be as large as 4MB

Rutgers University
CS416 – Operating Systems

24

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

25

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

26

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

27

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

28

Multilevel page tables

 With two levels of page tables, how big is each table?

Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to the page offset

Primary page table is then 2^10 * 4 bytes per PTE == 4 KB

Secondary page table is also 4 KB

oHey ... that's exactly the size of a page on most systems ... cool

 What happens on a page fault?

MMU looks up index in primary page table to get secondary page table

oAssume this is “wired” to physical memory

MMU tries to access secondary page table

oMay result in another page fault to load the secondary table!

MMU looks up index in secondary page table to get PFN

CPU can then access physical memory address

 Issues

Page translation has very high overhead

oUp to three memory accesses plus two disk I/Os!!

TLB usage is clearly very important.

Rutgers University
CS416 – Operating Systems

29
Rutgers University

CS 416: Operating Systems

Multilevel Paging and Performance

Since each level is stored as a separate table in memory, covering a

logical address to a physical one may take three memory accesses.

CPU Generates an address

Use the first 10 bits to read a memory location (outer page table) – first access

Use the first page table to locate the frame for second page table – Second access

Get the (frame number + offset) and read the actual memory location. – Third access

Average page fault service time = 8ms

Average memory access time = 200ns

Let the probability of page fault be „p‟

Effective Access time per memory access : (1-p)*200ns + p*8ms

30

Where does caching fit here ?

 After the Physical Address is Identified, the CPU first check the

Cache to see if the entire block is already in cache !

 If yes, accesses are much faster

 If not, the block is transferred to the cache.

Rutgers University
CS416 – Operating Systems

A

B

C

0

1

2

3

B

C

Memory Disk

Cache

A

Virtual Memory

31
Rutgers University

CS 416: Operating Systems

Inverted Page Table

One entry for each real frame of memory.

Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns that

page.

Decreases memory needed to store each page table, but increases

time needed to search the table when a page reference occurs.

32
Rutgers University

CS 416: Operating Systems

Inverted Page Table Architecture

33

Next Lecture

 Page Replacement Algorithms !

Rutgers University
CS416 – Operating Systems

