
Memory Management

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

2

Memory Management

 Goals of Memory Management

Convenient abstraction for programming

Provide isolation for different processes

Allocate scarce physical memory to different processes

Mechanism

Virtual Address Translation

Paging and TLB

Page Table Management

 Policies

Page replacement policies

Rutgers University CS 416: Operating Systems

3

Address Binding

 Address binding of instructions and data to memory addresses

can happen at three different stages

Compile time: If memory location known a priori, absolute code can

be generated; must recompile code if starting location changes

Load time: Must generate relocatable code if memory location is not

known at compile time

Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another. Need

hardware support for address maps (e.g., base and limit registers)

Rutgers University CS 416: Operating Systems

4

Compile time address binding

 If the location where the program

would be loaded is known at

compile time, the compiler

generates a code with actual

physical address.

What are the advantages and

disadvantages ?

Rutgers University CS 416: Operating Systems

5

Load time address binding

 If the address where the program

would be loaded is NOT known

at compile time, Compiler

generates a Relocatable address

(e.g., 14 bytes from the

beginning of this module)

 At load time, the relative

addresses are converted to

physical addresses depending on

where it is loaded.

Rutgers University CS 416: Operating Systems

6

Execution time address binding

 Load code at any physical address

 Physically move the code after loading

Requires special hardware support (MMU)

Rutgers University CS 416: Operating Systems

7

Virtual Memory

 The basic abstraction provided by the OS for memory management

 VM enables programs to run without requiring their entire address

space to be resident in physical memory

 Observation: Many programs don’t use all of their code or data

e.g., branches may never be taken or variables not accessed

Therefore, no need to allocate memory for it until its used

OS should adjust amount of Physical memory allocated based on the

program’s run-time behavior.

Rutgers University CS 416: Operating Systems

8

Virtual Memory

 VM also isolates processes from each other

One process cannot access the memory addresses in other processes

Each process has its own address space

 VM requires both hardware and OS support

Hardware Support: Memory Management Unit (MMU) and

Translation Look-aside Buffer(TLB)

OS support: virtual memory system to control the MMU and TLB

Rutgers University CS 416: Operating Systems

9

Memory Management Requirements

 Protection

Restricts which addresses processes can use so that they don’t overlap

 Fast Translation

Accessing a memory should be fast regardless of the protection scheme

(It would be a bad idea to call into the OS for every memory access)

 Fast Context Switch

Overhead of updating the memory hardware on a context switch should be low

(For ex, it would be a bad idea to write back all of the process’s memory out to

the disk on every context switch)

Rutgers University CS 416: Operating Systems

10

Virtual Addresses

 A virtual address is a memory address that a process uses to access its own memory

The virtual address is not the same as the physical RAM address in which it is stored

When a process accesses a virtual address, the MMU hardware translates the virtual address into

a physical address

The OS determines the mapping from virtual address to physical address

Rutgers University CS 416: Operating Systems

11

Virtual Addresses

Rutgers University CS 416: Operating Systems

12

Virtual Addresses

 A virtual address is a memory address that a process uses to access its own memory

The virtual address is not the same as the physical RAM address in which it is stored

When a process accesses a virtual address, the MMU hardware translates the virtual

address into a physical address

The OS determines the mapping from virtual address to physical address

 Virtual Addresses allow isolation

Virtual addresses in one process refer to different physical memory than virtual addresses

in another

Exception: shared memory regions.

 Virtual addresses allow relocation

A program does not need to know which physical addresses it will use when it is run

This however is a bad idea !! Why ?

Compilers generate relocatable code: Code that is independent of physical location in

memory

Rutgers University CS 416: Operating Systems

13

MMU and TLB

 Memory Management Unit (MMU)

Hardware that translates a virtual address to a physical address

Each memory reference is passed through the MMU

Translate a virtual address to a physical address – Lots of way to do this

 Translation Lookaside Buffer (TLB)

Cache for MMU virtual-to-physical address translations

Just an optimization – but an important one!

Rutgers University CS 416: Operating Systems

14

Simple Approach : Fixed Partitions

 Break Memory into FIXED partitions.

Each Partition contains exactly one process

Hardware requirement: base register

 Translation from virtual to physical address: Simply add base

resister to virtual address.

Rutgers University CS 416: Operating Systems

What are the

advantages and

disadvantages of

this approach ?

15

Simple Approach : Fixed Partitions

 Advantages:

Fast Context Switch – Only need to update the base register

Simple memory management code: Locate empty partition when

running new process

 Disadvantages

Internal Fragmentation

If the entire partition is not consumed, there is a wastage

Static partition sizes

No single size is appropriate for all programs

Rutgers University CS 416: Operating Systems

16

Variable Partitions

 Allow variable sized partitions

Now requires both and base and a limit register

Solves the internal fragmentation problem: The partitions size is based on process needs

 New Problem: External Fragmentation

Rutgers University CS 416: Operating Systems

17

Modern Technique: Paging

 Solve external fragmentation by fixed size chunks of virtual and physical memory

Virtual memory unit is called a Page

Physical memory unit is called a frame (or a page frame)

Rutgers University CS 416: Operating Systems

18

Application Perspective

Application believes it has a single contiguous address space ranging from 0 to 2p – 1

bytes

Where p is the number of number of bits in the pointer (e.g 32 bits)

In reality, virtual pages are scattered across physical memory

Rutgers University CS 416: Operating Systems

19

Virtual Address Translation

 Virtual to Physical address translation performed by MMU

Virtual address is broken into two parts: virtual page number and offset

The mapping between the Page to Frame is maintained by Page Table

Rutgers University CS 416: Operating Systems

20

Page Table Entries (PTEs)

 Typical PTE format (depends on CPU architecture)

 Various bits accessed by MMU on each page access:

Valid bit (V): whether the corresponding page is in memory

Modify bit (M): Indicates whether a page is “dirty” (Modified)

Reference bit (R): Indicates whether a page has been accessed (read/write)

Useful for page replacement algorithms.

Protection bits: Specify if page is readable, writable or executable

Page frame number: Physical location of page in RAM

Rutgers University CS 416: Operating Systems

21

Advantages of Paging

 Simplifies physical memory management

OS maintains a list of free physical page frames

To allocate a physical page, just remove an entry from this list

 No External fragmentation

No need to allocate pages contiguously

Therefore, pages from diff. processes can be interspersed.

 Allocation of memory can be performed at a fine granularity

Only allocate physical memory to those parts of the address space that

requires it

Can swap out unused pages out of memory when low on memory

Rutgers University CS 416: Operating Systems

22

Page Tables

 Page Tables stores the virtual-to-physical address mappings

 Where is the page table located ? In Memory

 How does the MMU access them ?

The MMU has a special register called the page table base pointer

This points to the physical memory address of the top of the page table for this currently

running process.

Rutgers University CS 416: Operating Systems

23

The TLB

 Now, we have introduced a high overhead for address translation

On every memory access, must have a separate access to consult the page table

 Solution: Translation Lookaside Buffer (TLB)

Very fast cache directly on the CPU

Caches most recent virtual to physical address translations

Implemented as fully associative cache

A TLB miss requires that the MMU actually try to do the address translation

Rutgers University CS 416: Operating Systems

24

Page Table Size

How big are the page tables per process ?

We need one page table entry per page

Lets say, we have a 32 bit address and a 4KB page size

How many pages do we have ? (Virtual Address space)

2^32 == 4GB / 4KB per page = 1,048,576 (i.e 1M Pages)

How big is each page table entry?

Depends on the CPU architecture. On x86, it’s 4 bytes

So, the total page table size is : 1M pages * 4 bytes/PTE == 4Mbytes

If we have 100 processes, then 400MBytes of Page Tables needs to be

kept.

How do we deal with this ? – Next lecture !
Rutgers University CS 416: Operating Systems

25

Memory Management Requirements - Revisted

 Protection

Process can only refer to its own virtual addresses.

O/S responsible for ensuring that each process uses disjoint physical

pages

 Fast Translation

MMU (on the CPU) translates each virtual address to a physical address.

TLB caches recent virtual->physical translations

 Fast Context Switch

Only need to swap pointer to current page tables when context switching!

Rutgers University CS 416: Operating Systems

