
Synchronization – Monitors and CV

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

2

Java Condition Variables

Wait(Lock lock)

•Release the lock

•Put thread object on wait queue of this CondVar object

•Yield the CPU to another thread

•When waken by the system, reacquire the lock and return

Notify()

•If at least 1 thread is sleeping on cond_var, wake 1 up. Otherwise, no effect

•Waking up a thread means changing its state to Ready and moving the thread

object to the run queue

NotifyAll()

•If 1 or more threads are sleeping on cond_var, wakeup everyone

Rutgers University CS 416: Operating Systems

3

Implementing Wait and Notify

Rutgers University CS 416: Operating Systems

Wait(lock){

schedLock->acquire();

lock->numWaiting++;

lockrelease();

Put TCB on the waiting queue for the CV;

schedLock->release()

switch();

lockacquire(); -> The lock has to be re-acquired

}

Notify(lock){

schedLock->acquire();

if (lock->numWaiting > 0) {

Move a TCB from waiting queue to ready queue;

lock->numWaiting--;

}

schedLock->release();

}

Why do we need
schedLock?

4

Re-Writing Producer/Consumer with CV

Rutgers University CS 416: Operating Systems

Class MyBuffer{

Buffer[BUFFER_SIZE]

Lock lock;

int count = 0;

Condition notFull, notEmpty;

}

put(){

lockacquire();

while (count == n) {

notFull.wait(&lock); }

Add items to buffer;

count++;

notEmpty.notify();

lockrelease();

}

get(){

lockacquire();

while (count == 0) {

notEmpty.wait(&lock); }

Remove items from buffer

count--;

notFull.notify();

lockrelease();

}

Functions defined within the class

Checking a CV should

always be done inside a lock

Why ?

5

Monitors

This style of using locks and CVs to protect access to a shared object

is called a monitor

•Monitor is like a lock protecting an object, its methods and the associated

condition variables

Rutgers University CS 416: Operating Systems

6

Monitors

Rutgers University CS 416: Operating Systems

7

Monitors

Rutgers University CS 416: Operating Systems

8

Monitors

Rutgers University CS 416: Operating Systems

9

Monitors

Rutgers University CS 416: Operating Systems

10

Monitors

Rutgers University CS 416: Operating Systems

11

Monitors

Rutgers University CS 416: Operating Systems

12

Condition Vars != Semaphores

 Condition Variables != Semaphores

Although their operations have the same names, they have entirely

different semantics.

However, they each can be used to implement the other. How ?

 Access to the monitor is controlled by a lock

wait() blocks the calling thread, and gives up the lock

To call wait, the thread has to be in the monitor (hence has lock)

Semaphore::wait just blocks the thread on the queue

signal() causes a waiting thread to wake up

» If there is no waiting thread, the signal is lost

» Semaphore::signal increases the semaphore count, allowing future

entry even if no thread is waiting

» Condition variables have no history

Rutgers University CS 416: Operating Systems

13

Monitors: Syntax

Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

Rutgers University CS 416: Operating Systems

14Rutgers University CS 416: Operating Systems

Dining-Philosophers Problem

 Shared data

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1

15

Dining-Philosophers Problem

The structure of Philosopher i:

Rutgers University CS 416: Operating Systems

do {

get_fork(chopstick[i]);

get_fork(chopStick[(i + 1) % 5]);

// eat

put_fork(chopstick[i]);

put_fork(chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with the above code ?

- What schemes can you use to avoid the above problem ?

16

Solution to Dining Philosopher’s Problem using

Semaphores

Rutgers University CS 416: Operating Systems

#define N 5 /* Number of philosphers */

#define LEFT(i) ((i+1) %N)

#define RIGHT(i) (i+N-1 % N)

enum {THINKING,HUNGRY,EATING} phil_state;

phil_state state[N];

semaphore mutex =1;

semaphore s[N];

/* one per philosopher, all 0 */

/*Testing the state adjacent Phil */

void test(int i) {

if (state[i] == HUNGRY &&

state[LEFT(i)] != EATING &&

state[RIGHT(i)] != EATING)

{

state[i] = EATING;

V(s[i]);

}

}

void get_forks(int i) {

P(mutex);

state[i] = HUNGRY;

test(i);

V(mutex);

P(s[i]);

}

void put_forks(int i) {

P(mutex);

state[i]= THINKING;

test(LEFT(i));

test(RIGHT(i));

V(mutex);

}

void philosopher(int process) {

while(1) {

think();

get_forks(process);

eat();

put_forks(process);

}

}

We are explicitly preventing

multiple processes from entering the

functions using mutex

17

Solution to Dining Philosopher’s problem using

Monitors and CV

Rutgers University CS 416: Operating Systems

Monitor DP{

enum {THINKING,HUNGRY,EATING} phil_state;

Condition s[N]

void test(int i) {

if (state[i] == HUNGRY &&

state[LEFT(i)] != EATING &&

state[RIGHT(i)] != EATING)

{

state[i] = EATING;

s[i].signal;

}

}

void get_forks(int i) {

state[i] = HUNGRY;

test(i);

If(state[i] !=EATING)

s[i].wait();

}

void put_forks(int i) {

state[i]= THINKING;

test(LEFT(i));

test(RIGHT(i));

}

}

void philosopher(int process) {

while(1) {

think();

get_forks(process);

eat();

put_forks(process);

}

}

Only one process can be active

inside Monitor

Therefore, we do not need to

explicitly add mutex around

Critical Sections

18

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is

waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by

the process holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting

for a resource that is held by Pn, and Pn is waiting for a resource

that is held by P0.

19

Resource Allocation Graph

A set of vertices V and a set of edges E

 V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

 request edge – directed edge Pi  Rj

 assignment edge – directed edge Rj  Pi

Rutgers University CS 416: Operating Systems

20

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Request Edge: Pi requests

instance of Rj

 Assignment Edge: Pi is holding

an instance of Rj

Pi

Pi

Rj

Rj

21

Example of a Resource Allocation Graph

22

Resource Allocation Graph With A Deadlock

23

Graph With A Cycle But No Deadlock

24

Basic Fact

 If graph contains no cycles  no deadlock

 If graph contains a cycle 

if only one instance per resource type, then deadlock

if several instances per resource type, possibility of deadlock

Rutgers University CS 416: Operating Systems

25

Reactions to Deadlock

An OS can react to deadlock in one of the 4 ways

1. Ignore it : General purpose OS like UNIX does this !

2. Detect and Recover from it : Once in a while, check if the system is in

deadlock state

3. Avoid it (Invest effort at runtime to avoid deadlock): Whenever

resources are requested, verify if that would lead to deadlock

4. Prevent it (Disallow one of the 4 conditions for deadlock)

Rutgers University CS 416: Operating Systems

26

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must

hold for non-sharable resources. What’s the point ?

 Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources

Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the

process has none

Low resource utilization; starvation possible

1.

Restrain the ways request can be made

27

Deadlock Prevention (Cont.)

 No Preemption –

If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being

held are released

Preempted resources are added to the list of resources for which the

process is waiting

Process will be restarted only when it can regain its old resources, as well

as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types,

and require that each process requests resources in an

increasing order of enumeration

28

Deadlock Avoidance

 Simplest and most useful model requires that each process

declare the maximum number of resources of each type that it

may need

 The deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that there can never be a

circular-wait condition

 Resource-allocation state is defined by the number of available

and allocated resources, and the maximum demands of the

processes

Requires that the system has some additional a priori

information available

29

Safe State

When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …,

Pn> of ALL the processes is the systems such that for each Pi,

the resources that Pi can still request can be satisfied by

currently available resources + resources held by all the Pj,

with j < I

30

Safe State

That is:

•If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished

•When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate

•When Pi terminates, Pi +1 can obtain its needed resources, and so on

Rutgers University CS 416: Operating Systems

31

Safe, Unsafe, Deadlock State

32

Avoidance algorithms

 Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

 Use the banker’s algorithm

33

Resource-Allocation Graph Scheme

 Claim edge Pi  Rj indicated that process Pj may request resource Rj;

represented by a dashed line

 Claim edge converts to request edge when a process requests a resource

 Request edge converted to an assignment edge when the resource is allocated

to the process

 When a resource is released by a process, assignment edge reconverts to a

claim edge

 Resources must be claimed a priori in the system

34

Resource-Allocation Graph

35

Unsafe State In Resource-Allocation Graph

36

Banker’s Algorithm

 Idea: reject resource allocation requests that might leave the

system in an “unsafe state”.

 A state is safe if the system can allocate resources to each

process (up to its maximum) in some order and still avoid a

deadlock. Note that not all unsafe states are deadlock states.

 Like most bankers, this algorithm is conservative and simply

avoids unsafe states altogether.

37

Banker’s Algorithm

Details:

 A new process must declare its maximum resource

requirements (this number should not exceed the total number

of resources in the system, of course)

When a process requests a set of resources, the system must

check whether the allocation of these resources would leave

the system in an unsafe state

 If so, the process must wait until some other process releases

enough resources

Rutgers University CS 416: Operating Systems

38

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may

request at most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is

currently allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more

instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

39

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

40

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti

Needi = Needi – Requesti

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation
state is restored

41

Banker’s Algorithm (Cont.)

Example: System has 12 tape drives

Processes Maximum needs Current allocation

P0 10 5

P1 4 2

P2 9 2

Is system in a safe state?

What if we allocated another tape drive to P2?

Rutgers University CS 416: Operating Systems

42

Banker’s Algorithm (Cont.)

Example: System has 12 tape drives

Processes Maximum needs Current allocation

P0 10 5

P1 4 2

P2 9 2

 Is system in a safe state? Yes. 3 tape drives are available and

<P1, P0, P2> is a safe sequence.

 What if we allocated another tape drive to P2? No. Only P1 could

be allocated all its required resources. P2 would still require 6

drives and P0 would require 5, but only 4 drives would be available

=> potential for deadlock.

Rutgers University CS 416: Operating Systems

