CS416 — Filesystem (NFS)

NFS

NFS allows a system to access files over a network
* One of many distributed file systems

« Extremely successful and widely used

NFS Challenges

Development of LANs made it really attractive to provide shared file systems to all
machines on a network

* Login to any machine and see the same set of files
* Install software on a single server that all machines can run
* Let users collaborate on shared set of files (before CVS!)

Why might this be hard to do???
» Clients and servers might be running different OS

» Clients and servers might be using different CPU architecture with differing
byte ordering (endianess)

» Client or server might crash independently of each other
*Must be easy to recover from crashes
Potentially very large number of client machines on a network
Different users might be trying to modify a shared file at the same time
*Transparency: Allow user programs to access remote files just like local files
*No special libraries, recompilation, etc.

Three Independent File Systems

Si:

usr usr

local shared

NFS Overview

NFS was developed by Sun Microsystems in the mid-80s
* Networked machines at the time were predominantly UNIX-based workstations
» Various vendors: Sun, DEC, IBM, etc.
+ Different CPU architectures and OS implementations
» But, all used UNIX filesystem structure and semantics

NFS is based on Remote Procedure Call (RPC)

« Allows a client machine to invoke a function on a server machine, over a network
» Client sends a message with the function arguments
» Server replies with a message with the return value.

External Data Representation (XDR) to represent data types
» Canonical network representation for ints, longs, byte arrays, etc.

» Clients and servers must translate parameters and return values of RPC calls
into XDR before shipping on the network

» Otherwise, a little-endian machine and a big-endian machine would disagree on
what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int”

NFS Design

Client
Client application

Kernel VFS Layer

!

Server

Kernel VFS Layer

|

ISO9660 FS

NFS server

t

RPC/XDR

|

RPC/XDR

f

Network stack

Network stack

SR N

Network

Stateless Protocol

The NFS protocol is stateless
* The server maintains no information about individual clients!
» This means that NFS does not support any notion of “opening” or “closing” files

» Each client simply issues read and write requests specifying the file, offset in the
file, and the requested size

Advantages?

Disadvantages?

Stateless Protocol

The NFS protocol is stateless
* The server maintains no information about individual clients!
* This means that NFS does not support any notion of “opening” or “closing” files

» Each client simply issues read and write requests specifying the file, offset in the
file, and the requested size

Advantages:
» Server doesn't need to keep track of open/close status of files
» Server doesn't need to keep track of “file offset” for each client's open files
» Clients do this themselves
» Server doesn't have to do anything to recover from a crash!
» Clients simply retry NFS operations until the server comes back up

Disadvantages:
» Server doesn't keep track of concurrent access to same file
» Multiple clients might be modifying a file at the same time
* NFS does not provide any consistency guarantees!!!
* However, there is a separate /ocking profocol — discussed later

NFS Protocol Overview

mounft() returns filehandle for root of filesystem
* Actually a separate protocol from NFS...

lookup(dir-handle, filename) returns filehandle, attribs
» Returns unique file handle for a given file
» File handle used in subsequent read/write/etc. calls

create(dir-handle, filename, attributes) returns filehandle
remove(dir-handle, flename) returns status
getattr(filehandle) returns attribs
» Returns attributes of the file, e.g., permissions, owner, group ID, size, access time, last-
modified time
setattr(filehandle, attribs) returns attribs

read(filehandle, offset, size) returns attribs, data

write(filehandle, offset, count, data) returns attribs

Example

What happens if we do “/bin/cat tesftfile” ?

140.

140.

140.

140

247.60.36.031e 140.247.50.252.0801 U C3 cd9d450a 3
lookup tfh 0013e=£90000001bL00000000 name "testfile" euid 813b egid 186c

con = 146 len = 174

247.50.252.0801 140.247.60.36.031e U R3 cd9d450a 3

lookup CK fh 0013ee£50000002a200000000 ftype 1 mode 180 nlink 1 uid 813b gid 1l86c
size laca used 2000 rdev 0 rdev2 0 fsid 13eef9 fileid eef9002a

atime 1082215906.000000 mtime 1082215906.000580 ctime 1082215906.000580 status=0
pl = 192 con = 70 len = 262

247.60.36.031e 140.247.50.252.0801 U C3 ce9d450a 6
read th 0013e=£90000002a200000000 off 0O count 2000 euid 813b egid 186c

.247.50.252.0801 140.247.60.36.031e U R3 cef9d450a 6

read OK ftype 1 mode 180 nlink 1 uid 813b gid 186c size laca

used 2000 rdev 0 rdev?Z 0 fsid 13e=efd fileid e=ef8002a
atime 1082215906.000000 mtimse 1082215906.000580 ctims 1082215506.000580 count aca

Example -2

»What happens if we issue
* fd = open(“/usr/joe/6360/list.txt’)

» It would result it several Lookup calls to server
 lookup(rootfh, “usr) returns (th0, attr)
* lookup(thO, “joe”) returns (fh1, attr)
* lookup(thl, “6360”) returns (fh2, attr)
* lookup(th2, “list.txt”) returns (fh, attr)

» Why is this needed ?
* Any of components of /usr/joe/6360/list.txt could be a mount point

« Mount points are client dependent and mount information is kept
above the lookup() level

NFS Caching

NFS clients are responsible for caching recently-accessed data
* Remember: the server is stateless!

The NFS protocol does not require that clients cache data ...
« But, it provides support allowing a range of client-side caching techniques

This is accomplished through the getattr() call
* Returns size, permissions, and last-modified time of file
» This can tell a client whether a file has changed since it last read it

» Read/write calls also return attributes so client can tell if object was modified since
the last getattr() call

How often does the client use getattr()?
* Whenever the file is accessed?
» Could lead to a lot of getattr calls!
* Only if the file has not been accessed for some time?
* e.g., If the file has not been accessed in 30 sec?
* Different OS's implement this differently!

NFS Locking

NFS does not prevent multiple clients from modifying a file
simultaneously
» Clearly, this can be a Bad Thing for some applications...

Solution: Network Lock Manager (NLM) protocol
* Works alongside NFS to provide file locking
* NFS itself does not know anything about locks
» Clients have to use NLM “voluntarily” to avoid stomping on each other
« NLM has to be stateful
« Why?

NLM Protocol

NLM server has to keep track of locks held by clients

If the NLM server crashes...
» All locks are released!
« BUT ... clients can reestablish locks during a “grace period” after the server recovers
» No new locks are granted during the grace period
* Server has to remember which locks were previously held by clients

If an NLM client crashes...
* The server is notified when the client recovers and releases all of its locks
» What happens if a client crashes and does not come back up for a while?

Servers and clients must be notified when they crash and recover
» This is done with the simple “Network Status Monitor” (NSM) protocol
» Essentially, send a notification to the other host when you reboot

NLM Example

Client A

“lock file foo, offset 0 len 512"

“lock granted”

Client B

“lock file foo, offset 0 len 512"

Server

“denied!”

Client A,
foo[0...512]

~W

NLM Example

Client A

Client B

. Client A,

foo[0...512]

NLM Example

Client A

Client B

Restart notification

Server

Client A,
foo[0...512]

|~

NLM Example

Client A

“relock file foo, offset 0 len 512"

“lock granted”

Client B

Server

Client A,
foo[0...512]

‘HL
check

Three Major Layers of NFS Architecture

»UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

»Virtual File System (VFES) layer — distinguishes local files from
remote ones, and local files are further distinguished according to
their file-system types

*The VFS activates file-system-specific operations to handle local
requests according to their file-system types

«Calls the NFS protocol procedures for remote requests

»NFS service layer — bottom layer of the architecture

*Implements the NFS protocol

Schematic View of NFS Architecture

client server

system-calls interface

!

VFS interface —> VFS interface
l 1 l
other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR
S~ .
disk l I disk

network

