CS416 — File System
Log-Structured File System

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science
Rutgers University

Rutgers Sakal: 01:198:416 Sp11
(https://sakai.rutgers.edu)



Log Structured Filesystem

Around '91, two trends in disk technology were emerging:

* Disk bandwidth was increasing rapidly (over 40% a year)
« Seek latency not improving much at all
* Machines had increasingly large main memories
» Large buffer caches absorb a large fraction of read I/0s

* Can use for writes as well!
» Coalesce several small writes into one larger write

Some lingering problems with FFS...
« Writing to file metadata (inodes) was required to be synchronous

* Couldn't buffer metadata writes in memory
» Lots of small writes to file metadata means lots of seeksl



LFS Basic Idea

Treat the entire disk as one big append-only log for writes!

* Don't try to lay out blocks on disk in some predetermined order
* Whenever a file write occurs, append it to the end of the log
* Whenever file metadata changes, append it to the end of the log

Collect pending writes in memory and stream out in one big write

* Maximizes disk bandwidth
* No “extra” seeks required (only those to move the end of the log)

When do writes to the actual disk happen?



LFS : Basic Ildea

Treat the entire disk as one big append-only log for writes!
* Don't try to lay out blocks on disk in some predetermined order
* Whenever a file write occurs, append it to the end of the log
« Whenever file metadata changes, append it to the end of the log

Collect pending writes in memory and stream out in one big write

* Maximizes disk bandwidth
* No “extra” seeks required (only those to move the end of the log)

When do writes to the actual disk happen?
* When a user calls sync() -- synchronize data on disk for whole filesystem
* When a user calls fsync() -- synchronize data on disk for one file
*« When OS needs to reclaim dirty buffer cache pages
» Nofte that this can often be avoided, eg., by preferring clean pages



LFS Example

Log —

Writing a block in the middle of the
file just appends that block to the log



LFS and inodes

How do you locate file data?

* Sequential scan of the log is probably a bad idea ...

Solution: Use FFS-style inodes!

Log—»

g 1 i e e 11




LFS and inodes

How do you locate file data?
* Sequential scan of the log is probably a bad idea ...

Solution: Use FFS-style inodes!

Log—»

N e 1 A o

Every update to a file writes a new copy of the
Inode!




Inode map

Well, now, how do you find the inodes??
* Could also be anywhere in the log!

Solution: inode maps
* Maps “file number” to the location of its inode in the log
» Note that inode map is also written to the log!tll
* Cache inode maps in memory for performance

I

New inode map block!

n

| [

inode
map

Ckpoint
area

Fixed checkpoint region tracks location
of inode map blocks in log



Reading from LFS

But wait ... now file data is scattered all over the disk!
* Seems to obviate all of the benefits of grouping data on common cylinders

Basic assumption: Buffer cache will handle most read traffic
» Or at least, reads will happen to data roughly in the order in which it was written
« Take advantage of huge system memories to cache the heck out of the FSI



Log Cleaner

With LFS, eventually the disk will fill up!

* Need some way to reclaim “dead space”

What constitutes “dead space?”
» Deleted files
* File blocks that have been “overwritten”

Solution: Periodic “log cleaning”

Scan the log and look for deleted or overwritten blocks
« Effectively, clear out stale log entries

Copy live data to the end of the log

* The rest of the log (at the beginning) can now be reused!



Log Cleaning Example

LFS cleaner breaks log into segments
* Each segment is scanned by the cleaner
 Live blocks from a segment are copied into a new segment
* The entire scanned segment can then be reclaimed

Dead

Empty segment




LFS Cleaning Example

LFS cleaner breaks log into segments
* Each segment is scanned by the cleaner
» Live blocks from a segment are copied into a new segment
* The entire scanned segment can then be reclaimed

Cleaner runs

Rutgers



LFS Cleaning Example

LFS cleaner breaks log into segments
* Each segment is scanned by the cleaner
» Live blocks from a segment are copied into a new segment
* The entire scanned segment can then be reclaimed

Cleaner runs




LFS Cleaning Example

LFS cleaner breaks log into segments
* Each segment is scanned by the cleaner
 Live blocks from a segment are copied into a new segment
* The entire scanned segment can then be reclaimed

T ¥y s
Fhese-tivo segrments-are fiow empty

gata




Cleaning issues

When does the cleaner run?

* Generally when the system (or at least the disk) is otherwise idle
» Can cause problems on a busy system with little idle time

Cleaning a segment requires reading the whole thing!
« Can reduce this cost if the data to be written is already in cache



