CS416 — Disks

Moving-head Disk Mechanism

track t <— spindle
s |
N
sector s |
g R

I

|

. I
cylinder ¢ —>
I

platter

rotation

Z 4
|

[

|

g 4
I

|

|

I read-write
|

[

I

arm

g

__ arm assembly

Disks

Sectors

~

—— Tracks

Seek time: time to move the
disk head to the desired track

Rotational delay: time to reach
desired sector once head is
over the desired track

Transfer rate: rate data

read/write to disk

Some typical parameters:
=Seek: ~4ms

=Rotational delay: ~4.15ms for
7200 rpm

=Transfer rate: ~ns

Disk Scheduling

» The operating system is responsible for using hardware efficiently
— for the disk drives, this means having a fast access time and
disk bandwidth

» Access time has two major components

*Seek time is the time for the disk are to move the heads to the cylinder
containing the desired sector

‘Rotational latency is the additional time waiting for the disk to rotate the
desired sector to the disk head

» Minimize seek time
» Seek time =~ seek distance

» Disk bandwidth is the total number of bytes transferred, divided
by the total time between the first request for service and the
completion of the last transfer

Operation of a Hard-Drive

JIRLRTLIRTRN

QU WUa2540A

Coh snie M AR 0 A A e

Disk Scheduling (Cont.)

» Several algorithms exist to schedule the servicing of disk 1/0
requests

» We illustrate them with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

lllustration shows total head movement of 640 cylinders

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|

SSTF

» Selects the request with the minimum seek time from the current
head position

» SSTF scheduling is a form of SJF scheduling; may cause
starvation of some requests

» Illustration shows total head movement of 236 cylinders

SSTF (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 a8 122124 183199
|
I

T

What is the Problem here ?
Favors middle tracks : Head Rarely Moves to edges

SCAN

» The disk arm starts at one end of the disk, and moves toward the
other end, servicing requests until it gets to the other end of the
disk, where the head movement is reversed and servicing
continues.

» SCAN algorithm Sometimes called the elevator algorithm

» Illustration shows total head movement of 208 cylinders

SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

C-SCAN

» Provides a more uniform wait time than SCAN

» The head moves from one end of the disk to the other, servicing
requests as it goes

*When it reaches the other end, however, it immediately returns to the
beginning of the disk, without servicing any requests on the return trip

» Treats the cylinders as a circular list that wraps around from the
last cylinder to the first one

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
14 37 536567 98 122124 183199

— O

s

» |dea: Reduce variance in seek times, avoid discriminating against the highest and lowest
tracks

C-LOOK

» Version of C-SCAN

» Arm only goes as far as the last request in each direction, then
reverses direction immediately, without first going all the way to
the end of the disk

C-LOOK (Cont.)

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

RAID - Motivation

Speed of disks not matching that of other components
* Moore's Law: CPU speed doubles every 18 months
*» SRAM speeds increasing by 40-100% a year
* In contrast, disk seek time only improving 7% a year
» Although greater density leads to improved transfer times once seek is done

RAID

Basic idea: Build /O systems as arrays of cheap disks
» Allow data to be striped across multiple disks
* Means you can read/write multiple disks in parallel — greatly improve performance

Problem: disks are extremely unreliable

Mean Time to Failure (MTTF)
* MTTF (disk array) = MTTF (single disk) / # disks

* Adding more disks means that failures happen more frequently..
» An array of 100 disks with an MTTF of 30,000 hours = just under 2 weeks!

Increasing Reliability

|dea: Replicate data across multiple disks
* When a disk fails, lost information can be regenerated from the redundant data

Simplest form: Mirroring (also called “RAID 17)

» All data is mirrored across two disks

Advantages?

Disadvantages?

Increasing Reliability

|dea: Replicate data across multiple disks
* When a disk fails, lost information can be regenerated from the redundant data

Simplest form: Mirroring (also called “RAID 17)

» All data is mirrored across two disks

Advantages:

* Reads are faster, since both disks can be read in parallel
» Higher reliability (of course)

Disadvantages:
» Writes are slightly slower, since OS must wait for both disks to do write
» This approach also doubles the cost of the storage system!

RAID-2

» Bit-Level Stripping, Hamming Code Error Detection & Correction

Bit position 1123 4,5 6|78 310111213 14 15 |16 17 18 13 20
Encoded data bits p1 p2 d1 pd4 d2 d3 d4 |p& d5 db d7|d8& d3 d10 d11 p1e d12 d13 d14 d15

p1 X X X X X X X X X X
Parity p2 XX XX X| X X | X X | X
bit pd X[X|X|X X[X| X | X X

coverage | g XX |X|X|X[X| X | X

p16 X | X|X|X|X

» P1=d1 XOR d3 XOR d5 XOR....
» P2 =d1 XOR d3 XOR d4 XOR
» P4 =d2 XOR d3 XOR d4 XOR d8 XOR ...

» Can detect all 1 bit errors just by checking which of the parity bits
are wrong.

» Disadvantage: 4 disks require 3 parity disks. Not efficient !

RAID 3

Rather than mirroring, use parity codes
- Given N bits {b , b_, ... b}, the parity bit P is the bit {0,1} that yields an even number of

‘1" bits inthe set{b , b, ... b, P}
« Ideaz Ifany bitin{b , b, ... b }is lost, can use the remaining bits (plus P) to recover it.

Where to store the parity codes?

* Add an extra “check disk” that stores parity bits for the data stored on the rest of the N
disks

Advantages:
* If a single disk fails, can easily recompute the lost data from the parity code
» Can use one parity disk for several data disks (reduces cost)

Disadvantages:
» Each write to a block must update the corresponding parity block as well

RAID-3 Example

RAID-3

Disk 4

Check disk

RAID-3

Disk 4

Check disk

RAID-3

0 1

Disk 4

Check disk

1

1. Read back data from other disks

2. Recalculate lost data from parity code

3. Rebuild data on lost disk

When to Use Raid-3

» When we serve a large file that does a sequential read access.

» When a small number of read requests come in, it performs poorly.

*So, We have Raid-4

RAID-4

» Block Level Striping, 1 Parity Disk

*Can Serve Simultaneous Read Regeust

«Cannot Serve simultaneous write request

» For writing, the parity disk becomes a bottleneck

http://en.wikipedia.org/wiki/Parity_bit

RAID-5

Another approach: Interleaved check blocks (“RAID 357)
» Rotate the assignment of data blocks and check blocks across disks
* Avoids the bottleneck of a single disk for storing check data
* Allows multiple reads/writes to occur in parallel (since different disks affected)

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

1 0 0 1
1 1 1 glo
0 0 7 [0]|/ 1

Check blocks intelrleaved across disks

