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Abstract—This work investigates the lower bounds of wireless
localization accuracy using signal strength on commodity hard-
ware. Our work relies on trace-driven analysis using an extensive
indoor experimental infrastructure. First, we report the best
experimental accuracy, twice the best prior reported accuracy
for any localization system. We experimentally show that adding
more and more resources (e.g., training points or landmarks) be-
yond a certain limit, can degrade the localization performance for
lateration-based algorithms, and that it could only be improved
further by “cleaning” the data. However, matching algorithms
are more robust to poor quality RSS measurements. We next
compare with a theoretical lower bound using standard Cramér
Rao Bound (CRB) analysis for unbiased estimators, which is
frequently used to provide bounds on localization precision.
Because many localization algorithms are based on different
mathematical foundations, we apply a diverse set of existing
algorithms to our packet traces and found that the variance
of the localization errors from these algorithms are smaller
than the variance bound established by the CRB. Finally, we
found that there exists a wide discrepancy from what free-
space models predict in the signal to distance function even in
an environment with limited shadowing and multipath, thereby
imposing a fundamental limit on the achievable localization
accuracy indoors.

I. INTRODUCTION

Location is essential for many emerging applications from

a diverse set of areas including asset tracking, workflow

management, geographic routing, and physical security. Wire-

less networks offer an unprecedented potential for realizing

many of these applications. Given that wireless devices are

carried by many people and attached to many objects and

all modern radio chipsets include the hardware necessary to

measure and report the received signal strength (RSS) of

transmitted packets, there is a tremendous cost and deployment

advantage to re-using the existing RSS infrastructure of the

communication network for signal strength-based localization

purposes.

Over the past years, algorithm advances have yielded accuracy

improvements from RADAR’s [1] median 3 m error to less

than 1 m median error [2]. A significant further improvement

to about 40 cm median error has been obtained using a larger

number of landmarks (base stations), 21 instead of the 3–5

used in previous experiments [3]. Since radio environments

are becoming increasingly dense, this points to possible further

accuracy improvements through using additional measurement

nodes. Particularly, cooperative localization techniques [4],

[5] where clients also contribute RSS measurements could

provide readings from tens to hundreds of nodes. The limits

of localization performance in such settings remain an open

question.

The primary contribution of this paper is thus an empirical

quantification of the accuracy limits of RSS localization on

commodity wireless hardware. We conduct experiments to

capture RSS data in a controlled extremely dense laboratory

environment with a single transmitter and up to 369 landmarks,

which represents an ideal scenario for localization algorithms.

Traces were collected using the ORBIT testbed, which is a 400

node indoor wireless experimental apparatus placed in a 3600

sq ft. area. Using the ORBIT platform allowed us to capture

long, high quality packet traces in a dense environment free

of major shadowing and with limited multipath effects.

We use a combination of theoretical as well as trace-driven

analysis on this dataset. Our theoretical work uses a traditional

Cramér-Rao Bound (CRB) analysis, which has previously

been used to establish bounds on location estimation vari-

ance [4]. We then use a trace-driven emulation to characterize

the performance of different algorithms. In order to show the

generality of our results as well as compare localization strate-

gies, we used algorithms with widely divergent mathematical

foundations. They range from classification approaches such

as RADAR [1] over probability density exploration methods

such as H1 [6] to multi-lateration such as Non-Linear Least

Squares (NLS) [7].

Specifically, we found that:

• RSS based localization can achieve median errors as low

as 0.24 m, with a maximum error of 1.5 m. Interestingly,

while NLS performed the best under perfect synthetic

conditions, it has the worst performance for real RSS

observations, with a mean error of 1.6 m and a maximum

error of 5.4 m.

• classification and probability density exploration algo-

rithms had fundamentally worse performance using per-

fect synthetic input, because of a combination of their



inherent discretization effects as well as the leave-one-

out technique we employ to create our testing dataset.

• for lateration-based approaches, which assume a signal-

to-distance function, quality of the RSS measurements

is more important than the quantity of measurements. A

subset of 179 landmarks whose data yield a good signal-

to-distance fit provided best localization performance.

Simply increasing the number of landmarks over this

actually increased the median error from 24 cm to 58cm.

• classification algorithms are qualitatively less sensitive

to variances and noise in the input set than lateration-

based algorithms. Given RSS measurements that devi-

ate substantially from standard models, these algorithms

maintained good average and worst-case performance.

• accuracy improvements leveled off with about 100 nodes,

the lower-bound of localization performance appears still

limited by discrepancies between the underlying algo-

rithmic models and the actual signal-propagation effects

of indoor environments. For example, individual node

differences due to differences in connectors, thermal

effects, and local noise floors, as well as multi-path effects

caused by diffraction, reflection and shadowing are not

explicitly accounted for in any of the algorithms and

account for the remaining errors.

Three important implications of our results are the following.

First, the CRB for unbiased estimators [5], [8], which is widely

used for assessing localization performance limits, does not

represent an actual lower bound on localization performance

for all algorithms, likely because its assumptions of unbiased

estimators or normally distributed measurement errors do not

hold for these algorithms. Second, the strategy of minimizing

the square root of the sum of the residuals leaves much

room for improved accuracy, so localization systems based on

classifiers or probability density exploration are preferable to

least squares. We explore these effects more in Section IV.

Third, significant accuracy improvements are still possible,

likely by algorithms that incorporate more accurate models

of measurement noise.

The remainder of the paper is organized as follows: In Sec-

tion II, we provide a literature survey and briefly describe the

algorithms that we use in this paper. Section III explains the

experimental methodology. We present the results from our

experimental testbed in Section IV. We discuss some open

questions from our results in Section V. Finally, Section VI

concludes the paper.

II. BACKGROUND

In this section, we briefly survey several localization algo-

rithms and provide background on the Cramér-Rao bound

(CRB). A full treatment of localization algorithms is beyond

the scope of this paper. Additionally, we also provide a brief

background on the representative subset of the algorithms we

use in this paper. Because our purpose is to explore the limits

of algorithmic performance, our descriptions focus on each

algorithm’s broad strategy. The reader is encouraged to pursue

the references for additional details.

A. Lateration Based Algorithms

Lateration-based algorithms [7], [12], [13] explicitly model the

signal-to-distance effect on RSS. They estimate the position

of the transmitter by measuring the distance to multiple

receivers. In [11], the authors use a Bayesian graphical model

based on lateration to find a location estimate. We select

our representative subset from lateration-based algorithms as

Non-Linear Least Square (NLS) [7], and Bayesian Networks

(M1) [11], and explain them briefly next.

1) Non-Linear Least Square (NLS): In NLS, estimating the

true location of the transmitter (x, y) can be viewed as an op-

timization problem where the actual locations of the reference

points (xi, yi) are known apriori and the distance estimates

di are obtained from the signal-to-distance relationship. The

problem then becomes solving for the optimal (x̂, ŷ) that

minimizes the sum of residuals:

(x̂, ŷ) = arg min
x,y

N
∑

i=1

[

√

(xi − x)2 + (yi − y)2 − di

]2

(1)

2) Bayesian Networks (M1): The M1 algorithm uses Bayes

Nets which encode dependencies and relationships among

a set of random variables. The vertices of a Bayes Net

graph correspond to the variables and the edges represent

dependencies [14]. The networks used for localization encode

the relationship between the RSS and the (x, y) location using

a simple log-distance propagation model.

The M1 strategy describes the joint probability density of

(x, y) as a function of the observed RSS. However, in general,

there is no closed form solution for the returned joint distribu-

tion. Therefore, we use Markov Chain Monte Carlo (MCMC)

sampling to draw samples from the joint density [15]. The

resulting samples allow us to approximate the true PDF of the

(x, y). M1 selects the averages of the drawn samples as the

(x, y) location estimate.

B. Classification Based Algorithms

Classification algorithms, a.k.a matching algorithms, do not

rely on a model of signal strength and distance relationship.

Rather, they match RSS observations against an existing signal

map. The term classification, as used in the machine learning

sense, implies that the goal of the classifier is to map a

potentially large input space into a much smaller space of

labels. In the case of localization, the labels are a set of discrete

(x, y) locations.

Previous approaches [1], [9] and [2] are examples of classical

fingerprint matching algorithms. The location of a node is

estimated by matching its fingerprints to the closest one in

the signal map. Matching algorithms in [3], and [10] employ

probabilistic inference to estimate the location of a node.



Technique Type Area (m2) Num APs Num Median 75th % Max
Training Error(m) Error(m) Error(m)

RADAR [1] Classification(Scene Matching) 22.50 × 43.49 3 70 2.93 4.69 24.99

AURA [9]
CMU-PM Classification(Scene Matching) Not Specified 5 17 0.98 3.29 >9.75
CMU-TMI Classification(Scene Matching

with interpolation)
Not Specified 5 17 1.94 3.29 8.50

LEASE [2] Classification(Scene Matching)
with Interpolated Grid

68.58 × 43.90 5 100 2.29 n/a n/a

76.20 × 53.34 4 100 0.61 n/a n/a

Ref [10] Classification(Probabilistic) 68.28 × 35.94 4 110 1.07 1.22 7.32

HORUS [3] Classification(Probabilistic) 68.28 × 35.94 21 172 0.39 0.55 4.99
11.80 × 33.13 6 110 0.51 0.90 4.99

M1 [11] Lateration(Bayesian inference) 60.96 × 24.38 4 115 5.49 6.71 27.43
64.00 × 42.67 5 215 5.49 6.1 27.43

Ref [7] Lateration with LLS 60.96 × 24.38 4 286 6.1 9.14 42.67
Lateration with NLS 60.96 × 24.38 4 286 3.35 6.1 33.53

TABLE I
SUMMARY OF THE REPORTED EXPERIMENTALACCURACIES FOR VARIOUS LOCALIZATIONALGORITHMS

Also, [16] uses Bayesian inversion to return the location that

maximizes the probability of the RSS vector. The authors

of [17] apply the same technique to the robotics domain and

experimentally show that 83% of the time, the location error

is within 5 ft.

Deriving closed form solutions for the lower-bound of most

of these algorithms is not trivial, or the bound may not

be existent at all. Indeed, framing localization as a map

matching problem naturally lends itself to machine-learning

approaches, for which many algorithms have provably no

closed form solution. We select our representative subset from

classification-based algorithms as RADAR, Gridded-RADAR

(GR) and Highest Probability (H1) and continue with a brief

overview of these algorithms.

1) RADAR: [1] is a classical scene matching localization

algorithm where the signal map, a set of fingerprints with

known (x, y) locations, is provided as an input to the offline

phase of the algorithm. In the online phase, when presented

with a fingerprint of a node with unknown location, RADAR

returns the location of the ‘closest fingerprint from the signal

map.

2) Gridded-RADAR (GR): is an improvisation over RADAR

where measurement area is sub-divided into a regular grid and

the signal map provided in the offline phase is interpolated

over the entire grid. The online phase is similar to RADAR

with the exception that the “closest” fingerprint in signal space

is chosen from the interpolated signal map. This approach has

an advantage of obtaining a much finer-grained resolution as

the regions which are not covered by the signal map can also

be returned as location estimates.

3) Highest Probability (H1): Given an area divided into a

discrete set of points called tiles, the strategy used by H1 is to

return the most likely (x, y) by finding the highest probable tile
using Bayes’ rule over the set of RSS values. In order to find

the likelihood of the RSS-matching for each tile in isolation,

H1 assumes that the distribution of the RSS for each receiver

follows a Gaussian distribution. This assumption significantly

simplifies the computations with little performance loss. Using

Bayes’ rule, H1 computes the probability of being at each tile

on the floor, Li, given the fingerprint of the localized object

S̄l as

P
(

Li|S̄l

)

=
P

(

S̄l|Li

)

× P (Li)

P
(

S̄l

) . (2)

However fingerprint S̄l = (slj) is some constant c and with

no prior information about the exact object’s location, H1

assumes that the object to be localized is equally likely to

be at any location on the floor, i.e., P (Li) = P (Lj) , ∀i, j.
Thus, Equation 2 can be rewritten as

P
(

Li|S̄l

)

= c × P
(

S̄l|Li

)

. (3)

Without having to know the value c, H1 can just return the

tile Lmax, where Lmax = argmax(P
(

S̄l|Li

)

), by computing

P
(

S̄l|Li

)

for every tile i on the floor. Up to this step H1 is

very similar to the traditional Bayesian approaches [10], [17],

with the exception of the Gaussian and variance assumptions.

Finally, [4] and [18] studied establishing theoretical lower

bounds for the achievable localization performance using es-

timation techniques that employ unbiased estimators. Table II

summarizes the median, 75th percentile and maximum errors

for various localization algorithms that were studied exper-

imentally. Overall, we can see that none of the approaches

have experimented with more than 21 access points and the

state of the art approach [3] has its median, 75th percentile and

the max errors as 0.39 m, 0.55 m, and 4.99 m, respectively.

In addition to studying RSS-based localization in a high

density setting with hundreds of landmarks, and reporting

localization errors an order of magnitude lower than the state-

of-the-art, in this work, we also focus on understanding the

factors that limit the RSS-based localization performance from

achieving near-zero errors.



C. Cramér-Rao Bound

Localization can be defined as an estimation problem where

measurements like wireless signal strength, angle or time

of arrival are provided to an estimator (i.e. the localization

algorithm) to obtain the most likely position in the assumed co-

ordinate system. In estimation theory, the Cramér-Rao bound

(CRB) has been derived as a lower-bound on the variance of

an estimator [19]. Although CRB has been applied to certain

classes of biased estimators [20], [21], it is commonly used

to bound the variance of unbiased estimators [8]. The CRB

has frequently been used by researchers to assess localization

techniques [4], [5], [18].

The CRB for an unbiased estimator is obtained from the

inverse of the Fisher Information Matrix (FIM) [8], given as

I(θ) = E

{

[

∂ ln f(p|θ)

∂θ

] [

∂ ln f(p|θ)

∂θ

]T
}

, (4)

where θ is the unknown parameter to be estimated from

measurements p, which follows a probability density function

f(p|θ). Intuitively, the FIM is an estimate of the curvature of

the log likelihood function ln f(p|θ). If the curvature is sharp,
the parameter estimation becomes more accurate making the

lower bound on the variance of the estimator(CRB) very small.

The received power at a landmark location (xn, yn) from a

transmitter at (x, y) can be modeled as [22]

P (xn, yn) = P0 − 10γ log
10

(dn/d0) + Sn (dB), (5)

where dn =
√

(xn − x)2 + (yn − y)2 with n = 1...N
landmarks; P0 is the received power at the reference distance

d0 from the source; γ is the path loss exponent; and Sn is

the random variation of the signal measurements and assumed

to come from an i.i.d. Gaussian distribution N (0, σ2

RSS).
For the case of a single unknown transmitter location and

N landmarks, the CRB for the variance σ2 of an unbiased

location estimator is given as

σ2 ≥
I(θ)xx + I(θ)yy

I(θ)xxI(θ)yy − I(θ)2xy

(6)

where I(θ)xx and I(θ)yy are the diagonal blocks and I(θ)xy

and I(θ)T
xy are the off-diagonal blocks of the FIM in Eq.4.

Details of the derivation can be found in [5].

Note that the above CRB, for any localization technique using

RSS information, critically depends on:

• the number and topology of the landmarks and the

transmitters to be localized,

• the ratio of the RSS standard deviation to the propagation

constant (σRSS/γ), characterizing the signal and the

propagation environment

• the assumption of RSS fluctuations due to an i.i.d. Gaus-

sian distribution with a common variance σ2

RSS .

III. TESTBED EXPERIMENTS

In this section, we begin by describing our experimental

objectives and then explain how we perform experiments in

order to fulfill these objectives.

A. Objectives

The objectives of our experiments are:

• To quantify the limits of different localization

algorithms—M1, H1, GR, and NLS—under a dense,

indoor landmark deployment with limited shadowing

and multipath fading

• To understand how these limits compare to the CRB

• To understand how variations in RSSI observations limit

the localization algorithms from achieving perfect results

in this laboratory environment

B. Experimental Methodology

We performed our experiments on ORBIT [23], a large scale

indoor wireless testbed. The ORBIT testbed consists of 400

small form-factor PCs, with two IEEE 802.11a/b/g wireless

interfaces per node. The nodes are suspended from the ceiling

as shown in Figure 1(a) and are placed in a 20 × 20 regular

grid with an inter-node separation of 91.44cm (3ft) spanning a

total area of 3600 sq ft. We collected packet data traces from

a subset of 369 nodes using one of the identical Atheros 5212

based 802.11a/b/g NIC in every node. The remaining 31 nodes

were down for maintenance.

The data trace collection spanned two days and all 369 fixed

ORBIT nodes were configured as IEEE 802.11a receivers

operating at 5GHz, channel 44. The receivers used the Tshark

packet sniffer utility to log the received signal strength indi-

cator (RSSI) for every received packet. We used a movable

ORBIT node attached to a portable antenna mast as our

packet transmitter. Figure 1(b) shows the rubber-duck antenna

mounted on the mast. The antenna rig was used to raise the

movable node’s antenna to the same plane receiver antennas

were located as well as keeping transmitter antenna orientation

the same throughout all transmitter locations. The transceiver

diversity options were disabled in all our radios to eliminate

(a) ORBIT indoor testbed (b) Portable mast

Fig. 1. (a) The 400 node ORBIT experimental testbed (b) The movable node
(Transmitter) attached to an antenna on a portable mast.



Fig. 2. Error CDF plots representing localization performance of the selected
algorithms from ORBIT experiment using all available 369 landmarks

unwanted RSSI oscillations. The transmitter was placed at

400 different locations, one below each one of the suspended

ORBIT node for collecting the training dataset. The per-packet

data trace collected at each of the receiver was then post

processed to yield an average RSSI measurement over 1000

packets for the transmitter at every location. This resulted in

a dataset with 400 training Points and 369 receivers for each

training point. Note that our testing point locations overlapped

with the landmark locations.

To evaluate the different algorithms, we use the well-known

leave-one-out approach where the 400 point training set is split

into 400 sets of 399 training points and one testing point. The

difference between the known actual location (x, y) of the

testing point and the localization algorithm’s estimate (x̂, ŷ)
of the testing point derives the estimation error.

IV. RESULTS

In this section, we begin by highlighting our important contri-

butions and provide detailed insights into our results. Table II

summarizes our key findings. They are:

1) The M1 algorithm achieved the lowest median local-

ization error of about 0.24 m, exceeding the best prior

experimental result [3] by a factor of two

2) Adding a lot of landmarks can reduce the localization

accuracy for lateration based algorithms. The best per-

formance was achieved with a carefully selected cleaned

subset of about half the landmarks

3) The general CRB for unbiased estimators is a poor

benchmark of localization precision for the algorithms

tested

The following subsection describe each of these results in

detail.

A. High-density Localization Performance

Figure 2 plots the error CDF for the lateration algorithms (M1

and NLS) and the matching algorithms (GR and H1) with

the training data collected from all 400 locations and 369

landmarks in the 20 by 20m space. We call this training set the

scaled dataset. This dataset allows conclusions about how far

localization error can be reduced with extreme measurement

resources.

Scaled Results Sanitized Results

Median Max Std.Dev. Median Max Std.Dev.
(m) (m) (m) (m) (m) (m)

M1 .58 26.87 1.87 .24 1.60 0.25

NLS 2.01 13.44 2.41 1.62 5.37 0.79

GR .31 1.74 0.30 .36 1.97 0.32

H1 .33 1.82 0.29 .39 1.70 0.33

CRB — — 0.62 — — 0.75

TABLE II
SUMMARY OF LOCALIZATION ACCURACY AND PRECISION

Fig. 3. Error CDF plots representing localization performance from ORBIT
experiment using the “sanitized” dataset with 179 Training and 179 Land-
marks

GR and H1 have the best performance with median errors

of 0.31 m and 0.33 m, respectively exhibiting only an 16%
improvement over the best prior reported median accuracy of

0.38 m with 21 landmarks.

Table II shows the median and maximum errors for all four

algorithms. The lateration algorithms, in particular NLS, show

much higher errors both in terms of median and maximum.

M1’s maximum error of about 27 m exceeds that of H1 and

Gridded RADAR 15-fold. This motivates us to further explore

the causes for such outliers.

B. Sensitivity to Data Quality

We define the data quality of a landmark based on how well

the signal strength measurements for the landmarks match a

distance to RSS propagation model fitted on the data. The

lateration algorithms estimate the propagation parameters from

the measurements based on this distance to RSS fit. Recall

that in free space, the signal power decays linearly with log

distance.
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Fig. 4. Plots showing the co-efficient of determination(R2 ) for 2 different
landmarks (a) Landmark with Good fit, R2

= 0.778 (b) Landmark with poor
fit, R2 = 0.2443



Fig. 5. Effect of Scaling the Number of APs

Figure 4 plots the distance to RSS relationship together

with the fitted free-space propagation model for two different

landmarks using the same set of training points. We observe

that the quality of the fit in terms of R2 differs significantly.

To investigate the relatively poor performance of the later-

ation algorithms in the scaled dataset, we sanitize the data

by removing low quality landmarks whose co-efficient of

determination R2 < 0.5. We empirically determined that

this threshold significantly improves localization performance.

After filtering, 179 landmarks and the corresponding 179

training points remain. We refer to this dataset as the sanitized

(or cleaned) dataset.

Figure 3 plots the performance of different localization al-

gorithms with the sanitized dataset. We can see that M1

outperforms all other algorithms, it achieves a median error

of 0.24 m, about half the error reported by state of the art

RSS-based localization algorithms. The median error for NLS

has also improved from 2.01 m for the scaled dataset to 1.62 m

for the sanitized dataset. Note also that the max errors for M1

dropped from 26.87 m to 1.60 m showing a 94% improvement.

Figure 5 plots the error CDF for M1 for varying number of

landmarks (or access points) —4,25,100,179 and 400. In each

scenario, the access points were deployed in a regular, equally

spaced fashion. Additionally, we also plot M1’s result for

the sanitized dataset. While increasing the number of access

points significantly reduces the error for M1, the results show

diminishing returns. The reduction in error from 100 to 400

landmarks is minor compared to reduction from 4 to 25. Note

also that, the sanitized dataset with 179 landmarks significantly

outperforms all results with arbitrary selection of landmarks.

These results suggest that lateration algorithms generally are

very sensitive to data from low-quality landmarks that cannot

be fitted on a propagation model. For the lateration algorithms,

increasing landmark density is less effective than selecting

high-quality landmarks. The matching algorithms, however,

remain very robust to these data quality issues.

C. Performance with Synthetic Data

We have shown that after data sanitization, a median localiza-

tion accuracy of 0.24 m is achievable. To explore possibility

of further improved localization, we study the localization

performance starting with an ideal noise-less RSSI dataset,

which we create synthetically to conform to the well-known

Parameter Value

Path gain P0 @ 2.4 GHz @ 1 meter -42.934 dB

Path Loss Exponent (γ) 1.96

Transmit Power 10 dB

Antenna Gain 2 dB

Cable Losses 1 dB

TABLE III
SUMMARY OF THE PARAMETERS USED IN SYNTHETIC DATA GENERATION

path-loss model given in Eq. 5. Then, by using empirical

observations from our ORBIT experiments, we model two

different classes of noise that affect RSSI data and perturb this

perfect synthetic dataset according to the models. Finally we

compare the performance of the localization algorithms using

the perturbed data with the ORBIT experiments to validate our

modeling.

The parameters used to create the synthetic dataset are given

in Table III. These were obtained from a detailed channel

measurement study in the ORBIT room [24], which deter-

mined the path gain at reference distance P0, and the path

loss exponent γ. To facilitate comparisons with the best case

ORBIT experiments, our synthetic dataset consists of 179

landmarks with RSSI information from 179 different locations

that fall 30cm away from each landmark. This replicates the

transmitter locations used in the actual ORBIT experiments

for the sanitized dataset.

Noise-less Performance: Figure 6 presents localization per-

formance for five different algorithms using the noise-less

dataset. Lateration algorithms M1 and NLS perform very

well—both result in sub-centimeter accuracy for 99% of the

time, and strictly below 1.5 cm all the time. Classification

algorithms RADAR and GR are limited with the discrete

number of fingerprints (classes) to which a given testing point

can be associated. Due to the leave-one-out method of testing,

RADAR can only match a testing point to the nearest possible

landmark, which is 3-feet away in the ORBIT grid setting.

Consequently we observe that RADAR has 99% of its error

accumulated exactly at 3-feet (about 91 cms). The CDF for

GR, which works with 2 inch (5.08 cm) grid-sizes, shows

a step-like behavior and achieves a median error of 15 cm

Fig. 6. Localization performance with synthetically generated noise-less data
for 179 landmarks. The Fig in the left plots the Zoomed-in error CDF to show
M1 and NLS performance and the one on right plots the Error CDF for all
five algorithms
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(worth almost 3 grid points). Similarly, the tile-discretization

effect inherent to H1 results in a median error of 12 cm with

this ideal noise-less dataset.

The performance discrepancy between Figures 3 and 6 indicate

that the input dataset in our ORBIT experiments contains

significant noise on RSSI observations.

RSSI Noise Analysis: To investigate this discrepancy, we

measured the distribution and stability of RSSI readings on a

single transmitter-receiver pair. Without environmental mobil-

ity and a time-invariant channel, the RSSI observations from

an ideal pair of transmitter-receiver should be constant over

the time. Figure 7(a) shows the RSSI distribution of 300.000

packets over a given ORBIT link.1 Clearly, variations of 1–

2 dB exist and we categorize this as Type I noise. Detailed

discussions on the potential causes of the noise observed on

RSSI are deferred to Section V.

Type I Noise Case: To understand how this variance affects

localization, we have perturbed our noise-less synthetic dataset

according to the variance of the normal distribution fit on the

observed noise of 1.02 db as shown in Figure 7(a). The RSS

for the synthetic data follows N (µ(θ), 1.02) where µ(θ) is the
mean received power which is P0−10γ log

10
(dn/d0) as given

by Eq 5. We tested both M1 and NLS localization algorithms

with this perturbed dataset. We observed that using single

RSSI measurements resulted in increased median localization

1Note that these experiments were conducted remotely 4AM in the morning
with no human presence and no 802.11 interference. Our tests with other
combinations of off-the-shelf cards (i.e., Atheros 5212 and Intel ProWireless
2945) exhibited the same behavior.

(a) Three example PDF fits for Landmark #5

(b) Localization Performance with TypeII Noise

Fig. 8. (a) Example empirical RSSI distributions obtained per landmark at
each foot distance separation for Type II Noise (b) Performance of localization
under Type II Noise

error, from sub-centimeters up to of 14.6 cm and 2.2 cm for

M1 and NLS respectively, as shown in Figure 7(b). RSSI

averaging, however, reduced this effect—the mean of 1000

RSSI observations removed nearly all localization error due

to this noise. Thus, the Type I noise do not account for

the observed discrepancies, since experiments throughout this

paper were conducted with the mean of 1000 packet RSS

readings.

Type II Noise Case: Next we model the noise observed in

Fig. 4, by dividing TX-RX distance into 1 ft buckets for each

receiver and fitting a normal distribution on the data that fall

in each bucket, as illustrated in Figure 8(a). We categorize this

noise as Type II . Using these standard deviations(σ̂) obtained
from the PDFs, we create another synthetic dataset whose RSS

follows N (µ(θ), σ̂2) and again evaluate the localization per-

formance. Results are depicted in Figure 8(b). Note that these

results match the experimental results well, the discrepancy is

less than 20 cm for all algorithms.

These results suggest that the noise that limits localization

performance is not due to short term measurement noise on

individual nodes, but rather due to variations across nodes and

locations. We discuss more on RSSI noise in Section V.

D. Comparisons with Cramér Rao Lower Bound

Following the Gaussian distribution assumption in Sec-

tion II-C, we have calculated the standard deviation (stddev)

of the averaged RSS sample residuals (σRSS) from our ex-

perimental dataset of 400 nodes to be 8.880, as illustrated

in Figure 9(a). Also, the path-loss exponent γ in the ORBIT

room was previously measured to be 1.701, using precise

measurement equipment [24] at 5.1GHz UNII band. Using this

σRSS/γ ratio of 5.220 together with the 179 (i.e., sanitized)

and 369 (i.e., scaled) landmark topologies as inputs, we
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Fig. 9. Investigating Gaussian distribution assumption of RSS samples from
400 node dataset

calculated the CRB for each unknown transmitter position with

the help of a Matlab script. The median value of the stddevs

obtained from this CRB calculation is reported in Table II (in

meters) together with stddevs of errors from the localization

algorithms we have evaluated.

In both the scaled and sanitized cases, the CRB does not

provide a lower bound on the variance of the localization error,

except for the NLS algorithm (both cases) and M1 algorithm

(only for scaled case). It is important to note that the CRB is

only a bound on the variance of the localization error, but not

a bound on the mean of the error. Therefore the CRB should

be used as a benchmark for the precision of various unbiased

localization algorithms but not the accuracy of them.

We identify two reasons why the CRB provided little value in

comparing the precision of localization algorithms we tested.

RSS Distribution: The CRB (Eq.6) assumes that the RSS

sample residuals come from a zero mean Gaussian distribution

with a stddev of σRSS . To verify if this assumption holds, we

examined averaged RSS samples shown in Figure 9(a) with a

quantile-quantile (Q-Q) plot given in Figure 9(b). We observe

that RSS data fit the normality assumption only between -

2 and +2 quantiles. Also, a chi-square test for the normality

of the data indicates that the normality hypothesis can not

be accepted with 95% confidence. It is likely that our RSS

samples come from a more complex composite distribution,

similar to the observation in [5]. Since the Gaussian distri-

bution assumption does not strictly hold, the CRB can not

be expected to provide a strict bound for the localization

error variance. In theory [25], the RSS residual in the ORBIT

testbed environment which has a strong LOS component with

minimal shadowing should be characterized using the Ricean

distribution instead of Gaussian.

Estimator Bias: The CRB in the form of Eq.6 is not applicable

to biased estimators. It is quite possible that the majority of

localization algorithms are biased. In fact, non-linear least

squares is known to generally be a biased estimator. Also,

RADAR intuitively appears biased due to the limited number

of training points that positions are matched to. The median

error for biased estimators can be lower than the bound for an

unbiased estimator. Deriving a general form of the CRB for a

biased estimator would require knowledge on the gradient of

the estimator bias [26].

V. DISCUSSION

Our results leave unanswered questions with regards to the

lower bounds of localization performance using RSS. In this

section, we discuss how resources, node quality and algorithm

choice impact the lower bounds of localization performance.

First, high accuracy requires a large number of observation

points, which is in agreement with prior work [3]. However,

motivation for many of the prior works has been building a

localization system using only minimal additional infrastruc-

ture. We have also shown that the additional infrastructure can

leverage the RSS measurements on existing communication

waveforms by re-using the enormous investment in commodity

chipsets.

Our results show that high quality RSS measurement is critical

to localization performance, and that the measurement and

reporting variances across devices limit the accuracy. Although

the minute-scale averages of RSS observations are found to

be stable (Figure 7), significant variance still exists when

signal-to-distance fits are considered (Figure 8(a)). The exact

breakdown for the causes of this distribution remains un-

known. Table IV provides a non-exhaustive list of the sources

of noise that might have potentially led to non-ideal RSSI

observations for our experiments. Note that the list omits

important items like mobility and external interference as they

were not existent in our controlled experiment. Calculation of

RSSI from a received IEEE 802.11 packet is only outlined

by the standard [27] and implementation details for any given

wireless card remain the manufacturers’ intellectual property.

Nonetheless in our experiments, we use 369 identical m-PCI

Atheros 5212 IEEE 802.11a/b/g cards manufactured at close

proximity in time, thus RSSI observations likely come from

identical calculation algorithms. Also, in our experiments,

faults are easily detectable as we have close proximity RSSI

observations for every landmark from which outliers could be

eliminated. Fading, as demonstrated by precise measurements

in the ORBIT room [24], is time-invariant in the absence

of environmental mobility, thus the multipath profile of the

channel in the room is static. In our experiments, fading is

visible not because it varies the received signal power for a

given link over the time, but because the RSSI is observed

from a static transmitter at 179 discrete locations in the room,

each capturing a different fading profile. This makes several

of the possible sources unlikely, pinpointing the exact reasons

remains an open problem.

A last open issue is that we believe, there is still room for

better algorithmic methods to extract localization performance

from the traditional approach of finding the best fit that

minimizes the residuals. The M1 algorithm is a first step

in exploiting such prior information in a manner that goes

beyond traditional classifiers, but our work raises the question

if additional information could still be extracted by clever

algorithms without resorting to classifiers.
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Calculation How the RSSI is measured by the card (i.e., exact sampling from the packet training sequence, before or after AGC
elements etc.). How interference and noise affect RSSI calculation. Details of the particular algorithm running in DSP.

Quantization The way RSSI is quantized (i.e., 0-31, 0-63, 0-100). Averaging used. Non-linearity of rcvd power vs. reported RSSI
Faults Leaking, or improperly terminated RF circuitry. Broken antenna cable or connectors.

Manufacturing/Design Differences in the manufacturing process. Variance of the quality of the circuit components used. Cheap transceiver
design with fluctuating TX power and receiver path gains.

E
N
V
IR
. Thermal Noise Observed in the receiver electronics dependent on the ambient temperature. Also other forms of cyclo-stationary noises.

Shadow Fading Caused by the blocking of direct, reflected, diffracted, and scattered signal copies from the transmitter.
Multipath Fading Caused by multiple copies of the received signal through (a possible) line-of-sight component, and its reflections,

diffractions, scattering, each delayed wrt power-delay profile of the physical environment around TX-RX pair.

TABLE IV
SOURCES OF NOISE FOR RSSI RELEVANT TO OUR EXPERIMENTS

VI. CONCLUSION

In this work we investigated the lower bound obtainable

using RSS based localization through a dense, high-precision

wireless testbed. We found that high average accuracies, on

the order of 0.2 m, are possible using commodity hardware

in our configuration. We also showed that the maximum error

can be reduced to about 1.6 m, which is also an encouraging

result.

Our results show that the precision of a number of algorithms

exceed the theoretical lower bounds commonly calculated for

localization techniques using Cramér-Rao Bound (CRB) anal-

ysis for unbiased estimators. This raises questions about the

validity of the assumptions underlying this analysis, particu-

larly with regard to bias and normally distributed measurement

errors.

These results also demonstrate that the choice of algorithms

is important, in that we observed least squares approaches

have the worst performance on real data sets. We also found

that classification-based algorithms are more robust to poorer

quality data than lateration approaches. Our results also point

to the possibility of further improvements from increasing the

quality of the RSS observations, raising the node density in

real deployments, or adding algorithmic enhancements.
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