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Abstract – This report performs the performance analysis and simulation of a Maximum 
Likelihood Sequence Estimator in presence of Inter-Symbol Interference and Additive 
White Gaussian Noise (AWGN) in the channel.  Comparison is done for such a system 
with and without convolutional encoding. The receiver uses a Viterbi decoder. 
 
 
1. Introduction 

Inter-symbol interference (ISI) arises in pulse amplitude modulated systems whenever the 
effects of one transmitted pulse are not allowed to die away completely before the 
transmission of next. ISI may also occur in signals that propagate over multipath channels, 
over cables with dispersive characteristics, or via filtering circuits. ISI is a major 
impediment to reliable communication. The Viterbi decoding algorithm provides a way 
of equalizing the effects of ISI in channels.[FN2] The Viterbi decoder is a Maximum 
Likelihood Sequence Estimator (MLSE).[FN1] This paper describes a mechanism to use 
the Viterbi Equalizer for a channel with known finite memory and performs a comparison 
of such equalization with and without convolutional encoding in the system. The paper 
also explains a derivation of upper and lower bounds on the probability of error for such a 
channel. 

 

2. Analysis 

For our analysis, [OM] we consider the following system. 

 
Figure 1. General Block Diagram of the System 

 

General Part: We assume that the source generates a sequence, {uk} of equally likely 
statistically independent bits at a rate of R bits per second. These information bits are fed 
to a convolutional encoder of memory v1. The encoder output at time k is yk and is given 
by 
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The encoder output is fed to the finite memory part of the channel, whose output at time k 
is given by 
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),......,,,( 11 2 −−−= vkkkk yyykgz  ------ (2), 

where v2 is the memory of the channel. 

The above equations suggest that zk is directly dependent on the input sequence and 
hence we can write, 

),........,,,( 21 vkkkk uuukhz −−−=  ------ (3), 

where v = v1 + v2 -1 is the total memory of the concatenation of convolutional encoder 
and finite memory part of the channel. These two components can be considered to form 
a finite state machine, whose state xk is given by, 
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Suppose we consider a finite information sequence u0, u1,……, uL-1, where L >> v. 
Assuming the initial state  

x0 = 0 ------ (5) 

the receiver receives r1, r2,… rL and must form an estimate sequence 121 ˆ,...,ˆ,ˆ −Luuu from 
all possible 2L binary sequences where the criterion for the estimated sequence is 
minimum probability of error. The minimum probability of error sequence maximizes the 
conditional probability [WJ] 

},...,,|,...,,Pr{ 21110 LL rrruuu −  ------ (6) 

By applying Baye’s rule and condition for independence, our criteria reduces to 

},...,,|,...,,Pr{ 11021 −LL uuurrr  ------ (7) 

At this point, we make the reasonable assumption that, given the initial state x0, the 
output sequence of the finite state machine Lzzz ,...,, 21  uniquely determines the input 
sequence 110 ,...,, −Luuu . This allows us to change the conditioning variables from {ui} to 
{zi}. Also, considering the memoryless property of the channel, the criterion reduces to 
minimization of the cost function 

]}|ln[Pr{),...,,(
1

21 ∑
=

−=
L

k
kkL zrzzzJ  ------ (8) 

We now assume that the last v information symbols are used to resynchronize the finite 
state machine to some known state so that the receiver knows the states 00ˆ xx = and 

LL xx =ˆ exactly. Now suppose that an error occurs for the first time at state xk, that is, 
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Clearly, we have, 
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For i ≥ k + v + 1, the maximum likelihood states may or may not coincide ith the true 
states. Since, LL xx =ˆ , there exists a time j in the interval [k + v + 1, L] such that 

1,...,2,1;ˆ −++++=≠ jvkvkixx ii  ------ (11) 

and 

jj xx ≠ˆ  ------ (12) 

That is, there exists some time j in the interval from k + v + 1 to L where the maximum 
likelihood path merges with the true path for the first time after k. The following figure 
shows such a case. 

 
Fig2. Diagram of diverging paths. 

 

Now, note that an error occurs for the first time at k if and only if some path diverges 
from the true path at xk incurs the minimum cost 
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while separated from the true path. 



We can now make two definitions: [PR] 

Ekj = the event that some path that diverges from the true path at xk and merges back for 
the first time at xj incurs less cost than any other path from xk to xj. 

Mkj =  the number of possible paths that diverge from the true path at xk and merge with 
at xj for the first time. 

Clearly, Mkj is the number of information sequences that satisfy 

jjiikk xxjkixxxx =−+=≠= ˆ,1,...,1;ˆ,ˆ  ------ (14) 

and 
vkj

kjM −−−= 22  ------ (15.1) 

Clearly, 
vkj
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The probability of error is thus given by, 
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which is upper bounded by the sum of the probability of each event: 
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We further upper bound the error probability by picking the allowable state sequence 
jk xx ,...,  that minimizes Pr{Ekj}. Hence, 
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An even simpler bound is 
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Recall that Ekj is the event that some path that diverges from the true path at xk and 
merges back for the first time at xj incurs less cost than any other path between the two 
states. There are Mkj possible paths that can do this. Again applying the union bound we 
get 
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where i
kjE  is the path that diverges from the true path at xk and merges back for the first 

time at xj incurs less cost than the true path. We can evaluate the expression }Pr{ i
kjE for 

various target systems. 



 
Specific Part: We can try to get { }i

kjΕΡ  for specific case in this project.  
 

 
Based on our statement about error event, i

kjΕ , it occurs if and only if 
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Because the channel is memoryless, the joint pdf could be divided independently. If we 
take –ln(*) and rewriting, we can get the following result.  

( ) ( )

( )∑

∑ ∑

=

= =

−>

−≤−

j

kl

i
ll

j

kl

j

kl
ll

i
ll

zzn

zrzr

2

22

2
1

,
------ (22) 

i
kjΕ  is equivalent to a zero mean Gaussian random variable n with variance 2σ . 
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From now on, we have to find the range of i

kjd . By referring to Omura’s work [OM], we 
can get the range using beautiful matrix notation like the following: 
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If we use above inequality about i
kjd  and applying upper bound one more time 
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≤ ), we can get the upper bound for multilevel PAM system who has a 
convolutional coding with the channel in the presence of ISI. 
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Rather than consider a specific convolutional encoder, suppose we consider an ensemble 
of encoders, [WJ] if we randomly select an encoder, it might give us the average error 

Target system description: 
-  ISI channel with additive white Gaussian noise (ATTN: look at how we model 

this channel at the Appendix1.) 
-    Viterbi decoder is used for sequence estimator. 
- Convolutional encoding of information bits into multilevel symbols. 



probability. Definitely it is greater than the error probability of the best encoder. With this 
approach, we can get the upper bound for optimum encoder.  

012)( 2 Rv
e LoptimumP −≤  ------ (26) 

where R0 is normally greater than 1 for moderate to large signal-to-noise ratios and 
multi-PAM signaling. This shows that we can find convolutional encoders such that the 
error probability can be made to decrease at least exponentially with v1, the memory of 
the convolutional encoder.  
 
Notice!!!: If you look at the equation (26), you can realize that it couldn’t give an 
analysis graph which definitely should be compared to simulation graph. But, it alarms 
us that if we can use convolutional coding in transmitter, we can control the overall 
probability. Likewise the way we did in analysis, we can also simulate the system 
performance in the presence of ISI with varying the v1.  
 
A simple lower bound can be found by going back to our original expression for Pe. 
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Using our previous equations, a simple lower bound comes out. 
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These lower bounds apply for a particular convolutional encoder but are independent of 
the transmitted information sequence. The upper bound on Probability error of optimum 
encoder is independent of the particular convolutional encoder since it represents an 
average over a class of encoders.  
 
Thus, based on the result of analysis, we’re going to simulate the following scheme. 

- MLSD receiver in the presence of ISI. 
- MLSD receiver with convolutional coding in the presence of ISI. 

 
With the first scheme, we can verify how well MLSD cancels the ISI and how close it is 
to the BPSK system without ISI. After that, according to our result of analysis, we can 
get performance gain by varying convolutional coding memory length. From the 
simulation result, we can check our analysis result. 



3. Simulation Environments and Assumptions 
 
The following simulations were taken under some assumptions: 

- We assume that receiver already knows about channel coefficients. (See 
Appendix. (1)) 

- For starting with zero state and ending with zero state, we append some zero 
padding bits to original information sequence. (See Appendix. (1)) 

- We use baseband equivalent discrete-time model for ISI channel which was 
already obtained using whitening filter (See Appendix. (2)) 

- We use dynamic programming for ML sequence estimation [HY] (See also 
Appendix. (1)) 

 

4. Simulation Algorithm and Results 
 
The below graphs shows the performance of viterbi decoding for MLSD in the presence 
of ISI and white Gaussian noise and compares it to viterbi decoding used for the same 
channel without using Convolutional encoding. 
 
(1) AWGN channel with channel coefficients [1 0.8 0.5] 
 
The channel coefficients used  for this simulation were [1 0.8 0.5] and the memory of the 
channel was 2.The convolution encoder used had a constraint length of 5 and the 
generator matrix in octal was 23,35. 
 
Noise power was varied from -1 to -10 dB and since BPSK signaling was used, the signal 
energy was zero. Hence SNR=-Noise power and so SNR varied from 3 to dB. 
 

 



Figure 3. BER Performance I over ISI channel 
 
As seen from the above graph, initially at 1-3 dB the performance without convolutional 
encoding  was better as compared to the performance with convolutional encoding with 
rate 1/2. This is a trend observed at low SNR. But the difference between the 2 
simulations as seen from the graph is very low. 
 
At higher SNR’s the performance of viterbi with convolution coding gets better and 
better .At around 10 dB, the Bit error rate without convolution coding was around  0.0004, 
but with convolution coding was around 0.00003, a power of 10 better. 
 
With a convolution coding of rate 1/3 the performance is far better than with convolution 
coding with rate ½ or without convolution coding. This shows that as you increase the 
coding rate , the performance of the system in the presence of ISI and awgn gets better 
 
 
(2) AWGN channel with exponentially decaying channel coefficients 
 
The channel coeffcients generated for this simuation were generated from the equation 
f(k)=(sqrt(1-(a^2)))*(a^k) where a was selected as 0.5 
 
The values of the channel coefficients were found to be  [0.8660   0.4330   0.2165  ]  
 
The other conditions remained the same as before. The graph below shows the 
performance with and without convolution for ISI with white Gaussian noise. 

 

 
Figure 4. BER Performance II over ISI channel 



As seen from the above graph, initially at lower SNR [1-3 dB] the performance without 
convolutional encoding was better as compared to the performance with convolutional 
encoding at rate 1/2. Also as seen before at higher SNR’s the performance with 
convolution coding at rate 1/2 was found to be much better. As before the performance of 
convolution coding at higher coding rates gets better. 
 
An important observation was that with exponentially decaying coefficients, the 
performance with and without convolution was worse as compared to the previous case. 
This was because in case of exponentially decaying channel coefficients, the dependence 
on the current bit was lower ie f0 was 0.866 as compared to 1 for the previous case. 



5. Conclusion 

a. We prepared some required knowledge (Convolutional coding [PK], Viterbi 
algorithm [HY, FN1], ISI channel model with whitening filter [PK]) for 
analysis. 

b. We derived the upper bound and lower bound of probability of error for the 
following system. (Target system: MLSD optimum receiver with 
convolutional coding in the presence of ISI and WGN) 

c. According to result of analysis, we implemented simulator using MATLAB 
and took the required simulations. (Simulator has these items: convolutional 
coding, viterbi decoder and ISI channel model) 

d. Based on the simulation results, we can get the BER performance gain by 
1.5dB between with convolutional coding and without it for getting Pe =10-3 

e. As we increase the memory length of convolutional encoder, we can get about 
2dB performance gain for getting Pe=10-3 from coding rate=1/2 to 1/3 
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7. Appendices 

 

(1) The Viterbi Algorithm [HY], [FN1], [SK] 
 
This section explains the steps in the Viterbi algorithm for Maximum Likelihood 
Sequence Estimation for an ISI channel. 
 
As has been mentioned before, the objective of MLSD is to maximize the probability of 
the received sequence over all possible input sequences. It turns out that this boils down 
to finding the path through the trellis which minimizes the distance from the received 
sequence. We shall explore this statement further in this section. 
 
If the ISI channel has a memory of L, it implies that the output depends on the current 
input bit as well as the L previous bits that were input. These L previous bits comprise the 
“state”. Thus, there are 2L possible states. 
 
The first step is to create the trellis. The trellis for a channel memory of L=2 is shown in 
the figure. The transitions shown with a broken line are the transitions caused by an input 
bit 1 and the transitions shown with a solid line are the transitions caused by an input bit 
0.  
 

 
Fig 5. Trellis diagram 

 
It is sometimes convenient to visualize state transitions as a shift register of size equal to 
the memory. As input bits come in from the left, the bits in the register shift to the right 
with the rightmost bit falling out. Thus if the state is currently 01 and the next input bit is 
a 1 then the transition will cause the new state to be 10. 
 
Now each transition will also produce an output. This output is determined by the 
channel coefficients fi. Note that the state represents the previous L bits. Thus, a 
transition will produce an output given by 
 



<<<<<equation for rk = sigma(fi*s(k-i)) >>>>> 
 
where the s(k-i) for i = 1, 2, ….L are simply the bits that define the current state of the 
trellis. 
 
So as we traverse along any path in the trellis, each step we take produces some output 
which is calculated as we have shown above. 
 
The Viterbi algorithm now simply uses an “Add-Compare-Select” method to choose the 
optimal path through the trellis and hence get an optimal estimate of the transmitted 
sequence. After the trellis stabilizes, each state at every stage has 2 paths coming into it. 
We have to eliminate one of these paths. The idea is that as we keep eliminating paths – 
keeping a single backward pointer at each state – at the end of the whole sequence we can 
simply trace backward along a single unique path since all sub-optimal paths have been 
eliminated. We make sure that we end up at the all-zero state by sending a string of zeros 
at the end of the message sequence. That way we know which final state we must start 
tracing backwards from. 
 
The elimination of paths at a state is done by comparing the distance metrics for the two 
paths ending up at the same state. If a state k has two paths coming into it from states i 
and j in the previous stage then each of those transitions i-k and j-k have outputs Xi and 
Xj associated with them. Also, each of the states i and j in the previous stage have a 
distance metric associated with them – Di and Dj – which is the distance of the paths up 
to there from the actual received sequence. 
 
To eliminate paths at state k, we compare ( Di + | Xi - ri| )  and (Dj + | Xj - rj| ) and choose 
the lesser one. Thus, if j was the shosen state then while tracing backward we know that 
if we are at state k in this stage then the next step will be state j in the previous stage. 
 
Once we have traversed the entire length of the trellis, stopping at every state to eliminate 
non-optimal paths we will end up at the all-zero state from which we now trace 
backwards along the optimal path, estimating a bit at each step of the way. In this fashion 
we estimate the path through the trellis which is a minimum distance away from the 
actual received sequence. 
 

(2) Baseband equivalent discrete-time model for ISI channel using whitening filter 

We use equivalent discrete-time model of intersymbol interference with WGN in this 
paper. The received signal which goes through this channel model consists of transmitted 
sequence and white gaussian noise and channel impulse response. But, if we use the 
optimum receiver which takes matched filter for convolution of channel impulse response 
with signaling waveform, the sampled value of the matched filter has a correlated 
gaussian noise samples.  

 

For proving these noise sampled of matched filter to be correlated over adjacent samples, 
we can easily do that with the aid of this course’s text book [WJ] and reference [PK]. For 



easy analysis (we really need the property of white noise for MAP analysis), we have to 
use whitening filter. [PK]  

 

In summary, the cascade of signaling waveform, the channel impulse response, the 
matched filter and the sampler, and after those processing, if we use the discrete-time 
noise whitening filter, all things could be represented as an equivalent discrete-time 
transversal filter having the set {fk} as its tap coefficients.  The model looks like the 
following: 

 

 
Figure 6. Equivalent discrete-time model of intersymbol interference channel with 

WGN. 

Throughout the whole paper, we use this model for analysis and simulation. In simulation, 
we give the tap coefficients of the model ( vector f ) to the receiver in advance because 
we assume that the optimum MLSD receiver already knows about that. In analysis, we 
described these channel coefficients as g(i) 



(3) Convolution Coding 
 
The probability of error can be reduced by transmitting more bits than needed to 
represent the information being sent, and convolving each bit with neighbouring bits so 
that if one transmitted bit got corrupted, enough information is carried by the 
neighbouring bits to estimate what the corrupted bit was. This approach of transforming a 
number of information bits into a larger number of transmitted bits is called channel 
coding, and the particular approach of convolving the bits to distribute the information is 
referred to as convolution coding. The ratio of information bits to transmitted bits is the 
code rate (less than 1) and the number of information bits over which the 
convolution takes place is the constraint length. 
 
For example, suppose you channel encoded a message using a convolution code. Suppose 
you transmitted 2 bits for every information bit (code rate=0.5) and used a constraint 
length of 3. Then the coder would send out 16 bits for every 8 bits of input, and each 
output pair would depend on the present and the past 2 input bits (constraint length =3). 
The output would come out at twice the input speed. 
 
This is as seen in the below example: 
 

 
Fig. 7: The structure of encoder 

 
In the above case, it is a convolution encoder of code rate 1/2 This means there are two 
output bits for each input bit. 
The output z1 = x(n) ⊕x(n-1) ⊕x(n-2). 
Here x(n) is the present input bit, x(n-1) was the previous (yesterdays) bit, etc. 
The output z2= x(n) ⊕ x(n-2). 
The input connections to the XORs can be written as binary vectors [1 1 1] and [1 0 1] 
are known as the generating vectors or generating polynomials for the code. 
 

 

 

 



(4) MLSD for BPSK modulation for ISI with convolution coding 
 
Main Program 
 
%Revised: This has the integrated convolution encoding as well as the ISI 
%channel together, with BPSK signaling 
 
%Revised version: uses BPSK signaling with +1 and -1, keeping the signal 
%power constant at 0dB. Thus the SNR is simply the negative of the noise 
%power in dB. 
 
%creates an ISI channel with known coefficients f(i) and hands the received 
%output to a viterbi decoder for MLSD. 
 
clear; 
close all; 
 
['Running....'] 
 
SNR=[]; 
biterr=[]; 
total_overall = []; 
tot_ISI = []; 
 
L = 2;                          %the memory 
trel = poly2trellis(5,[23,35]); 
 
pure_len = 500;                %length f transmitted sequence without the leading and trailing 
zeros 
f = [ 0.4330  0.2165  ];      %coeff for most recent bit comes first 
 
f_top = [ 0.2165    0.4330    0.8660 ] ; % for the Toplitz Matrix 
 
 
%let's create the Toplitz Matrix with f_top 
 
len = 2*pure_len + 2*L; 
 
topl = zeros(len, len); 
for i = 1:len - L  
     
    temp = [ zeros(1,i-1) f_top zeros(1, len - i -L )]; 
    topl(i,:) = temp; 
     
end 
 



 
%let's create the Toplitz Matrix for the bit_by_bit sequence with f_top 
 
x = pure_len + 2*L; 
 
topl_plain = zeros(x,x); 
for i = 1:x - L  
     
        temp = [ zeros(1,i-1) f_top zeros(1, x - i -L )]; 
    topl_plain(i,:) = temp; 
     
end 
 
for N_dB=-1:-1:-10 
 
total_over=0; 
n=0; 
 
while total_over<20 
    n = n+1; 
err_overall=0; 
 
['-------------------------']; 
 
%----------------do the convolutional encoding------------------ 
 
s_data = round( rand(1, pure_len-2) ); % 0s and 1s pure data bit sequence 
 
s_data = [s_data 0 0]; %making sure the last 2 transmitted bits are zero 
 
s_data_bpsk1 = sign( s_data - 0.5); 
 
 % Define trellis. 
 
s_encoded = convenc(s_data,trel); % Encode. This is twice the length of the pure data 
 
s_enc = s_encoded; 
 
%------------transmit as BPSK thru ISI + AWGN Channel the coded sequence and the 
pure data-------------------------------- 
 
s_encoded = sign(s_encoded - 0.5); %converting 0 to -1 and 1 to +1 (BPSK) 
 
filler = zeros(1,L) - 1; %a filler which is a string of -1's 
 
s_encoded = [filler s_encoded filler];  



%add leading and trailing zeros to make sure we start  
%and end at the zeroth state 
 
len = max(size(s_encoded)); 
 
 
r = topl*s_encoded'; %the received ISI coded sequence 
 
r = r'; %making it a row vector 
 
W = wgn(1, length(r), N_dB); %generating white gaussian noise samples with power 
N_dB 
 
r = r + W; %adding noise to the received samples 
 
%-----------------Now pass it thru the Viterbi decoder for ISI-------------- 
 
[est_s_encoded, trellis1, distance1] = viterbi3_bpsk(r,L,f); %decodes the ISI for the 
encoded sequence 
 
 
%[est_s_plain, trellis12, distance2] = viterbi3_bpsk(r_pure,L,f); %decodes the ISI for the 
plain data sequence 
 
%est_s = [ zeros(1, L)-1 est_s]; 
 
 
x = length(est_s_encoded); 
est_s_encoded(x-L) = -est_s_encoded(x-L); 
 
 
for i=1:2*pure_len 
    est_s2(i)=est_s_encoded(i);  
end 
 
 
% est_s2 now has the estimated encoded sequence after passing  
%thru the ISI channel and its corresponding viterbi decoder 
 
%---------convert this back to 0's and 1's 
 
est_s2 = 0.5*(est_s2 + 1); %this is now the estimate of the convolutionally encoded 
sequence in 0s and 1s 
 
%-------------now pass this estimate of the encoded sequence thru the viterbi for 
 



%convolutional decoding------------ 
 
tblen=18; 
 
 
est_s_data=vitdec(est_s2,trel,tblen,'trunc','hard'); 
 
est_s_data(pure_len) = 0;  %making sure the last 2 bits match the transmitted sequence 
est_s_data(pure_len-1) = 0; 
 
 
err_overall = sum( abs(s_data - est_s_data) ); 
 
total_over=total_over+err_overall; 
 
 
error=0; 
 
trellis1; 
 
end 
 
total_overall = [total_overall total_over/(n*pure_len)] 
SNR=[SNR -N_dB] 
biterr = [biterr total_over/3*pure_len]; 
end 
 
total_overall 
 
 
Viterbi_bpsk.m :- Does the actual Viterbi decoding part. 
 
%Revised version: uses BPSK signaling with +1 and -1, keeping the signal 
%power constant at 0dB. Thus the SNR is simply the negative of the noise 
%power in dB. 
 
%This is going to be a viterbi decoder for ISI. Inputs are the received set of 
%bits, the memory, the channel coefficients f(i) - a row matrix -  that determine how the 
L 
%previous bits affect the present bits. The output will (hopefully) be the 
%maximum likelihood input sequence that caused this received sequence. The 
%transmitted sequence must start from the all zero state and must end at 
%the all zero state. This assumes 0's and 1's being transmitted even as 
%voltages. Make changes if you want +1 and -1 for "inp_bit" 
 
function [decoded, trellis, distance] = viterbi(r,L,f) 



 
 
len = max(size(r)); %the number of received bits 
st = 2^L; %number of states 
 
 
f_0 = 0.8660; %the coefficient for the current bit  
 
s = [0:st-1]; %a matrix with all the states numbered 
 
trellis = zeros(st,len+1); %holds backward pointers as we go forward 
distance = zeros(st, len+1); % keeps track of the distance metrics as we go along 
 
 
% ---------------------------------------------------- 
%we now set the distance metrics for the points just before the stable 
%states repeat. At this point, the state itself is the input sequence. The 
%current bit can be obtained by looking at the MSB of the state. The 
 
for k = 1:st 
        
    %now we work backwards from each of these states to the all zero state 
    %and sum up the distances 
     
    state = k-1; 
     
    for m = L:-1:1 
         
        if state>=2^(L-1) 
            inp_bit = 1; 
        else 
            inp_bit = -1; 
        end 
         
       ['Before shift']; 
     
        state; 
         
        state = bitshift(state,1,L); %to find out which state I came from 
         
         ['After shift']; 
        state; 
         
        ['the output for the backward step is']; 
        out = f*sign(nev_dec2bin(state, L) - 0.5)' + f_0*inp_bit ; 
         



        distance(k,L+1) = distance(k,L+1) + abs(r(m) - out) ; 
         
    end 
end 
 
distance; 
% ---------------------------------------------------- 
 
%Now we proceed to calculate the distance metics stage by stage - for each of 
%the stable states in each stage 
 
for i = L+2:len+1, 
    for j = 1:st 
         
        x = s(j); %x now has the actual state number 
        prev_1 = bitshift(x,1,L); %does a left shift. This is the prev state if the bit  
                                  %that fell out was a zero 
        prev_2 = prev_1 + 1; %the prev state is the bit that fell out was a 1 
         
        %we now figure out if the input bit to get to this state was a 1 or 
        %a 0 
        if x>=2^(L-1) 
            inp_bit = 1; 
        else 
            inp_bit = -1; 
        end 
         
        out_1 = f*sign(nev_dec2bin(prev_1, L) - 0.5)' + f_0*inp_bit; 
         
        % f should be such that the coefficient for the most recent bit is 
        % first  
         
        out_2 = f*sign(nev_dec2bin(prev_2, L) - 0.5)' + f_0*inp_bit; 
          
         %now we have the 2 possible outputs for the two possible 
         %transitions to this state 
          
         d_1 = abs( r(i-1) - out_1) + distance(prev_1+1, i-1); 
         d_2 = abs( r(i-1) - out_2) + distance(prev_2+1, i-1); 
          
         %these are the 2 cumulative distance metrics for paths up to the 
         %i'th stage 
          
         if d_1 < d_2 
             trellis(j,i) = prev_1; %pointing to the decided state in the previous stage 
             distance(j,i) = d_1; 



         else 
             trellis(j,i) = prev_2; 
             distance(j,i) = d_2; 
         end 
          
        
     end %for the j states 
 end %for the i stages 
  
  
 %now all we have to do is trace backwards from the last stage, which we 
 %made sure is the all zero stage by ending our transmitted sequence 
 %accordingly. The trace-back pointers are stored in 'trellis'. The trick 
 %to realise is that if I am in a state with a number >= 2^(L-1) then my 
 %step from that state to the previous state will imply a transmitted bit 
 %estimate of 1, otherwise it is an estimate of 0. 
  
 decoded = []; 
 temp_state = 0; %because we start tracing back from the 0th state 
 for p = len+1:-1:L+2 
      
     if temp_state >= 2^(L-1) 
         decoded = [1 decoded]; 
     else 
         decoded = [-1 decoded]; 
     end 
      
     temp_state = trellis(temp_state+1, p); %sets the state to the backward pointer in trellis 
      
 end 
  
% we've traced backward to the first stable state. The rest of the sequence 
% estimate is simply that state itself. 
  
decoded = [sign(flip(nev_dec2bin(temp_state,L)) - 0.5) decoded]; 
 
% so decoded is now our estimate of the transmitted sequence of bits 
      
 
 
 
Nev_dec2bin 
 
 
%this function converts a decimal number into its binary equivalent in L bits and the 
%result is a row matrix with each element as a bit 



 
function [bin] = nev_dec2bin(x, L) 
 
a = dec2bin(x,L); 
bin = []; 
for i = 1:L 
    bin(i) = bin2dec(a(i)); 
end 


