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Abstract—Orthogonal modulation, for example, frequency-
shift keying (FSK) or pulse-position modulation (PPM), is
primarily used in relatively-low-rate communication systems
that operate in the power-limited regime. Optimal noncoherent
detection of orthogonally modulated signals takes the form of
sequence detection and has exponential (in the sequence length)
complexity when implemented through an exhaustive search
among all possible sequences. In this work, for the first time in
the literature, we present an algorithm that performs generalized-
likelihood-ratio-test (GLRT) optimal noncoherent sequence de-
tection of orthogonally modulated signals in flat fading with
log-linear (in the sequence length) complexity. Moreover, for
Rayleigh fading channels, the proposed algorithm is equivalent
to the maximum-likelihood (ML) noncoherent sequence detec-
tor. Simulation studies indicate that the optimal noncoherent
FSK detector attains coherent-detection performance when the
sequence length is on the order of 100, offering a 3–5dB
gain over the typical energy (single-symbol) detector. While the
conventional exhaustive-search approach becomes infeasible for
such sequence lengths, the proposed implementation requires
a log-linear only number of operations, opening new avenues
for practical deployments. Finally, we show that our algorithm
also solves efficiently the optimal noncoherent sequence detection
problem in contemporary radio frequency identification (RFID)
systems.

Index Terms—Algorithm design and analysis, combinatorial
mathematics, fading channels, FM0 coding, frequency-shift key-
ing, generalized likelihood-ratio test, maximum-likelihood de-
tection, noncoherent communication, pulse-position modulation,
radio-frequency identification, sequence detection, wireless com-
munication.

I. INTRODUCTION

Orthogonal modulation is preferred to linear modu-

lation (e.g., phase-shift keying (PSK), pulse-amplitude-

modulation (PAM), quadrature amplitude modulation (QAM))

in relatively-low-rate communication systems that operate in

the power-limited regime. A typical example is FSK which

is primarily used (or considered for future use) in underwa-

ter communications [1]–[7], acoustic short-range communica-
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tions [8], [9], power-line communications [10], [11], backscat-

ter sensor networks and RFID [12]–[16], low-power wireless

sensor networks [17], and cooperative communications [18]–

[23]. To avoid the need for channel estimation (that induces

added complexity at the receiver end and rate loss due to the

necessary use of a pilot sequence), systems that utilize orthog-

onal modulation usually operate in the noncoherent mode; the

receiver performs noncoherent (or blind) detection without any

channel knowledge [8], [10], [13], [18]–[21], [23]–[27]. This is

partly due to the simplicity of the single-symbol noncoherent

detector which, for orthogonal modulation (e.g., FSK or PPM),

is a simple energy detector [8], [18]–[21], [25]–[28].

However, due to channel-induced memory, the optimal non-

coherent detector is no longer a single-symbol one but requires

processing of the entire received sequence to make a decision

on the entire data sequence, i.e., it is a sequence detector.

In fact, noncoherent sequence detection may offer significant

performance gains in comparison with conventional single-

symbol noncoherent detection [29], [30]. This observation was

first made in [31]–[34], in the context of M -ary PSK (MPSK),

where it was shown that ML noncoherent sequence detection

minimizes the sequence error probability, offering significant

error rate performance gains over the conventional symbol-by-

symbol noncoherent detection and attaining nearly-coherent

detection performance for sufficiently long sequences. This

is partly due to the fact that sequence detection exploits the

correlation of the received symbols in the entire sequence

(due to channel-induced memory), whereas symbol-by-symbol

detection does not.

Regarding FSK modulation, noncoherent sequence detec-

tion has been considered in [10], [14], [23], [24], [35], [36].

Nevertheless, optimal sequence detection comes at a high

price when implemented through an exhaustive search among

all possible transmitted data sequences; its complexity is

exponential in the sequence length [23], [35], [36]. In the

context of power-line communications, to reduce the overall

complexity, the authors in [10] propose a low-complexity

suboptimal noncoherent FSK sequence detector. Work in [14],

[16], in the context of scatter radio sensor networks, offered

soft-decision metrics for noncoherent binary FSK sequence

detection; however, each possible sequence belonged to a

specific short block-length error-correcting (channel) code.

In this work, for the first time in the literature, we present an

algorithm that performs GLRT-optimal noncoherent sequence

detection of orthogonally modulated signals in flat fading
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with log-linear (in the sequence length) complexity. GLRT is

independent of the fading channel distribution and, hence, is

a practical option when the channel statistics are not known

at the receiver. Moreover, we show that, for Rayleigh fading

channels, the proposed algorithm is equivalent to the ML non-

coherent sequence detector. Our algorithm utilizes principles

that have been used for polynomial-complexity optimization

in [37]–[40] and complements efficient optimal noncoherent

detection techniques that have been developed for PSK [37],

[38],1 [42] and PAM or QAM [40], [43]–[45] signals.2 We

show that, as the sequence length increases, the proposed non-

coherent scheme for orthogonally modulated signals attains

nearly coherent performance, offering a 3–5dB gain over the

typical energy (single-symbol) detector [8], [18]–[21], [25]–

[28], whereas it does not require any channel knowledge. In

contrast to the conventional exhaustive-search approach that

requires an exponential number of operations, the proposed

implementation of optimal3 noncoherent detection requires a

log-linear only (in the sequence length) number of operations,

opening new avenues for practical deployments.

Moreover, we consider noncoherent sequence detection of

FM0 signals. We recall that FM0 is a line-coding technique

that is utilized by the current RFID standards [46]–[64]. For

FM0, the optimal coherent detector operates on two consecu-

tive received samples to make a decision for a single bit [46].

However, for noncoherent detection over channels whose

coherence time spans more than two information symbols,

such two-sample correlation is inadequate to allow optimal

detection. In this work, we show that noncoherent sequence

detection of zero-offset FM0 is equivalent to noncoherent

sequence detection of uncoded binary FSK (BFSK). Hence,

the proposed algorithm for orthogonally modulated signals

also solves efficiently the optimal noncoherent detection prob-

lem in contemporary RFID systems. Finally, we show that

noncoherent sequence detection of antipodal FM0 signals

is equivalent to noncoherent sequence detection of uncoded

binary PSK, allowing the use of relevant log-linear-complexity

optimal sequence detectors [37], [38], [41], [42].

The rest of this paper is organized as follows. Section II

presents the signal model for orthogonal modulation and the

corresponding ML and GLRT noncoherent sequence detection

algorithms. Sections III and IV describe how the new algo-

rithms of Section II can be utilized for optimal noncoherent

detection in contemporary RFID systems. In Section V, we

study the performance of the proposed schemes. Finally, a

few conclusions are drawn in Section VI.

Notation: Nonbold lower-case letters (e.g., x) will stand

for variables. Vectors and matrices will be denoted by lower-

case (e.g., x) and capital (e.g., A), respectively, bold char-

acters. Symbols (·)T and (·)H will denote the transpose

and hermitian, respectively, of a vector or matrix. Real-part

operation is denoted by ℜ{·}. The proper complex Gaussian

distribution with mean µ and covariance matrix Σ is denoted

1The algorithm of [37], [38] reappeared in [41].
2The method in [40] applies to QAM constellations with independent in-

phase and quadrature components.
3Throughout the paper, when we use the term “optimal sequence detection,”

we refer to GLRT-optimal sequence detection.

by CN (µ,Σ). Finally, ‖x‖ stands for the euclidean norm of

vector x.

II. ORTHOGONAL MODULATION

In this section, we present a novel algorithm that performs

optimal noncoherent sequence detection of orthogonally mod-

ulated signals in flat fading with log-linear complexity. We

note that we consider a block flat-fading channel and our

proposed algorithm performs GLRT-optimal detection under

a Gaussian assumption about the noise. Moreover, under an

added Rayleigh assumption about the channel, our algorithm

is also the ML detector.

Although our developments hold for any orthogonally mod-

ulated signaling technique, we choose to present them in the

context of FSK.

A. Signal Model and Optimal Noncoherent Detection

M -ary FSK (MFSK) utilizes M sub-carrier frequencies to

modulate the information symbol x ∈ M , {1, 2, . . . ,M}.
For a single-symbol period, the transmitted MFSK waveform

is given by ux(t) which is selected from the available set of

M waveforms defined by [28]

um(t) =

√

P

T
ej2πfmt, 0 ≤ t < T, m = 1, 2, . . . ,M. (1)

In (1), P and T denote signal strength and nominal dura-

tion, respectively, and fm,m = 1, 2, . . . ,M , are the utilized

frequencies which, in noncoherent FSK, must satisfy the

orthogonality condition, i.e., |fm − fm′ | = k 1
T

, for some

k ∈ N, ∀m,m′ ∈ M with m 6= m′. If the modulated

waveform is transmitted through a flat-fading channel [10],

[23], [26], [35], [36], [65]–[67], then the received signal, after

downconversion, is written as

r(t) = hux(t) + n(t) (2)

where h is a complex number that models signal attenuation

and phase change due to the channel4 and n(t) is a zero-

mean complex Gaussian process with variance σ2
w, modeling

thermal noise at the receiver. The optimal receiver correlates

the received signal r(t) with all M signaling waveforms

u1(t), u2(t), . . . , uM (t) to produce samples

rm =
1√
P

∫ T

0

r(t)u∗
m(t)dt, m = 1, 2, . . . ,M. (3)

If the orthogonality condition is satisfied, then

rm =

{√
Ph+ nm, m = x,

nm, m 6= x,
(4)

where n1, n2, . . . , nM are independent zero-mean circularly

symmetric complex Gaussian variables with variance σ2
w [28].

4We assume that the channel fading coefficient is the same over each sub-
carrier frequency.
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Consequently, for a single-symbol duration, the received vec-

tor becomes 






r1
r2
...

rM








︸ ︷︷ ︸
r

=
√
Phex +








n1

n2

...

nM








︸ ︷︷ ︸
n

(5)

where n ∼ CN (0, σ2
wIM ) and

ex = [0 . . . 0
︸ ︷︷ ︸

x−1

1 0 . . . 0
︸ ︷︷ ︸

M−x

]T (6)

is the xth column, x = 1, 2, . . . ,M , of the M ×M identity

matrix IM . For notation simplicity, we also define the set

IM , {e1, e2, . . . , eM} (7)

that consists of the M columns of IM .

If the actual channel realization is not available to the

receiver and is modeled as a random variable, then this

variable appears in consecutive received vectors implying that

consecutive received vectors are no longer independent (even

under the condition of known transmitted symbols). In other

words, the channel induces memory in the received signal; as

a result, optimal detection requires processing of a sequence

of received vectors.

Let x = [x1 x2 . . . xN ]T ∈ MN be the transmitted

N × 1 information-symbol sequence. If y1,y2, . . . ,yN are

the corresponding received vectors (per information symbol)

given by (5), then we may form the received vector for the

entire sequence x as

y ,








y1

y2

...

yN







=
√
Ph








ex1

ex2

...

exN








︸ ︷︷ ︸
s

+w (8)

where w ∼ CN (0, σ2
wIMN ), s is the column-wise concatena-

tion of the N transmitted signal vectors ex1 , ex2 , . . . , exN
, and

y is the column-wise concatenation of the N received signal

vectors y1,y2, . . . ,yN . Both s and y have size MN × 1.

The ML noncoherent detector maximizes the conditional

probability density function (pdf) of y given s, that is, the

optimal decision is given by

ŝML = argmax
s∈IN

M

f (y|s) (9)

where f(·|·) stands for the conditional pdf of the observation

vector given the transmitted symbol sequence and

INM =











ex1
ex2

...
exN



: exi
∈ IM , xi ∈M, i = 1, 2, . . . , N






.

(10)

Note that ‖s‖2 = N , for any s ∈ INM . It can be shown that, for

Rayleigh fading (i.e., h ∼ CN (0, σ2
h)) [26], [47], [52], [58],

[65], [67], the received symbol vector y given the transmitted

sequence s follows a proper complex Gaussian distribution

with mean E [y|s] = 0 and covariance matrix

Cy|s , E
[
yyH |s

]
= Pσ2

hss
T + σ2

wIMN . (11)

Consequently, the ML optimization problem in (9) can be

rewritten as

ŝML = argmax
s∈IN

M

1
∣
∣Cy|s

∣
∣
e
−yHC

−1
y|s

y
. (12)

Exploiting identities for the determinant and inverse of a rank-

1 update [68] and the fact that ‖s‖2 = N , we obtain

∣
∣Cy|s

∣
∣ =

∣
∣σ2

wIMN + Pσ2
hss

T
∣
∣ =

∣
∣σ2

wIMN

∣
∣

(

1 +
Pσ2

h

σ2
w

‖s‖2
)

= σ2MN−2
w

(
σ2
w + Pσ2

h‖s‖2
)

= σ2MN−2
w

(
σ2
w + Pσ2

hN
)

(13)

and

C−1
y|s =

(
σ2
wIMN + Pσ2

hss
T
)−1

=
1

σ2
w

IMN −
Pσ2

h

σ4
w + Pσ2

hσ
2
w‖s‖2

ssT

=
1

σ2
w

IMN −
Pσ2

h

σ4
w + Pσ2

hσ
2
wN

ssT . (14)

If we substitute (13) and (14) in (12), we obtain

ŝML = argmax
s∈IN

M

{

−yH

(
1

σ2
n

IMN −
Pσ2

h

σ4
w + Pσ2

hσ
2
wN

ssT
)

y

− ln
(
σ2MN−2
w

(
σ2
w + Pσ2

hN
))
}

= argmax
s∈IN

M

∣
∣sTy

∣
∣ . (15)

Substituting s = [eTx1
eTx2

. . . eTxN
]T in (15), the ML rule is

rewritten in terms of the information sequence x as5

x̂ML = argmax
x∈MN

∣
∣y1[x1] + y2[x2] + . . .+ yN [xN ]

∣
∣. (16)

The equivalent expressions (15) and (16) represent the optimal

decision rule when the channel coefficient follows a Rayleigh

distribution.

If, on the other hand, the channel distribution is not Rayleigh

or is unknown, then we may consider joint channel estimation

and data detection, i.e., GLRT sequence detection [44], ac-

cording to which,

ŝGLRT = argmin
s∈IN

M

{

min
h∈C

∥
∥
∥y −

√
Phs

∥
∥
∥

2
}

= argmin
s∈IN

M

∥
∥
∥
∥
y − sTy

‖s‖2 s
∥
∥
∥
∥

2

= argmax
s∈IN

M

∣
∣yHs

∣
∣
2

‖s‖2 = argmax
s∈IN

M

∣
∣sTy

∣
∣ . (17)

5We use the notation yn =











yn[1]
yn[2]

.

.

.
yn[M ]











to represent the M × 1 vector yn,

n = 1, 2, . . . , N .
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Hence, the ML optimization problem in (15) and the GLRT

optimization problem in (17) are equivalent. This equivalence

between noncoherent ML and GLRT has been also demon-

strated in the context of equal-energy signals and uniformly

distributed over [0, 2π) channel phase [29], [43]. A straightfor-

ward approach to solve (15) and (17) (or, equivalently, (16))

would be an exhaustive search among all MN sequences

x ∈ MN . However, such a solver would be impractical

even for moderate values of N , since its complexity is on

the order of O
(
MN

)
, i.e., it grows exponentially with N . In

the following, we present an algorithm that solves the above

problems with log-linear complexity O(N logN). Similar al-

gorithms have been developed for polynomial-time optimal

noncoherent detection of PSK signals in [37], [38], [41], [42]

and PAM or QAM signals in [40], [43]–[45].

B. Log-linear-complexity Optimal Detection

First, we present the proposed algorithm for BFSK (M =
2). Then, we generalize to any M ≥ 2. In either case, we

begin by rewriting the optimal detection rule in (16) as

max
x∈MN

∣
∣y1[x1] + y2[x2] + . . .+ yN [xN ]

∣
∣

= max
x∈MN

max
φ∈[0,2π)

ℜ
{
e−jφ (y1[x1] + y2[x2] + . . .+ yN [xN ])

}

= max
φ∈[0,2π)

max
x∈MN

{

ℜ
{
e−jφy1[x1]

}
+ ℜ

{
e−jφy2[x2]

}
+ . . .

. . .+ ℜ
{
e−jφyN [xN ]

}}

. (18)

1) Optimal algorithm for M = 2: For a given point φ ∈
[0, 2π), the innermost maximization in (18) is separable for

each xn and, hence, splits into independent maximizations for

any n = 1, 2, . . . , N , as

x̂n = argmax
xn∈{1,2}

ℜ
{
e−jφyn[xn]

}

⇔ ℜ
{
e−jφyn[1]

} x̂n=1

≷
x̂n=2

ℜ
{
e−jφyn[2]

}

⇔ ℜ
{
e−jφ(yn[1]− yn[2])

} x̂n=1

≷
x̂n=2

0

⇔ cos
(
φ− yn[1]− yn[2]

) x̂n=1

≷
x̂n=2

0 (19)

where x̂n is the decision on the nth information symbol xn

of the sequence of N consecutive symbols and z denotes the

angle of the complex number z.

According to (18), to obtain the optimal sequence x̂ML

in (16), it suffices to let φ vary from 0 to 2π and, for

each value of φ, determine the corresponding sequence x̂ =
[x̂1 x̂2 . . . x̂N ]T using (19) for n = 1, 2, . . . , N . Then, one

of the collected sequences that we meet as φ varies from 0 to

2π will be x̂ML.

Interestingly, as φ scans [0, 2π), the decision x̂n changes,

according to (19), only when

cos
(
φ− yn[1]− yn[2]

)
= 0

⇔ φ = ±π

2
+ yn[1]− yn[2] (mod 2π)

︸ ︷︷ ︸

φ
(1)
n ,φ

(2)
n

. (20)

Hence, the sequence decision x̂ = [x̂1 x̂2 . . . x̂N ]T changes

only at φ
(1)
1 , φ

(2)
1 , φ

(1)
2 , φ

(2)
2 , . . . , φ

(1)
N , φ

(2)
N . In the following,

we assume that the above 2N points are distinct and nonzero,

i.e., φ
(j)
n 6= φ

(k)
l and φ

(j)
n 6= 0, for any j, k ∈ {1, 2} and

n, l ∈ {1, 2, . . . , N} with n 6= l. The case where the above

assumption does not hold is examined separately in Footnote 6.

Since the 2N points are distinct, only one element of the

sequence changes at each such point. If we sort the above

points in ascending order, i.e.,

(θ1, θ2, . . . , θ2N ) = sort
(

φ
(1)
1 , φ

(2)
1 , φ

(1)
2 , φ

(2)
2 , . . . , φ

(1)
N , φ

(2)
N

)

,

(21)

then the decision x̂ remains constant in each one of the 2N
intervals

C0 = (0, θ1) , C1 = (θ1, θ2) , . . . , C2N−1 = (θ2N−1, θ2N ) .
(22)

Note that we ignore (θ2N , 2π) because it gives the same

sequence x̂ with C0 = (0, θ1).
Our objective is the identification of the 2N sequences

x̂0, x̂1, . . . , x̂2N−1 (that correspond to the 2N intervals

C0, C1, . . . , C2N−1), one of which is x̂ML. We begin by

setting φ = 0 and determining the sequence x̂0 by (19) for

n = 1, 2, . . . , N . Note that x̂0 corresponds to interval C0.

Then, we consider φ = θ1 and invert the decision symbol xn,

n ∈ {1, 2, . . . , N}, which produced θ1. This way, we obtain

the new sequence x̂1 that corresponds to C1. We continue by

considering φ = θ2 and repeating the above procedure to ob-

tain x̂2 that corresponds to C2. Subsequently, we set φ = θ3 to

obtain x̂3 and continue similarly with φ = θ4, θ5, . . . , θ2N−1

to determine all 2N sequences x̂0, x̂1, . . . , x̂2N−1. Then, we

compare them against the metric of interest in (16) to identify

the optimal one which is x̂ML.

The proposed algorithm that we just described is presented

in Fig. 1.6 The overall complexity to produce the 2N se-

quences x̂0, x̂1, . . . , x̂2N−1 among which is x̂ML is dominated

by the computational cost of the sorting operation in (21)

which is on the order of O(2N log22N) = O(N logN).
Improvements to the proposed algorithm: We can sim-

plify the algorithm that we described above by taking into

account a few properties of the generated candidate sequences.

First, observe that the candidate sequence that we obtain at

any φ ∈ [0, π) is the complement of the candidate sequence

6If φ
(j)
n = 0 for some j ∈ {1, 2} and n ∈ {1, 2, . . . , N}, then θ1 = 0,

implying that the candidate sequence x̂0 cannot be defined at φ = 0 due to
sign ambiguity with respect to the symbol xn that produced θ1 = 0. Then,
we change the interval of φ from [0, 2π) to [θ∗, 2π+θ∗), where θ∗ is a point
that belongs to the interval that precedes θ1 = 0. In this case, we select θ∗ to

be the mid-point of the preceding interval (θ2N , 2π), i.e., θ∗ = θ2N−2π
2

, as

shown at lines 6–10 of the algorithm in Fig. 1. Hence, θ2N < θ∗ (mod 2π)
and θ∗ < θ1 = 0, implying that the first two intervals in (22) change to
C0 = (θ∗, θ1 = 0) and C1 = (θ1 = 0, θ2) where the corresponding two
candidate sequences x̂0 and x̂1 are uniquely defined.

Finally, if φ
(j)
n = φ

(k)
l

for some j, k ∈ {1, 2} and n, l ∈ {1, 2, . . . , N}
with n 6= l, then θi = θi+1 for some i ∈ {1, 2, . . . , 2N − 1}, implying that
interval Ci = (θi, θi+1) does not exist and must be removed from the list of
2N intervals in (22); the two adjacent intervals Ci−1 = (θi−1, θi = θi+1)
and Ci+1 = (θi = θi+1, θi+2) that correspond to the candidate sequences
x̂i−1 and x̂i+1 become successive and the total number of 2N intervals (and
sequences) is reduced by one. In this case, we let the algorithm produce the
invalid intermediate candidate sequence x̂i without increasing its complexity
or affecting its optimality.
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Algorithm 1 Optimal Noncoherent Binary Orthogonal Detection

Input: y1, y2, . . . ,yN

1: for n = 1 : N do

2: φ
(1)
n := +π

2 + yn[1]− yn[2] (mod 2π)

3: φ
(2)
n := −π

2 + yn[1]− yn[2] (mod 2π)
4: end for

5: (θ1, θ2, . . . , θ2N ) := sort
(

φ
(1)
1 , φ

(2)
1 , φ

(1)
2 , φ

(2)
2 , . . . , φ

(1)
N , φ

(2)
N

)

6: if θ1 > 0 then

7: θ∗ := 0
8: else

9: θ∗ := θ2N−2π
2

10: end if

11: for n = 1 : N do

12: x̂n := argmax(ℜ
{
e−jθ∗

yn[1]
}
,ℜ

{
e−jθ∗

yn[2]
}
)

13: end for

14: x̂0 := x̂

15: for i = 1 : 2N − 1 do

16: Invert in x the symbol decision x̂n for which θi was obtained
17: x̂i := x̂

18: end for

19: x̂ML := argmaxx∈{x̂0,x̂1,...,x̂2N−1}

∣
∣y1[x1] + y2[x2] + . . .+ yN [xN ]

∣
∣

Output: x̂ML

Fig. 1. Optimal noncoherent sequence detection algorithm for binary orthog-
onal modulation and zero-offset FM0 coding.

that we obtain at φ+π.7 Indeed, for the decision rule in (19),

we observe that, for any φ ∈ [0, π) and any n = 1, 2, . . . , N ,

we have

cos (φ− yn[1]− yn[2]) = −cos ((φ+ π)− yn[1]− yn[2]) .
(23)

Hence, for any φ ∈ [0, π), (19) results in complementary

sequences at φ and φ+ π.

Then, from (20), we observe that

∣
∣
∣φ

(2)
n − φ

(1)
n

∣
∣
∣ = π, hence

φ
(1)
n and φ

(2)
n result in complementary sequences. Moreover,

one of them belongs to [0, π) and the other one belongs to

[π, 2π). As a result,8

0 < θ1 < θ2 < . . . < θN < π < θN+1 < . . . < θ2N < 2π
(24)

and

x̂n+N = x̂c
n, n = 0, 1, . . . , N − 1. (25)

This implies that it suffices to identify the N candidate se-

quences at [0, θN) and, then, consider also their complements.

Note that we ignore [θN , π) because it corresponds to the

complementary sequence x̂c
0.

Similar observations were made in [37]–[41], [69], [70]

in the context of PSK, where complementary sequences are

equivalent with respect to the metric of interest. This is in

contrast to FSK where complementary sequences have in

general different metric. Hence, in this work, we have to

store both complementary sequences for each interval, while

searching for the optimal one.

The proposed algorithm (that includes the above improve-

ments) is presented in Fig. 2. The N points of decision changes

are computed at lines 1–3 and sorted at line 4. At lines 5–12,

7Since the constellation is binary, we use the term “complementary se-
quences” to indicate sequences x and y that are related by y

c = x (i.e.,
ycn = xn, n = 1, 2, . . . , N ) where 1c = 2 and 2c = 1.

8Once more, we assume that θi < θi+1, for any i = 1, 2, . . . , N − 1, and
θ1 > 0. The case where the above assumption does not hold is examined in
Footnote 9.

Algorithm 2 Optimal Noncoherent Binary Orthogonal Detection in Time O(N logN)

Input: y1, y2, . . . ,yN

1: for n = 1 : N do

2: φn := π
2 + yn[1]− yn[2] (mod π)

3: end for

4: (θ1, θ2, . . . , θN ) := sort (φ1, φ2, . . . , φN )
5: if θ1 > 0 then

6: θ∗ := 0
7: else

8: θ∗ := θN−π
2

9: end if

10: for n = 1 : N do

11: x̂n := argmax(ℜ
{
e−jθ∗

yn[1]
}
,ℜ

{
e−jθ∗

yn[2]
}
)

12: end for

13: x̂comp := (x̂)
c

14: value x̂ := y1[x̂1] + y2[x̂2] + . . .+ yN [x̂N ]
15: value x̂comp := y1[x̂

comp
1 ] + y2[x̂

comp
2 ] + . . .+ yN [x̂comp

N ]
16: [ML value, x̂best] := max(|value x̂|, |value x̂comp|)
17: x̂ML := x̂best

18: for i = 1 : N − 1 do

19: let n be the index for which θi = φn at line 4
20: value x̂ := value x̂− yn[x̂n] + yn[x̂

comp
n ]

21: value x̂comp := value x̂comp − yn[x̂
comp
n ] + yn[x̂n]

22: x̂comp
n := x̂n

23: x̂n := x̂c
n

24: [best value, x̂best] := max(|value x̂|, |value x̂comp|)
25: if best value > ML value then

26: ML value := best value

27: x̂ML := x̂best

28: end if

29: end for

Output: x̂ML

Fig. 2. Simplified optimal noncoherent sequence detection algorithm for
binary orthogonal modulation and zero-offset FM0 coding with complexity
O (N logN).

we identify the initial sequence x̂ that is optimal in C0.9 At

lines 14 and 15, we evaluate the sum in (16) for sequences x̂

and x̂c, respectively. The two sums are compared against each

other with respect to their magnitudes; the best value as well as

the corresponding sequence are stored in ML value and x̂ML

at lines 16 and 17, respectively. At lines 18–29, we examine

θ1, θ2, . . . , θN−1 serially to find the optimal sequence x̂ML.

Specifically, at line 19, we move to the next θi in the sorted

list, which was obtained from some received vector, say yn.

At lines 20–23, we update the sums in (16) for sequences

x̂ and x̂c and the value of x̂n. At line 24, the two sums

are compared against each other and the best one together

with the corresponding sequence are stored in best value and

x̂best, respectively. If best value is greater than the up-to-

date ML value, then we update ML value and the optimal

sequence x̂ML at lines 26 and 27, respectively.

By inspection, the exact computational cost of the algorithm

9As in the algorithm of Fig. 1 (see Footnote 6), if φ
(j)
n = 0 for some

j ∈ {1, 2} and n ∈ {1, 2, . . . , N}, i.e., θ1 = 0, then we compute x̂0 at

the mid-point θ∗ of the interval that precedes θ1 = 0, i.e., θ∗ = θ2N−2π
2

.

Since θ2N = θN + π due to (23) and (24), it turns out that θ∗ = θN−π

2
,

as shown at line 8 of the algorithm in Fig. 2. Otherwise (that is, if φ
(j)
n 6= 0

for any j ∈ {1, 2} and n ∈ {1, 2, . . . , N}), θ1 is nonzero and θ∗ is set to
zero, as shown at line 6 of the algorithm in Fig. 2.

Finally, if φ
(j)
n = φ

(k)
l

for some j, k ∈ {1, 2} and n, l ∈ {1, 2, . . . , N}
with n 6= l, then θi = θi+1 for some i ∈ {1, 2, . . . , N−1}. In this case, we
act exactly as we did in the algorithm of Fig. 1 (see Footnote 6), i.e., we let
the algorithm produce the invalid intermediate sequences x̂i and x̂

c
i without

increasing its complexity or affecting its optimality.
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of Fig. 2, if we count arithmetic operations,10 equals

J2(N) = N log2N + 17N − 4. (26)

Its complexity is dominated by the computational cost of the

sorting operation at line 4 which is on the order of O(N logN).

2) Optimal algorithm for M ≥ 2: If we fix φ ∈ [0, 2π),
then the innermost maximization in (18) splits into indepen-

dent maximizations for any n = 1, 2, . . . , N , as

x̂n = argmax
x∈M

ℜ
{
e−jφyn[x]

}
. (27)

We observe that, for fixed φ, (27) is solved by selecting the

largest value of ℜ
{
e−jφyn

}
. As φ scans [0, 2π), the decision

x̂n may change only when, for some k, l ∈M with k 6= l,

ℜ
{
e−jφyn[k]

}
= ℜ

{
e−jφyn[l]

}

⇔ ℜ
{
e−jφ (yn[k]− yn[l])

}
= 0

⇔ cos
(
φ− yn[k]− yn[l]

)
= 0

⇔ φ = ±π

2
+ yn[k]− yn[l] (mod 2π)

︸ ︷︷ ︸

φ
(1)

n,{k,l}
,φ

(2)

n,{k,l}

. (28)

Hence, as φ scans [0, 2π), the decision on the sequence x̂

may change only at some of the points defined in (28), for

any k, l ∈ M with k 6= l and n = 1, 2, . . . , N . Although (28)

produces 2N
(
M

2

)
= M(M−1)N such points, it turns out that

the decision x̂ changes at only (at most) 2(M − 1)N points.

This is stated in the following proposition.

Proposition 1: For M ≥ 2, there exist at most 2(M − 1)N
changes of the sequence decision x̂ in the interval [0, 2π).
Proof:

Since, for a given φ ∈ [0, 2π), the N maximizations in (18) are

independent of each other, it suffices to restrict our attention

to a single symbol xn and show that the decision x̂n changes

at most 2(M − 1) times in the interval [0, 2π).
Consider first the interval [0, π). As φ scans [0, π),

the decision x̂n changes at K points given by (28), say

φn1 , φn2 , . . . , φnK
, where, without loss of generality,11

0 < φn1 < φn2 < . . . < φnK
< π. (29)

That is, the interval [0, π) is partitioned into K+1 successive

intervals

Cn0 = (0, φn1) , Cn1 = (φn1 , φn2) , . . . , CnK
= (φnK

, π)
(30)

in such a way that the decision in favor of xn (i) is constant

in each interval and (ii) is different over successive intervals.

Let x̂n0 , x̂n1 , . . . , x̂nK
be these K + 1 decisions on xn.

Since the decision on xn is made using (27), we define the

metric function in (27) with respect to symbol xn as

µn(φ;x) = ℜ{e−jφyn[x]}, φ ∈ [0, 2π), x ∈ M. (31)

10Complex addition, subtraction, multiplication, and division, magnitude,
angle, modulo, and maximization operations, and logical comparison account
for a single arithmetic operation.

11We again assume that φn1 > 0. If φn1 = 0, then we let φ scan the
interval [θ∗, π + θ∗) where θ∗ < 0 is an appropriately selected point in the
interval that precedes φn1 = 0, as described in Footnote 6.

Consider now an arbitrary value of k ∈ {0, 1, 2, . . . ,K − 1}.
Since x̂n = x̂nk

for any φ ∈ Cnk
and x̂n = x̂nk+1

for any

φ ∈ Cnk+1
, it is implied that

µn(φ; x̂nk
) > µn(φ; x̂nk+1

), if φ ∈ Cnk
,

µn(φ; x̂nk
) = µn(φ; x̂nk+1

), if φ = φnk+1
,

µn(φ; x̂nk
) < µn(φ; x̂nk+1

), if φ ∈ Cnk+1
.

(32)

The latter inequality will hold true as long as φ does not meet

any value φ′ 6= φnk+1
such that µn(φ

′; x̂nk
) = µn(φ

′; x̂nk+1
).

By (28), there is only one such a point, namely φnk+1
+ π,

which, however, lies outside [0, π). Hence,

µn(φ; x̂nk
) < µn(φ; x̂nk+1

), ∀φ ∈ (φnk+1
, π). (33)

Similarly, considering an arbitrary value of k ∈ {1, 2, . . . ,K}
and using the same arguments, we can show that

µn(φ; x̂nk
) < µn(φ; x̂nk−1

), ∀φ ∈ (0, φnk
). (34)

From (33), it is implied that x̂n0 , i.e., the decision

in Cn0 , cannot reappear in any other interval among

Cn1 , Cn2 , . . . , CnK
in [0, π). Similarly, from (34), it is im-

plied that x̂nK
appears only in CnK

. Finally, for any k =
1, 2, . . . ,K − 1, (33) and (34) imply that the decision x̂nk

cannot appear in (0, φnk
) or (φnk+1

, π). Hence, it appears

only in (φnk
, φnk+1

), which is Cnk
in (30). Therefore, the

K + 1 intervals in (30) correspond to distinct decisions, i.e.,

x̂nk
6= x̂nj

if k, j ∈ {0, 1, . . . ,K} with k 6= j. Since there

are at most M available values for xn, we conclude that

K + 1 ≤M , i.e.,

K ≤M − 1. (35)

Consider now the interval [π, 2π). If the decision x̂n

changes at K ′ points as φ scans [π, 2π), then, we can similarly

show that

K ′ ≤M − 1. (36)

As φ scans the entire circle [0, 2π), the decision x̂n changes

exactly K+K ′ times. From (35) and (36), we obtain K+K ′ ≤
2M−2 = 2(M−1). That is, the decision x̂n changes at most

2(M − 1) times. Therefore, the sequence decision x̂ changes

at most 2(M − 1)N times. �
The above proposition states that it suffices to check at

most 2(M−1)N points where the sequence decision changes.

When the points have been determined, the remaining process

resembles to the algorithm of case M = 2. Specifically,

after the identification of the points that correspond to actual

decision changes, we seek the sequence x̂ obtained at each

point θi that gives the largest metric in (16). In the case of

M > 2, sequence x̂(φ) is not necessarily complementary with

x̂(φ + π) and, thus, we need to seek the optimal sequence

within the entire interval [0, 2π).
The proposed algorithm for optimal noncoherent M -ary

orthogonal sequence detection is depicted in Fig. 3. By in-

spection, the exact computational cost of the algorithm, if we

count arithmetic operations, is upper bounded by

JM (N) = 2(M − 1)N log2(2(M − 1)N)

+ M(M − 1)N log2(M(M − 1))

+

(
1

4
M4 +

1

2
M3 +

35

4
M2 +

1

2
M − 5

)

N.

(37)
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Algorithm 3 Optimal Noncoherent M -ary Orthogonal Detection in Time O(N logN)

Input: y1, y2, . . . ,yN

1: for n = 1 : N do

2: φn := [ ]
3: Sn := [ ]
4: for k, l ∈M such that k 6= l do

5: φ
(1)
n := +π

2 + yn[k]− yn[l] (mod 2π)

6: φ
(2)
n := −π

2 + yn[k]− yn[l] (mod 2π)

7: φn := [φn, φ
(1)
n , φ

(2)
n ]

8: Sn := [Sn, {k, l}, {k, l}]
9: end for

10: end for

11: φ := [ ]
12: I := [ ]
13: S := [ ]
14: for n = 1 : N do

15: [φn, sort indices] := sort (φn)
16: Sn := Sn[sort indices]
17: if φn[1] > 0 then

18: θ∗ := 0
19: else

20: θ∗ := φn[M(M−1)]−2π
2

21: end if

22: x̂n := argmax
(
ℜ
{
e−jθ∗

yn[1]
}
,ℜ

{
e−jθ∗

yn[2]
}
, . . . ,ℜ

{
e−jθ∗

yn[M ]
})

23: m := x̂n

24: j := 1
25: while j ≤M(M − 1) do
26: j′ := max{j, j + 1, . . . ,M(M − 1)} such that φn[j

′] = φn[j]
27: if j′ = j then

28: if m ∈ Sn[j] then
29: m := the unique element of set Sn[j] \ {m}
30: φ := [φ, φn[j]]
31: I := [I, n]
32: S := [S,Sn[j]]
33: end if

34: else

35: P :=
j′⋃

i=j

Sn[i]

36: if P ∩ {m} 6= ∅ then
37: if j′ < M(M − 1) then

38: φ∗ := φn[j
′]+φn[j

′+1]
2

39: else

40: φ∗ := φn[M(M−1)]−2π
2

41: end if

42: m′ := argmax
(
ℜ
{
e−jφ∗

yn[1]
}
,ℜ

{
e−jφ∗

yn[2]
}
, . . . ,ℜ

{
e−jφ∗

yn[M ]
})

43: φ := [φ, φn[j
′]]

44: I := [I, n]
45: S := [S, {m,m′}]
46: m := m′

47: end if

48: end if

49: j := j′ + 1
50: end while

51: end for

52: [θ, sort indices] := sort (φ)
53: I := I[sort indices]
54: S := S[sort indices]
55: x̂ML := x̂

56: value x̂ := y1[x̂1] + y2[x̂2] + . . .+ yN [x̂N ]
57: ML value := |value x̂|
58: for i = 1 : length(θ) do
59: n := I[i]
60: m := x̂n

61: m′ := the unique element of set S[i] \ {m}
62: value x̂ := value x̂− yn[m] + yn[m

′]
63: x̂n := m′

64: best value := |value x̂|
65: if best value > ML value then

66: ML value := best value

67: x̂ML := x̂

68: end if

69: end for

Output: x̂ML

Fig. 3. Optimal noncoherent sequence detection algorithm for M -ary orthog-
onal modulation with complexity O (N logN).

The overall complexity of the algorithm is dominated by the

sorting operation at line 52 and, thus, the worst-case com-

plexity of the algorithm is O(2(M − 1)N log22(M − 1)N) =

d0 = 0 d1 = 0 d2 = 0

d3 = 1 d4 = 1

d5 = 0

b1 = 0 b2 = 0 b3 = 1 b4 = 0 b5 = 1

0

+1

Fig. 4. Transmitted waveform in zero-offset FM0 coding.

O(N logN).

III. ZERO-OFFSET FM0 CODING

FM0 (also called biphase-space or differential biphase

coding [46]) is a line-coding technique that is used in the

current RFID communications standard. In zero-offset FM0,

the signal level can take two possible values; namely, 0 and 1.

Specifically, the level changes at the middle of the bit period

for bit 0, whereas for bit 1 it remains constant. Moreover, it

always changes at the beginning of every bit period, as can

been seen in Fig. 4, and, thus, the signals from one bit interval

to another are not independent (i.e., FM0 induces memory). As

a result, four possible transmitted waveforms can be generated

which are depicted in Fig. 4 and can be represented in vector

form as [0 0]T , [0 1]T , [1 0]T , and [1 1]T .

Consider, for example, the transmission of the nth informa-

tion bit during the nth period. We denote by dn ∈ {0, 1} the

signal level at the end of nth bit period. Then, the signal level

dn−1 at the end of the preceding period will change to dcn−1

during the first half of the nth period.12 For the second half,

it will change to dn = dn−1 if the information bit is 0, or it

will remain dn = dcn−1 if the information bit is 1. This can

be compactly expressed as

dn = dn−1 ⊕ bn, n = 1, 2, . . . , N, (38)

where ⊕ denotes exclusive-OR operation. Hence, during

the nth bit period, the signal level takes the values

(dcn−1, dn−1 ⊕ bn
︸ ︷︷ ︸

dn

).

Assuming a sequence of N information bits

b1, b2, . . . , bN ∈ {0, 1}, the corresponding transmitted

sequence is

−−−→∣
∣
∣d0

∣
∣
∣
∣
∣

bit b1←−−−−−−−−−→
dc0

∣
∣
∣ d0 ⊕ b1

d1

∣
∣
∣
∣
∣

bit b2←−−−−−−−−−→
dc1

∣
∣
∣ d1 ⊕ b2

d2

∣
∣
∣
∣
∣

bit b3←−−−−−−−−−→
dc2

∣
∣
∣ d2 ⊕ b3

d3

∣
∣
∣
∣
∣
. . .

. . .

∣
∣
∣
∣
∣

bit bN←−−−−−−−−−−−−−−−→
dcN−1

∣
∣
∣ dN−1 ⊕ bN

dN

∣
∣
∣
∣
∣

←−−−
dcN

∣
∣
∣ (39)

or, in vector form,

[
d0, d

c
0, d1, d

c
1, . . . , dN , dcN

]T
=








ed0

ed1

...

edN








︸ ︷︷ ︸

d

(40)

12In this section, signal values 0 and 1 are considered complementary, i.e.,
0c = 1 and 1c = 0.
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where

d0 ∈ {0, 1}, (41)

dn = dn−1 ⊕ bn = d0 ⊕ b1 ⊕ b2 ⊕ . . .⊕ bn, n = 1, 2, . . . , N,

(42)

e0 = [ 01 ], e1 = [ 10 ]. (43)

Hence, zero-offset FM0 coding is equivalent to differential

BFSK modulation. For instance, if b1 = 0, b2 = 0, b3 = 1,

b4 = 0, and b5 = 1 and we use zero-offset FM0 coding with

d0 = 0, then we obtain d1 = 0, d2 = 0, d3 = 1, d4 = 1, and

d5 = 0, resulting in the waveform of Fig. 4.

The transmitted vector is
√
Pd where P is the signal

strength. Upon transmission over a flat-fading channel whose

coherence time spans at least N +1 symbols [46], [50], [51],

[55], the received vector is

y =








y0

y1

...

yN







=
√
Phd+








w0

w1

...

wN








(44)

where yn =
√
Phedn

+wn, n = 0, 1, . . . , N, h is the complex

channel coefficient, and w0, w1, . . . , wN is a sequence of

independent and identically distributed 2× 1 vectors that rep-

resent zero-mean additive white circularly symmetric complex

Gaussian noise, i.e., wn ∼ CN (0, σ2
wI2), n = 0, 1, . . . , N .

The optimal noncoherent zero-offset FM0 sequence detector

maximizes the conditional pdf of y given d, that is,

d̂ML = argmax
d∈IN+1

2

f (y|d) . (45)

The optimization problem in (45) is equivalent to optimal

noncoherent BFSK detection of (9). Hence, for Rayleigh

fading (i.e., h ∼ CN (0, σ2
h)) [50], [51], [55], from (15) we

obtain

d̂ML = argmax
d∈IN+1

2

|dTy|. (46)

As with BFSK, (46) also offers GLRT-optimal sequence

detection when the channel is non-Rayleigh or unknown. To

find the optimal solution in (46), the algorithm for BFSK,

presented in Fig. 2, can be directly employed to the sequence

of received vectors y0,y1, . . . ,yN to obtain the sequence

d̂ML with complexity O((N + 1)log(N + 1)) = O (N logN).
Finally, after identification of the optimal sequence d̂ML, the

optimal information data sequence b̂ML is obtained by plain

differential decoding, i.e.,

b̂ML
n = d̂ML

n ⊕ d̂ML
n−1, n = 1, 2, . . . , N. (47)

IV. ANTIPODAL FM0 CODING

A. Signal Model and Optimal Sequence Detection

In antipodal FM0 coding, the transmission process adopts

the same principles as in zero-offset FM0 coding. The only

difference is that the signal level takes the values 1 and −1
(instead of 0 and 1). The four possible transmitted waveforms

are depicted in Fig. 5 and can be represented in vector form

as [1 1]T , [1 −1]T , [−1 1]T , and [−1 −1]T .

b1 = 1 b2 = 1 b3 = −1 b4 = 1 b5 = −1

d0 = −1 d1 = −1 d2 = −1

d3 = 1 d4 = 1

d5 = −1

0

−1

+1

Fig. 5. Transmitted waveform in antipodal FM0 coding.

Similarly to zero-offset FM0 coding, it is straightforward to

show that dn = dn−1bn. Hence, during the nth bit period,

the signal level takes the values (−dn−1, dn−1bn
︸ ︷︷ ︸

dn

). For a

sequence of N information bits b1, b2, . . . , bN ∈ {±1}, the

corresponding transmitted sequence is

−−−→∣
∣
∣d0

∣
∣
∣
∣
∣

bit b1←−−−−−−−−−→
−d0

∣
∣
∣ d0b1

d1

∣
∣
∣
∣
∣

bit b2←−−−−−−−−−→
−d1

∣
∣
∣ d1b2

d2

∣
∣
∣
∣
∣

bit b3←−−−−−−−−−→
−d2

∣
∣
∣ d2b3

d3

∣
∣
∣
∣
∣
. . .

. . .

∣
∣
∣
∣
∣

bit bN←−−−−−−−−−−→
−dN−1

∣
∣
∣ dN−1bN

dN

∣
∣
∣
∣
∣

←−−−−
−dN

∣
∣
∣ (48)

or, in vector form,

[
d0,−d0, d1,−d1, . . . , dN ,−dN

]T
=








d0
d1
...

dN








︸ ︷︷ ︸

d

⊗
[

1
−1

]

(49)

where

d0 ∈ {±1}, (50)

dn = dn−1bn = d0b1b2 . . . bn, n = 1, 2, . . . , N, (51)

and ⊗ denotes Kronecker-product operation. Hence, antipodal

FM0 coding is equivalent to differential antipodal modulation,

as shown in [46]. For instance, if b1 = +1, b2 = +1, b3 =
−1, b4 = +1, and b5 = −1 and we use antipodal FM0 line

coding with d0 = −1, then we obtain d1 = −1, d2 = −1, d3 =
+1, d4 = +1, and d5 = −1, resulting in the waveform of

Fig. 5.

The transmitted signal vector is

√
P
2 d ⊗

[
1
−1

]

where P

is the signal strength. Upon transmission over a flat-fading

channel whose coherence time spans at least N + 1 symbols,

the optimal (coherent or noncoherent) detector correlates the

downconverted received sequence with the pulse

[
1
−1

]

at the

bit rate (with an offset by half bit period to match the corre-

sponding transmitted sequence), resulting in the (N + 1)× 1
vector

y =








y0
y1
...

yN







=
√
Phd+w (52)

where h is the complex channel coefficient and w ∼
CN (0, σ2

wIN+1) denotes zero-mean additive white circularly

symmetric complex Gaussian noise.
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The optimal noncoherent antipodal FM0 sequence detector

maximizes the conditional pdf of y given d, that is,

d̂ML = argmax
d∈{±1}N+1

f (y|d) . (53)

It can be shown that, for Rayleigh fading, the ML sequence

detection optimization problem can be expressed as

d̂ML = argmax
d∈{±1}N+1

|dTy| (54)

by following the same derivation steps as in Section II-A

(eq’s (8)–(15)). For non-Rayleigh or unknown channel, the

GLRT rule for antipodal FM0 coding admits the same opti-

mization problem, i.e.,

d̂GLRT = argmax
d∈{±1}N+1

|dTy| (55)

by following the same derivation as in eq. (17). After identifi-

cation of the optimal sequence d̂ML, the optimal information

data sequence b̂ML is obtained by plain differential decoding,

i.e.,

b̂ML
n = d̂ML

n d̂ML
n−1, n = 1, 2, . . . , N. (56)

B. Log-linear-complexity Optimal Detection

An efficient algorithm that computes the solution of (55)

with log-linear complexity was developed in [37], [38].13 For

completeness, we present it shortly in this subsection.

As in the development of the optimal algorithm for BFSK

detection (Section II-B), we use the fact that

max
d∈{±1}N+1

∣
∣dTy

∣
∣ = max

d∈{±1}N+1
|d0y0 + d1y1 + . . .+ dNyN |

= max
d∈{±1}N+1

max
φ∈[0,2π)

ℜ
{
e−jφ (d0y0 + d1y1 + . . .+ dNyN )

}

= max
φ∈[0,2π)

max
d∈{±1}N+1

{

d0ℜ
{
e−jφy0

}
+ d1ℜ

{
e−jφy1

}
+ . . .

. . .+ dNℜ
{
e−jφyN

}}

. (57)

For a given point φ ∈ [0, 2π), the inner maximization in (57)

is separable for each dn and, thus, splits into independent

maximizations for any n = 0, 1, . . . , N , as

d̂n = argmax
dn∈{±1}

dnℜ
{
e−jφyn

}

⇔ ℜ
{
e−jφyn

} d̂n=+1

≷
d̂n=−1

−ℜ
{
e−jφyn

}

⇔ ℜ
{
e−jφyn

} d̂n=+1

≷
d̂n=−1

0⇔ cos
(
φ− yn

) d̂n=+1

≷
d̂n=−1

0. (58)

According to (58), as φ scans [0, 2π), the decision d̂n changes

only when

φ = ±π

2
+ yn (mod 2π). (59)

For any φ ∈ [0, π), we observe that the candidate se-

quences that we obtain at φ and φ + π are opposite, since

cos (φ− yn) = − cos (φ+ π − yn), n = 0, 1, . . . , N ,

13The algorithm of [37], [38] reappeared in [41]. The principles of the
algorithm in [37], [38] were followed also in [69] to develop a quadratic-
complexity optimal algorithm.

in (58). Since opposite sequences result in the same metric

value in (54), it suffices to restrict our search in φ ∈ [0, π).
Hence, we keep the N +1 points in (59) that belong to [0, π)
and define them as

φn =
π

2
+ yn (mod π), n = 0, 1, . . . , N. (60)

Subsequently, we sort the N + 1 points through14

(θ0, θ1, . . . , θN) = sort (φ0, φ1, . . . , φN ) . (61)

Then, the decision d̂ remains constant in each one of the N+1
intervals

C0 = (0, θ0) , C1 = (θ0, θ1) , . . . , CN = (θN−1, θN ) . (62)

We note that we ignore the interval (θN , π) because it corre-

sponds to the opposite sequence of the one in C0.

Our objective now becomes the identification of the N +1
candidate sequences

d̂0, d̂1, . . . , d̂N (63)

that are associated with the intervals C0, C1, . . . , CN , respec-

tively, in [0, θN). We observe that sequences that correspond to

adjacent intervals differ in exactly one element. For example,

d̂0 and d̂1 differ in the element that produced θ0. Hence,

we propose to (i) identify d̂0 at φ = 0 through (58) and

(ii) successively visit the angles θ0, . . . , θN−1 to produce the

remaining N sequences, evaluate their metric in (54), and track

the best sequence and its metric. Note that, at each point θi,

the new sequence d̂i+1 is produced with constant complexity

by changing only one element of the preceding sequence d̂i.

The metric of d̂i+1 is obtained with constant complexity by

simply updating the metric of d̂i with respect to the single

element that changed at θi.

The optimal algorithm for ML sequence detection of an-

tipodal FM0 is illustrated in Fig. 6. The overall complexity is

dominated by the computational cost of the sorting operation

at line 4 which is on the order of O((N + 1)log2(N + 1)) =
O(N logN).

Comparing the two algorithms in Figs. 2 and 6, we observe

that the second one constructively builds and compares N

sequences, instead of 2N sequences that are built by the first

algorithm. This happens because the algorithm in Fig. 2 has

to track both a candidate sequence x̂ and its complementary

sequence x̂c. These two sequences have different metrics, as

explained in Section II-B1. On the contrary, the algorithm in

Fig. 6 calculates the metric of only half of the 2N sequences

and avoids examining their opposite ones, since opposite

sequences result in the same metric value in (54).

14Again, we assume that φn 6= φl and φn 6= 0 for any n, l ∈
{0, 1, . . . , N} with n 6= l. If φn = 0 for some n ∈ {0, 1, . . . , N}, then

we modify our search to the interval [θ∗, π + θ∗), where θ∗ = θN−π

2
< 0,

exactly as we did in Footnote 9 for the algorithm of Fig. 2. Finally, if φn = φl

for some n, l ∈ {0, 1, . . . , N} with n 6= l, then we let the algorithm produce
an invalid intermediate sequence without increasing its complexity or affecting
its optimality, exactly as we did in Footnote 9 for the algorithm of Fig. 2.
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Algorithm 4 Optimal Noncoherent Antipodal FM0 Decoding in Time O(N logN)

Input: y0, y1, . . . , yN

1: for n = 0 : N do

2: φn := π
2 + yn (mod π)

3: end for

4: (θ0, θ1, . . . , θN ) := sort (φ0, φ1, . . . , φN )
5: if θ0 > 0 then

6: θ∗ := 0
7: else

8: θ∗ := θN−π
2

9: end if

10: for n = 0 : N do

11: d̂n := sign
(
ℜ
{
e−jθ∗

yn
})

12: end for

13: d̂ML := d̂

14: value d̂ := d̂0y0 + d̂1y1 + . . .+ d̂NyN

15: ML value :=
∣
∣
∣value d̂

∣
∣
∣

16: for i = 0 : N − 1 do

17: let n be the index for which θi = φn at line 4
18: value d̂ := value d̂− 2d̂nyn
19: d̂n := −d̂n
20: if

∣
∣
∣value d̂

∣
∣
∣ > ML value then

21: ML value := |value d̂|
22: d̂ML := d̂

23: end if

24: end for

Output: d̂ML

Fig. 6. Optimal noncoherent sequence detection algorithm for antipodal FM0
coding with complexity O (N logN).

V. SIMULATION RESULTS

We consider BFSK transmissions through a Rayleigh flat-

fading channel. In Fig. 7, we plot the bit error rate (BER) of

the ML noncoherent sequence detector as a function of the

received signal-to-noise ratio (SNR) which is given by

SNR =
Pσ2

h

σ2
w

, (64)

for sequence length N = 1, 2, 10, and 100.15 Especially for

the case of the noncoherent energy detector (i.e., N = 1), we

also plot the theoretical expression for the BER in Rayleigh

flat fading, given by [28]

BER =
1

SNR + 2
. (65)

As a reference, we include the BER of the conventional ML

coherent detector with perfect channel knowledge. We observe

that, as the sequence length increases, the noncoherent detector

approaches the coherent one in terms of BER. Moreover, the

BER of the conventional energy detector (i.e., N = 1) is 3–

5dB far from the coherent one; as the sequence length N

increases, the BER gap decreases to zero.

To demonstrate the rate of convergence to coherent detection

performance, in Fig. 8, we set the SNR to 10dB and plot

the BER of the ML noncoherent detector as a function of

the sequence length N . We include the BER of the ML

coherent detector, as a reference. We note that the BER of

the noncoherent scheme with N = 100 is nearly equal to

the BER of the coherent one with perfect channel knowledge.

In the same figure, we plot the computational cost of the

ML noncoherent detector implemented by both the proposed

algorithm and the conventional exhaustive-search approach, as

15Since the channel is Rayleigh distributed, the ML and GLRT noncoherent
detectors coincide.
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Fig. 7. BER versus bit SNR of ML/GLRT noncoherent BFSK detection with
sequence length N = 1, 2, 10, 100 and ML coherent BFSK detection with
perfect channel knowledge.
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Fig. 8. BER and computational cost of ML/GLRT noncoherent BFSK
detection versus sequence length N for SNR = 10dB.

a function of the sequence length N . We recall that the cost

of the proposed algorithm equals J2(N), given by (26), while

the cost of the conventional exhaustive-search approach is 2N .

Finally, in Figs. 9 and 10, we repeat the above studies for

4FSK modulation and make similar observations for its symbol

error rate (SER). In Fig. 9, for the case of the noncoherent

energy detector (i.e., N = 1), the theoretical expression for

the SER in Rayleigh flat fading is [28]

SER =
3

SNR + 2
− 3

2SNR + 3
+

1

3SNR + 4
. (66)

For the complexity plot in Fig. 10, we recall that the cost of

the proposed algorithm equals J4(N), given by (37), while

the cost of the conventional exhaustive-search approach is

4N . Once more, we observe that the SER of the noncoherent

scheme with N = 100 is nearly equal to the SER of the
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Fig. 9. SER versus symbol SNR of ML/GLRT noncoherent 4FSK detection
with sequence length N = 1, 2, 10, 100 and ML coherent 4FSK detection
with perfect channel knowledge.
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Fig. 10. SER and computational cost of ML/GLRT noncoherent 4FSK
detection versus sequence length N for SNR = 10dB.

coherent one with perfect channel knowledge. Interestingly,

this is achieved with J2(100) ≃ 2,360 operations for BFSK

and at most J4(100) ≃ 33,140 operations for 4FSK (while

the conventional exhaustive search is infeasible for such a

sequence length since it would require 2100 ≃ 1030 and

4100 ≃ 1060, respectively, operations), opening avenues for

practical deployments.

VI. CONCLUSIONS

For the first time in the literature, this work presented algo-

rithms that perform optimal noncoherent sequence detection

with log-linear (in the sequence length) complexity of orthog-

onally as well as FM0 modulated signals over flat fading.

We demonstrated that, as the sequence length increases, the

proposed detection schemes offer zero BER/SER performance

gap compared to ML coherent detection. The above facts

render the adoption of the proposed noncoherent sequence

detection schemes for practical deployments as a probable

option in the power-limited regime.
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