A Tutorial of 802.11 Implementation in ns-2

Yue Wang
MobiTec Lab, CUHK

1. Introduction to ns-2

1.1 ns-2

Ns-2 [1] is a packet-level simulator and essentially a centric discrete event scheduler to schedule
the events such as packet and timer expiration. Centric event scheduler cannot accurately emulate
“events handled at the same time” in real world, that is, events are handled one by one. However,
this is not a serious problem in most network simulations, because the events here are often
transitory. Beyond the event scheduler, ns-2 implements a variety of network components and
protocols. Notably, the wireless extension, derived from CMU Monarch Project [2], has 2
assumptions simplifying the physical world:

(1) Nodes do not move significantly over the length of time they transmit or receive a packet.
This assumption holds only for mobile nodes of high-rate and low-speed. Consider a node with the
sending rate of 10Kbps and moving speed of 10m/s, during its receiving a packet of 1500B, the
node moves 12m. Thus, the surrounding can change significantly and cause reception failure.

(2) Node velocity is insignificant compared to the speed of light. In particular, none of the
provided propagation models include Doppler effects, although they could.

1.2 GloMoSim

GloMoSim [3] is another open-source network simulator based on a parallel discrete event
scheduler. Hopefully, it can emulate the real world more accurately. However, it is hard to debug
parallel programs. Although GloMoSim currently only supports pure wireless networks, it
provides more physical-layer models than ns-2, as shown in Table 1 [4].

Table 1. Physical layer and propagation models available in GloMoSim, ns-2 and OPNET

Simulator GloMoSim ns-2 OPNET

Moise Cumulative Companisen Cumulative

(SINE) of two signals

caleulation

Signal SNET based. | SNET based | BEE based

reception BEE based

Fading Bayleigh, Not included® | Not included
Ricean

Path loss Free space, Free space, Free space
Tworay, etc. | Tworay

1.3 Ns-2 Basics

Ns-2 directory structure

As shown in Figure 1, the C++ classes of ns-2 network components or protocols are implemented
in the subdirectory “ns-2”, and the TCL library (corresponding to configurations of these C++
instances) in the subdirectory of “tcl”.

ns-allinone-2.1h

tclh0x| |t}~:b0:-c| | otel | |t.c:lc:l| | ns—-2 | |na:m—1|

0Tl code C++ =ource
t_u aw
) [|| test || lik |

validation test

Otcel source

Figure 1. Ns-2 directory structure

Network Components

Network components are Node, Link, Queue, etc. Some of them are simple components, that is,
they are created from the corresponding C++ classes; The other are compound components, that is,
they are composed multiple simple C++ classes, e.g. Link are composed of Delay (emulating
propagation delay) and Queue. In general, in ns-2, all network components are created, plugged
and configured from TCL.

Example: Plug MAC into NetlF (Network Interface)
Class MAC {
void send (Packet* p);

void recv(Packet*, Handler* h);
NsObject* target //an instance of NetlF

Event Scheduling

Events are something associated with time. class Event is defined by {time, uid, next, handler},
where time is the scheduling time of the event, uid is the unique id of the event, next is the next
scheduling event in the event queue that is a linklist, and handler points to the function to handle
the event when the event is scheduled. Events are put into the event queue sorted by their time,
and scheduled one by one by the event scheduler. Note that class Packet is subclass of class Event
as packets are received and transmitted at some time. And all network components are subclass of
class Handler as they need to handle events such as packets.

The scheduling procedure (void Scheduler::schedule(Handler* h, Event* e, double delay)) is
shown in Figure 2. The event at the head of the event queue is delivered to its hander of some
network object. Then, this network object may call other network object, and finally some new
events are inserted into the event queue.

Data Path 3

time wid next handler

-~

/
/- head —=

Data Path §

Event

Scheduler E
BN nsert

~,

-

time_ wd_next handler |

Data Path ¢

Figure 2. Discrete Event Scheduler

Example: A and B are two mobile nodes. And A sends packet p to B (suppose they are within the
tx range).

A::send (Packet* p) {target_->recv(p)} //target_is B; call B::recv

B::recv(Packet*, Handler* h = 0) {

Scheduler::instance().schedule(target _, p, tx_time) //target_ is B; schedule the packet at the
/I time of (current_time + tx_time)

Example: Timer is another kind of Event that is handled by TimerHandler
class TimerHandler: public Handler

resched(double delay) //the time expires at the time of (current_time + delay)
handle(Event *e){
expire (Event *e) //the virtual handling function overloading by users

Note: In ns, NO REAL time, timer, recv, send and packet flows in the sense of UNIX network
programming.

2. 802.11 Implementation

2.1 Physical Layer

port
demux
addr I
demux 2685
¥ ent ip addr %
53 n p
default
recularget |)
iy} arptable_
LL — = ARP
dymas
3
sendtarget
IFg
& MAC [=
recytarget
]
J g1
sendianget
recvtarget | g
Prop N
- MetlF
Maodel propagation_
£}
1 channel
]
Channel

Figure 3 Schematic of a mobile node under the CMU Monarch wireless extensions to ns.

Figure 3 shows the network components in the mobile node and the data path of sending and
receiving packets. In this section, we describe the basic function of the physical layer and MAC is

detailed in the next section.

Channel (channel.cc)

The function of class Channel is to deliver packets from a wireless node to its neighbors within the
sensing range.
I. Stamp txinfo in the packets before sending:
p->txinfo_.stamp((MobileNode*)node(), ant_->copy(), Pt_, lambda)
Note: Here node() are the pointer of the sending node, ant_->copy() is the antenna’s parameters
such as the height of the antenna, Pt_ is the transmitting power, and lamba_ is the wavelength of
light. These information is used for the receiving node to calculate the receiving power.

I1. Send packets to the nodes within the sensing range distCST_ to be sensed or received by
these nodes.
distCST_ = wifp->getDist(wifp->getCSThresh(), wifp->getPt(), 1.0, 1.0,
highestZ , highestZ, wifp->getL(), wifp->getLambda());
Note: distCST is calculated by the parameters such as CS Threshold, transmission power, antenna
gains, antenna heights, system loss factor, and wavelength of light.

NetlF (wireless-phy.cc)
The function of class WirelessPhy is to send packets to Channel and receive packet from Channel.

I. Packet Sending
channel_->recv(p, this);

I1. Packet Reception, sendUp()
/[calculate Rx power by path loss models
Pr = propagation_->Pr(&p->txinfo_, &s, this)

if (Pr< CSThresh) {
pkt_recvd = 0; // cannot hear it

}
if (Pr>= CSThresh_ && Pr < RXThresh_){

pkt_recvd = 1;
hdr->error = 1; // error reception, for Carrier Sense

}
if (Pr>=RXThresh_) {

pkt_recvd = 1;
hdr->error = 0; // maybe correct reception

Note: First, ns-2 calculates the receiving power Pr by the tx_info_ of p and the receiver this. When
Pr is less than CSThresh_ (Carrier Sense Threshold), the receiver cannot sense it; else, the receiver
can sense it and even receive it without error in the case that Pr > RXThresh_ (Reception
Threshold, and RXThresh_ > CSThresh_). Besides, successful reception also depends on the
packet’s SIR is larger than CPThresh_ (Capture Threshold), which is checked in MAC layer.

2.2 MAC

MAC (mac-802_11.cc)

The function of class Mac802_11 has 2 functions. On sending, it uses CSMA/CA medium access
mechanism; On receiving, it adopts SIRT (SIR Threshold) based reception (Capture).

State Transition Diagram

Duta naod recetved

f
! Finished CTS ransmission | Received DATA packe:
f r
! |
i
| TRANSMITTING_CTS WAITING_FOR_DATA TRANSMITTING_ACK
i
; Received RTS and NAY permits Findshed tra ission of ACK
{ | | chammel access Has packet 1o send and radio is idle NAY permits channel acoess, Set back-off counter
!; _! 1 | Medium busy, Save bl:k-oﬂm;mr
- | Medium
[DLE (INTTIAL STATE) WAIT_FOR_NAY WAIT_FOR_DIFS idle
o ——
- M J |
TS o™ Transmission of RTS bas finished Packet size 1 greater than RTS hreshold ;Hl::kb:; {
Increase CW i __l_ i 1 ave couner i
WAITING_FOR_CTS TRANSMITTING_RTS BACKING_OFF |
(6l back—off counter i3 zero)
Raceived ACK, ‘ Received CTS packet from mdio Packet size is lexs than RTS threshold Packet is broadcast
Reset CW o0 CWmin - 1 1 L
ACKnat| - WAITING_FOR_ACK TRANSMITTING UNICAST _TI!A_HSMHTI]‘IGJCAST
Reset W
B W ain
T‘l‘m of DATA packet finished Finished mransmission of packet

Figure 4. 802.11 MAC state transition diagram

State transition diagram can help us write or read network programs. Thus, before analyzing
802.11 source codes in ns-2, we first show the reference 802.11 MAC state transition diagram [5]
in Figure 4 that is somewhat different with ns-2. First, we need to find out the basic states.

Elementary States

enum MacState {
MAC_IDLE = 0x0000,
MAC _POLLING =0x0001, // ns 802.11 does not implement Polling
MAC_RECV =0x0010,
MAC_SEND =0x0100,

MAC_RTS = 0x0200,
MAC_CTS = 0x0400,
MAC_ACK = 0x0800,

MAC_COLL = 0x1000
+H

MacState rx_state_//can be MAC_IDLE, MAC_RECV, MAC_COLL

MacState tx_state_//can be MAC_IDLE, MAC_SEND, MAC_RTS, MAT_CTS, MAC_ACK
double nav_ //expiration of Network Allocation \Vector

[/Ichannel is idle

intis_idle() {
if (tx_state_ == MAC_IDLE && rx_state == MAC_IDLE
&& nav_ <= NOW)
return 1;
else
return O;
}

Note: The above is_idle() check whether the channel is idle at the moment when it is called.

MAC Timers

Timers are very important in 802.11 in triggering channel access. The following shows the basic
timers and their functions.

BackoffTimer mhBackoff
void start(int cw, int idle);// if is_idle(), start to count down; else freeze the timer
void pause(); //freeze the timer when the
void resume(double difs);//resume to count down after DIFS
void handle(Event *); //send RTS or DATA after it times out
int busy(); //Is counting down

DeferTimer mhDefer_
void start(double defer);//start to count down

void handle (Event *);//eg. send CTS or ACK after SIFS expires
int busy(); //1s counting down

IFTimer mhlF_; [interface timer, set interface state active when transmitting
NavTimer mhNav_; /I NAV timer

RxTimer mhRecv_; /lcompletion of incoming packets, call recvHandler()
TXTimer mhSend_; //sending timeout (e.g. no ACK received), call sendHandler()

Recv/Send functions
void setTxState (MacState newState) //For tx_state
void setRxState (MacState newsState)//For rx_state
void checkBackoffTimer() {
if(is_idle() && mhBackoff_.paused())
mhBackoff _.resume(phymib_.getDIFS());
if(! is_idle() && mhBackoff .busy() && ! mhBackoff .paused())
mhBackoff_.pause();

Note: the above sample codes show how receiving and sending will change MAC state and further
control the backoff timer.

/* Note: nav_ expires also mean channel is idle, then call mhBackoff _resume() */
void set_nav(u_int16 tus) {
double now = Scheduler::instance().clock();
double t = us * le-6;
if((now +t) >nav_) {
nav_ = now + t;
if(mhNav_.busy())
mhNav_.stop();//reset nav_
mhNav_.start(t);

Note: NAV timer is set by RTS or CTS to indicate the residual time of data transmission. However,
it is extended in ns-2 to also reflect the residual time before channel becomes idle, and thus can
replace the function of carrier sense. The usage is, update the NAV timer with the transmission
time of either received packets or sensed packets, set_nav (txtime(p)). When NAV timer expires,
navHandler() is called to resume backoff timer.

CSMA/CA

recv function is generally the entry of most network protocols (handling packets from both uplayer
and downlayer). For outgoing packets, it will call send function that is the entry of CSMA/CA.

void recv(Packet *p, Handler *h) {
struct hdr_cmn *hdr = HDR_CMN(p);
//handle outgoing packets
if(hdr->direction() == hdr_cmn::DOWN) {
send(p, h); //ICSMAI/CA
return;

/lelse, handle incoming packets

void send(Packet *p, Handler *h) {

if(mhBackoff_.busy() ==0) {
if(is_idle()) {
if (mhDefer_.busy() == 0) {
/*
* If we are already deferring, there is no
* need to reset the Defer timer.
*/
rTime = (Random::random() % cw_)
* (phymib_.getSlotTime());
mhDefer_.start(phymib_.getDIFS() + rTime);
}
Telse {
/*
* |f the medium is NOT IDLE, then we start
* the backoff timer.
*/
mhBackoff .start(cw_, is_idle());

Capture Model

Ns-2 uses a simplified capture model: When multiple packets collide at the receiver, only the first
packet can be successfully received if its Rx Power should be larger than any of the other packets
by at least CPThresh (10dB in ns-2).

void recv(Packet *p, Handler *h){

/[Handle incoming packets

/*
* When there is no packet reception, log receiving p at pktRx_
*/
if(rx_state_ == MAC_IDLE) {

setRxState(MAC_RECV);

pktRx_ =p;

mhRecv__start(txtime(p));// schedule the reception of this packet in txtime

/IsetRxState(MAC_IDLE) again after reception.

}
/*
* When there is already a packet reception (in pktRx), calculate the inference
*/
else {

/ISimplified SIR calculation (Comparison of two signals)

if(pktRx_->txinfo_.RxPr / p->txinfo_.RxPr >= p->txinfo_.CPThresh) {

capture(p);//pktRx_ can be correctly received;
/Irecalculate when the channel will be idle
Telse {
collision(p);//stop receving pktRx_ (i.e. mhRecv.stop())
/Irecalculate when the channel will be idle

2.3 An example of user extension: Add Fading

I.2

r —-=
The probability density function of Rayleigh fading is pdf (r) =—€ 2°° , where r stands for
o

P

Voltage. As Power = ¢ . r?, the probability density function for Power is pdf (P) = e P, where

ol +~

P stands for Power. And P is the mean of P, that is, Pr by path loss. So, we add the fading

calculation after pass loss calculate Pr ().
#include <random.h>
int WirelessPhy::sendUp(Packet *p) {

double Pr;

if (propagation) {
s.stamp((MobileNode*)node(), ant_, 0, lambda_);
Pr = propagation_->Pr(&p->txinfo_, &s, this);

/* Add Rayleigh fading (neglect time-correlation)*/
double mean = Pr;
Pr = Random::exponential(mean);

if (Pr< CSThresh)

We do two experiments in 11Mbps 802.11 networks to see the impacts of Rayleigh fading. The
default tx power Pt is 0.28, and thus tx range and sensing range are calculated as 250m and 550m.

The first experiment (Figure 5) is to test TCP performance. We vary the distance d from 50m to
250m. Figure 6 shows TCP throughputs as the function of the distance. When d becomes larger,
fading can cause more packet loss and thus reduce TCP throughputs significantly.

NodeO

d R
—= é
(Pt =0.28) BS

Figure 5. TCP under Rayleigh fading (Node 0 sends TCP packets to BS)

Figure 6. TCP Throughputs a function of the distance from BS (a) Without Fading (b) Rayleigh Fading

The second experiment (Figure 7) is to test UDP performance (assume saturate condition). We set
Pt of Node 0 be 10 times of the default Pt (SIR is 10), where Node 0 must capture when its
packets collide with Node 1 at BS suppose there is no fading. As shown in Figure 8, fading
aggravates the unfairness of two senders as their loss rate is dominated by Pt instead of capture,
when d becomes larger.

d b d
ié¢

NeO BS Nel
(Pt=3.0) (Pt=0.28)

Figure 7. Capture under Rayleigh fading (Node 0 and 1 send CBR packets to BS)

[r— collinlon —
medasl = | captamre

uiw)

Thecamshpart s (packet
Collinlons/Captures ot DS(packets/u}

6 B0 B0 160 120 140 180 180 200 320 240 40 B0 80 100 120 140 180 180 206 I20 240
Dimtance from B5{s} Dintance from e}

@)

-

collinion —
copture

2
ures at ESipacketa/a)
s

Throughputs (packetasa)

Col liniena/Capts

o o
4 B0 B0 100 120 140 160 180 200 290 M0 40 B0 B0 100 130 149 160 180 300 RO 340
Distance fros B5{m} Distance from BS(m}

(b)
Figure 8. UDP Throughputs and Captures/Collisions at a function of the distance from BS (a) Without
Fading (b) Rayleigh Fading

Finally, our simple implementation of fading does not consider the time correlation. For this
feature, please refer to CMU’s fading patch [6].

2.4 Bugs in ns-2

Assumptions

Simulators always need assumptions to make their calculations viable (recall Section 1.1).
However, when some assumptions are crucial in your simulations, you must be careful. For
example, there is no scanning for WLAN (Discovery/Select/Authentication/Association) in ns-2,
mobile nodes are associated with their BS automatically if they have the same pre-defined domain.
If you want to study the overhead of scanning, you should make your extension.

Standard Misinterpretation

Ns-2 may misinterpret some network protocols, even standard for it is an open project. For
example, we find ns-2 802.11 implementation seems abuse EIFS (set_nav(usec(phymib_.getEIFS()
+ txtime(p))) // whenever p is error, defer EIFS) [7]. Actually, in Figure 7, the node with Pt 0.28
will has more throughput before we let getEIFS() return 0 to eliminate the effect of EIFS.

3. Reference

[1] The network simulator - ns-2, http://www.isi.edu/nsnam/ns/

[2] The CMU Monarch Project’s Wireless and Mobility Extensions to ns,
http://www.monarch.cs.cmu.edu/

[3] GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

[4] Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks, MOBICOM 2001

[5] Ad Hoc Wireless Network, PRENTICE HALL 2004

[6] Additions to the NS network simulator to handle Ricean and Rayleigh fading,

http://www.ece.cmu.edu/wireless/

[7] EIFS, Section 9.2.3.4, ANSI/IEEE Std 802.11, 1999 Edition

