Problems from the Book:

Chapter 10

1. To approach this problem, one should use a (2, 4) threshold scheme. If we use a Shamir (2, 4) scheme, the polynomial is of the form:

 \[s(x) = 5 + a_1 x \pmod{p}. \]

Let us take \(p = 7 \) and choose the polynomial \(s(x) = 5 + x \pmod{7} \) (there are many other possible choices for polynomials). Then the secret value is \(s(0) = 5 \), and we may choose the shares \((1, 6), (2, 0), (3, 1), \) and \((4, 2) \).

3. The polynomial is

 \[8(x - 3)(x - 5) \quad (1 - 3)(1 - 5) + 10(x - 1)(x - 5) \quad (3 - 1)(3 - 5) + 11(x - 1)(x - 3) \quad (5 - 1)(5 - 3) \]

The secret is the constant term, obtained by letting \(x = 0 \):

 \[\frac{8 \cdot 15}{8} + \frac{10 \cdot 5}{4} + \frac{11 \cdot 3}{8} = \frac{53}{8} \equiv 2 \pmod{17} \]

8. The slopes of the lines \(AB \) and \(AD \) are equal to \(3/2 \) and \(-1/3 \), which are congruent mod 11. Therefore \(A, B, D \) lie on a line. \(C \) is not on this line, so \(C \) is the foreign agent. The line through \(A \) and \(B \) is \(y \equiv 8 + 7x \), so the secret is 8.

9. Split the launch code into three equal components using a 3 party secret splitting scheme. One component will be given to each of \(A, B, \) and \(C \). For the component that belongs to Government \(A \), use a \((3, 10)\) secret sharing scheme to give shares to the delegates of Government \(A \). Similarly, use a \((4, 10)\) secret sharing scheme to give shares of the component for Government \(B \) to \(B \)'s delegates. Finally, use a \((2, 10)\) scheme to share government \(C \)'s component amongst \(C \)'s delegates.

Chapter 10 Computer

3. We form the interpolating polynomial for different combinations of two users, and then compare the results. The answer that occurs most often is the correct answer.

\[
\begin{align*}
\text{>> p} &= 984583; \\
\text{>> x} &= [38 \quad 3876 \quad 23112 \quad 432]; \\
\text{>> s} &= [358910 \quad 9612 \quad 28774 \quad 178067]; \\
\text{>> interpoly(x([1 2]),s([1 2]),p)} \\
\text{ans} &= \\
\quad 69918 \quad 318526 \\
\text{>> interpoly(x([1 3]),s([1 3]),p)} \\
\text{ans} &= \\
\quad 21502 \quad 941642 \\
\text{>> interpoly(x([1 4]),s([1 4]),p)} \\
\text{ans} &= \\
\quad 21502 \quad 941642 \\
\text{>> interpoly(x([3 4]),s([3 4]),p)} \\
\text{ans} &= \\
\quad 21502 \quad 941642 \\
\end{align*}
\]

From these, it is clear that share 2 is the incorrect share.

Supplemental Problem

See the notes (Powerpoint slides) for the derivation of \(a(t) \). Instead of doing \(a(T) = 1/2 \), simply manipulate \(a(1) = 1/3 \) to solve for the constant term and then substitute back in.