Supplemental Problem Solutions:

1. Start by calculating \(R_X(k) \):

\[
E[X(n + k)X(n)] = E \left[\sum_{i=0}^{p} \alpha_i W(n - i) \sum_{j=0}^{p} \alpha_j W(n + k - j) \right] \\
= \sum_i \sum_j \alpha_i \alpha_j E[W(n - i)W(n + k - j)] \\
= \sum_i \sum_j \alpha_i \alpha_j R_W(k - j + i)
\]

Observe that for \(k > p \) we have \(k - j + i > 0 \) and hence \(R_W(k - j + i) = 0 \) (since \(W \) is white). Similarly for \(k < -p \).

(b) For \(|k| \leq p\) we have

\[
R_X(k) = \sigma^2 \sum_{i=0}^{p} \sum_{l=0}^{p} \alpha_i \alpha_l R_W(k - l + i)
\]

\[
= \sigma^2 \sum_{i=0}^{p} \sum_{l=0}^{p} \alpha_i \alpha_l \delta(k - l + i)
\]

\[
= \sigma^2 \sum_{l=0}^{p} \alpha_l \delta(k - l)
\]

\[
= \sigma^2 \sum_{l=-\infty}^{\infty} \alpha_l \delta(l - k) \text{ where } \alpha_l = 0 \text{ when } l < 0 \text{ and } l > p
\]

Now \(S_X(\omega) = \sum_{k=-\infty}^{\infty} R_X(k)e^{-ik\omega} \). Expanding we get

\[
S_X(\omega) = \sigma^2 \sum_k \sum_l \alpha_l \alpha_{l-k} e^{-i\omega l}
\]

Set \(m = l - k \) to get

\[
= \sigma^2 \sum_l \alpha_l e^{-i\omega l} \sum_m \alpha_m e^{i\omega m} = H(\omega) H^*(\omega) \sigma^2.
\]

(c) The transfer function is \(H(\omega) = \sum_k \alpha_k e^{-i\omega} \). From class \(S_X(\omega) = |H(\omega)|^2 S_W(\omega) = \sigma^2 |H(\omega)|^2 \).

2. As was correctly pointed out in class, this problem is only valid if \(R \) has distinct eigenvalues. Typically, you will have \(M \) distinct eigenvalues and corresponding to these \(M \) distinct eigenvalues are \(M \) orthogonal eigenvectors. We proceed with showing that these \(M \) eigenvectors are orthogonal.

Start with \(Rv_i = \lambda_i v_i \) for \(i = 1, \cdots, M \). For \(i \neq j \) we must show \(v_j^H v_i = 0 \). Premultiply \(Rv_i = \lambda_i v_i \) by \(v_j^H \) to get

\[
v_j^H Rv_i = \lambda_i v_j^H v_i.
\]

Since the \(R \) is Hermitian, we have \(R^H = R^* \), and the eigenvalues are real. Thus we may get

\[
v_j^H R = \lambda_j v_j^H.
\]

Postmultiplying this by \(v_i \) we get

\[
v_j^H Rv_i = \lambda v_j^H v_i.
\]
Subtracting this from $v_j^H R v_i = \lambda_i v_j^H v_i$ gives

$$(\lambda_i - \lambda_j) v_j^H v_i = 0.$$

Since the eigenvalues are distinct, this means that $v_j^H v_i = 0$.

3. Define $q = 1 - p$ for simplicity in notation. Start by observing

$$p_0 = (1 - p)^n = \left(1 - \frac{\alpha}{n}\right)^n \to e^{-\alpha}.$$

Next, let us look at ratios p_{k+1}/p_k.

$$\frac{p_{k+1}}{p_k} = \frac{\binom{n}{k+1} p^{k+1} q^{n-k+1}}{\binom{n}{k} p^k q^{n-k}} = \frac{(n - k)p}{(k + 1)q} = \frac{(1 - k/n)\alpha}{(k + 1)(1 - \alpha/n)} \to \frac{\alpha}{k + 1}.$$

Thus, the limiting probabilities satisfy

$$p_{k+1} = \frac{\alpha}{k + 1} p_k.$$

Substituting $p_0 = e^{-\alpha}$ and iterating will give the result, e.g.

$$p_1 = \alpha e^{-\alpha}$$

$$p_2 = \frac{\alpha}{2} p_1 = \frac{\alpha^2}{2} e^{-\alpha}.$$

2