This is an 80 minute exam. You may have an additional 100 minutes to answer the following five questions in the notebooks provided. You are permitted 2 double-sided sheet of notes. Make sure that you have included your name, ID number (last 4 digits only) and signature in each book used (5 points). Read each question carefully. All statements must be justified. Computations should be simplified as much as possible.

1. 20 points Let $Y = g(X)$ be deterministic function of discrete random variable X.

 (a) 5 points Give an example of a random variable X and a function $Y = g(X)$ such that $H(Y) < H(X)$.

 Suppose X is equiprobably 0 or 1, so $p_X(0) = p_X(1) = 1/2$ and $H(X) = 1$. Let $g(x) = 0$ for all x. Then $Y = g(X) = 0$ and $H(Y) = 0 < H(X)$.

 (b) 5 points Give an example of a random variable X and a function $Y = g(X)$ such that $H(Y) = H(X)$

 A REALLY dumb (but valid) example is $g(x) = x$. Any other function $g(x)$ that is one to one also provides $H(Y) = H(X)$

 (c) 10 points Either give an example of a random variable X and a function $Y = g(X)$ such that $H(Y) \geq H(X)$ or prove that $H(Y) \leq H(X)$. Hint: look at $H(X, Y)$.

 The question was supposed to ask whether we can have $H(Y) > H(X)$ not $H(Y) \geq H(X)$.

 The hint is that $H(X, Y) = H(X)$ because if you know X, then you know $Y = g(X)$ so Y creates no additional randomness. Expressed another way, $H(Y|X) = 0$ since Y is a deterministic function of X. As a result,

 $$H(X) = H(X, Y) = H(Y) + H(X|Y) \geq H(Y)$$

 since $H(X|Y) \geq 0$.

2. 20 points Let be random variables such that

 $$X \rightarrow Y \rightarrow Z, \quad Y \rightarrow Z \rightarrow X, \quad Z \rightarrow X \rightarrow Y$$

 If $I(X; Y) = 3$, find $I(X; Z)$ and $I(Y; Z)$. Or, if these quantities cannot be known, find tight upper and lower bounds. Make sure to justify your answers.

 This problem is just about the data processing inequality.

 $$X \rightarrow Y \rightarrow Z \implies I(X; Y) \geq I(X; Z) \quad (1)$$

 $$Y \rightarrow Z \rightarrow X \implies I(Y; Z) \geq I(Y; X) = I(X; Y) \quad (2)$$

 $$Z \rightarrow X \rightarrow Y \implies I(Z; X) \geq I(Z; Y) \quad (3)$$

Combining (2) and (3), we have

$$I(X; Z) = I(Z; X) \geq I(Z; Y) = I(Y; Z) \geq I(X; Y)$$

Combining this result with (1), we obtain $I(X; Z) = I(X; Y) = 3$. Now, from (3), $I(Y; Z) \leq I(Z; X) = I(X; Y) = 3$. Combined with (2), we have $I(Y; Z) = I(X; Y) = 3$. To summarize,

$$I(X; Y) = I(X; Z) = I(Y; Z) = 3$$

1
3. **15 points** Consider the code \{0, 01\}. Justify your answers to the following questions:

(a) **5 points** Is the code instantaneous?

No, since 0 is a prefix of 01.

(b) **5 points** Is the code nonsingular?

Yes, remember that nonsingular just means that two distinct inputs are mapped to distinct code symbols. Although we didn’t specify the inputs, whatever they are, the output 0 and 01 are distinct.

(c) **5 points** Is the code uniquely decodable?

Yes, given a code sequence, the key is that each time we observe a 1, it must the second character of the codeword 01. Preceding the 1 will be \(n \geq 1\) zeros, corresponding to \(n - 1\) occurrences of codeword 0 followed by codeword 01. As an example, 00101000101001 decodes as

\[
00101000101001 \implies 0 \cdot 01 \cdot 0 \cdot 0 \cdot 01 \cdot 0 \cdot 01
\]

4. **10 points** The source coding theorem shows that the optimal source code for random variable \(X\) has expected length \(L \leq H(X) + 1\). Find an example of a random variable \(X\) for which \(L > H(X) + 1 - \epsilon\) for any small \(\epsilon > 0\). Make sure you justify your answer.

Let \(X\) be a Bernoulli random variable with \(p_X(0) = \delta = 1 - p_X(1)\). So \(H(X) = H(\delta, 1 - \delta)\). For sufficiently small \(\delta\), we can made \(H(X) < \epsilon\), or, equivalently, \(H(X) - \epsilon < 0\).

For the source \(X\), the Huffman code is optimal, but the Huffman code is simply 0 → 0 and 1 → 1, which has average length \(L = 1\). Thus

\[L = 1 > 1 + H(X) - \epsilon\]

5. **30 points** A source has an alphabet of 4 letters, \(a_1, a_2, a_3, a_4\) with probabilities \(p_1 \geq p_2 \geq p_3 \geq p_4\).

(a) Suppose \(p_1 > p_2 = p_3 = p_4\). Find the smallest number \(q\) such that \(p_1 > q\) implies \(n_1 = 1\), where \(n_1\) is the length of the code word for \(a_1\) in a binary Huffman code for the source.

In this case, \(p_2 = p_3 = p_4 = (1 - p_1)/3\). Here, the Huffman code combines symbols 3 and 4 into a super-letter with probability \(2(1 - p_1)/3\). As long the superletter probability is strictly less than \(p_1\), then the superletter will be combined with \(a_2\), yielding \(n_1 = 1\). That is, we must have \(p_1 > 2(1 - p_1)/3\) to ensure \(n_1 = 1\). Equivalently, \(p_1 > 0.4 = q\) implies \(N_1 = 1\).

(b) Show by example that if \(p_1 = q\) (your answer in part (a)), then a Huffman code exists with \(n_1 > 1\).

If \(p_1 = 0.4\) and \(p_2 = p_3 = p_4 = 0.2\), then we combine \(a_3\) and \(a_4\) into a super-letter \(a'\) with probability 0.4. Since \(a_1\) and \(a'\) both have probability 0.4, at the second step, we can choose to combine \(a_1\) and \(a_2\). The result is that \(n_1 = 2\).

(c) Now assume the more general condition \(p_1 > p_2 \geq p_3 \geq p_4\). Does \(p_1 > q\) still imply that \(n_1 = 1\)? Why or why not?
Yes, \(p_1 > q = 0.4 \) implies \(n_1 = 1 \). For a proof by contradiction, suppose \(p_1 > 0.4 \) and there is a Huffman procedure yielding \(n_1 > 1 \). In this case, we must have \(p_3 + p_4 \geq p_1 > 0.4 \). Since \(p_2 \geq p_3 \) and \(p_2 \geq p_4 \), we have that
\[
p_2 \geq \frac{p_3 + p_4}{2} > \frac{0.4}{2} = 0.2
\]
It follows that
\[
p_1 + p_2 + (p_3 + p_4) > 0.4 + 0.2 + 0.4 = 1
\]
which is a contradiction since \(p_1 + p_2 + p_3 + p_4 = 1 \).

(d) Now assume that the source has an arbitrary number \(K \) of letters, with \(p_1 > p_2 \geq \cdots \geq p_K \). Does \(p_1 > q \) now imply that \(n_1 = 1 \)? Explain.

Yes, \(p_1 > q = 0.4 \) is sufficient to ensure \(n_1 = 1 \). This can be proven by induction. It is trivially true for \(K = 1, 2, 3 \) and we have shown it is true for \(K = 4 \). Suppose it is true that \(n_1 = 1 \) for any collection of \(K \) letters with \(p_1 > 0.4 \) and \(p_1 > p_2 \geq p_3 \geq \cdots \geq p_K \). Now suppose we have a source with \(K + 1 \) letters with probabilities \(p_1 > p_2 \geq p_3 \geq \cdots \geq p_{K+1} \) such that the Huffman procedure produces \(n_1 = 1 \). At the first step, the Huffman procedure combines \(a_K \) and \(a_{K+1} \) into a super-letter with probability \(p_K + p_{K+1} \). If \(p_K + p_{K+1} < p_1 \), then the we have remaining an encoding problem with only \(K \) letters, \(p_1 > 0.4 \) and \(a_1 \) strictly the most probable symbol. By our induction hypothesis, the Huffman procedure will yield \(n_1 = 1 \). Otherwise, if \(p_K + p_{K+1} \geq p_1 > 0.4 \), then we must have
\[
p_j \geq \frac{p_K + p_{K+1}}{2} > 0.2 \quad j = 2, \ldots, K - 1
\]
Since \(K \geq 4 \), it follows that
\[
p_1 + (p_2 + \cdots + p_{K-1}) + (p_K + p_{K+1}) > 0.4 + (K - 2)(0.2) + 0.4 \geq 1.2
\]
which a contradiction.

(e) 20 points Now assume the source has \(K \) letters \(a_1, \ldots, a_K \), with \(p_1 \geq p_2 \geq \cdots \geq p_K \). Find the largest number \(q' \) such that \(p_1 \geq q' \) implies that \(n_1 > 1 \).

First, we should note that this problem only makes sense for \(K \geq 4 \) since \(K \leq 3 \) and \(p_1 \geq p_2 \geq p_3 \) always implies there exist a Huffman code with \(n_1 = 1 \).

Examining the \(K = 4 \) case makes it easy to “guess” \(q' \). When \(p_1 = q' \), we need to guarantee that \(p_3 + p_4 = q' \). That is, we need to ensure that the smallest possible \(p_3 + p_4 \) is \(p_3 + p_4 = q' \) given \(p_1 = q' \). Given \(p_1 = q' \), \(p_3 + p_4 \) is minimized when \(p_2 \) is as large as possible. This occurs when \(p_2 = p_1 = q' \). Thus we obtain
\[
1 = p_1 + p_2 + (p_3 + p_4) = 3q' \quad \implies \quad q' = \frac{1}{3}
\]
A more careful analysis goes something like this. First, we can conclude that \(q' \leq 1/3 \) since if \(q' > 1/3 \), then we can choose \(p_1 = 1/3 \) and a probability distribution for the other letters \(p_2, \ldots, p_K \) such that after \(K - 3 \) Huffman steps, we have probabilities \(\{p_1, p_2', p_3'\} = \{1/3, 1/3, 1/3\} \). In this case, the Huffman procedure can choose to encode \(a_1 \) with length \(n_1 = 1 \). To see that \(q' = 1/3 \). For purposes of contradiction, suppose \(p < 1/3 \) and the Huffman procedure allows \(n_1 = 1 \). In this case, after \(K - 3 \) Huffman steps, we must have probabilities \(\{p_1, p_2', p_3'\} \) such that \(p_1 \geq p_2' \) and \(p_1 \geq p_3' \). Hence
\[
p_2' \leq p_1 < 1/3 \quad p_3' \leq p_1 < 1/3
\]
It follows that \(p_1 + p_2' + p_3' < 1 \), which is a contradiction.