Wireless Communications Technologies

Course No: 16:332:559 - (Spring 2002)

Homework 3

1. Derive the psd of M-ary PSK.

2. Sketch BER vs. SNR plots for M-ary FSK for the cases of \(K = 1, 2, 3, 4, 5 \) where \(K = \log_2 M \).

3. An \(M \)-QAM system can thought of as two PAM systems in quadrature, each having \(\sqrt{M} = 2^m \) constellation points and one-half the power of the QAM system. Show that the probability of error for such a \(\sqrt{M} \)-PAM system is

\[
P_{\sqrt{M}} = 2(1 - \frac{1}{\sqrt{M}})Q(\sqrt{\frac{6}{M-1} \gamma_s}),
\]

where \(\gamma_s \) is the average received symbol energy-to-noise ratio for the \(M \)-QAM signal constellation.

4. The squared euclidean distance between a pair of CPM bandpass waveforms \(s(t; x^{(i)}) \) and \(s(t; x^{(j)}) \) is given as

\[
D^2 = \int_0^\infty [s(t; x^{(i)}) - s(t; x^{(j)})]^2 dt
\]

Show that

\[
D^2 = 2 \log_2 M E_b \frac{1}{T} \int_0^\infty (1 - \cos(\Delta \phi(t))) dt
\]

where \(M \) is the symbol alphabet size, \(E_b \) is the energy per bit and \(\Delta \phi(t) \) is the phase difference between the two signals.

1