From Pervasive to Pervasive Computing

Yanyong Zhang
Dept. of Electrical & Computer Engineering
Rutgers University
Objective

- limited battery power
- limited processing capability
- limited storage
- radio communication
- lossy link
- unreliable routing

- What is the avg temp?
- How much food left?

- Long network lifetime
- reliable link with performance guarantees
- Efficient programming interface
Wireless Sensor Network

- Most of the nodes are static
- Batteries are non-rechargeable
- Multi-hop wireless communication
- Node redundancy
Steps

- **Step I: understanding the network**
 - Understanding the energy consumption
 - Detecting local congestion
 - Estimating the link quality
 - Estimating the packet delivery performance in different network scenarios
 - Fault detection
Steps (cont’d)

- Step II: taming the network
 - Energy conservation
 - Making the network more responsive to dynamics
 - node failure
 - transient congestion
 - Providing end-to-end performance guarantee
 - Delay, differentiated service, reliability
Steps (cont’d)

- Step III: utilizing the network for computing
 - in-network processing
 - defining new programming framework
 - light processing demands
 - energy efficient
 - storage efficient
Ongoing project I: Energy Conservation Employing 2-D Adaptation
-- with A. Yang and S. Yu

Active nodes:
forwarding packets

backup nodes:
Sleep + wakeup

How to determine the sleep interval?
- current solution:
 - using a fixed sleep interval that is small enough
 - energy conservation = sleep interval / wakeup time
- our solution:
 - adaptive sleep interval
Ongoing project I: Energy Conservation Employing 2-D Adaptation

How to adapt?

- temporal adaptation
 - the remaining energy of the active nodes
- spatial adaptation
 - Heuristic I: satellite
 - one or two backup nodes sleep very short; while others can sleep for a long time
 - Heuristic II: asynchronous sleep interval
 - neighborhood population
 - network distance to the routing path
Ongoing project I: Energy Conservation Employing 2-D Adaptation
Ongoing project II: Congestion Detection and Avoidance -- with B. Nath

- Active nodes: forwarding packets
- Congested nodes
- backup nodes: Sleep + wakeup

- How to detect congestion?
 - MAC layer statistics
 - Queue length, backoff window
 - link quality estimation

- How to increase resource to avoid congestion
 - really short-term congestion
 - Increase bandwidth
 - Increase transmission power
 - Short-term congestion
 - Increase # of nodes
 - Increase # of sinks
 - Increase # of routing paths