
Architecture and Framework for Supporting Open-

Access Multi-user Wireless Experimentation

Sachin Ganu, Ivan Seskar, Maximilian Ott, D. Raychaudhuri, Sanjoy Paul

WINLAB, Rutgers University, 671 Route 1 South

North Brunswick, N.J. 08902-3390, USA

Email: {sachin, seskar, max, ray}@winlab.rutgers.edu, sanjoypaul@gmail.com

Abstract—Most of the contemporary research in wireless

networks is primarily based on simulations or in-house small

scale experimental setups that are highly customized for the

experiment and hence difficult to re-use. Although, this may be

useful for smaller experiments, it is very difficult to replicate the

process without writing extensive scripts for controlling and

collating the results of the experiment which may take up more

time than the actual experiment in some cases. The main

hindrance to facilitating experiments is the lack of a flexible

framework that will allow researchers to conduct several

different experiments with ease and to be able to repeat them as

often as necessary for statistical consistency. The above

considerations motivated the ORBIT testbed project, which is a

multi-user experimental facility to support research on next-

generation wireless networks. In this paper, we describe the

software architectural framework to facilitate repeatable wireless

experiments that provides essential services to choreograph

experiments as well as automates the routine tasks of

measurement collection, thereby allowing researchers to focus

mainly on algorithms and data analysis. In particular, we address

key considerations to be taken into account such as capturing all

experiment parameters to facilitate repeated experimentation as

well as a framework for data collection. We also present use cases

to demonstrate the flexibility of the architecture to perform

different types of experiments including mobility emulation along

with key results and observations.

Keywords: Software architecture, multi-user wireless testbed

I. INTRODUCTION

With the reduction in prices of 802.11 products and
increased availability, there is a growing trend in experimental
evaluation of wireless protocols. This has been motivated
mainly by the limitations of the existing simulation tools that
provide simplified abstractions of the physical layer, thus
failing to capture realistic phenomenon such as fading,
multipath etc. The above observation also led to an NSF-
sponsored initiative [1] recently which concluded that “open
wireless multi-user experimental facility (MXF) testbed” for
wireless networking would be increasingly important to the
research community. These considerations motivated the
ORBIT

1
 testbed project which aims to provide a flexible, open-

1
 Research supported by NSF ORBIT Testbed Project, NSF

NRT Grant #ANI0335244

access multi-user experimental facility to support research on
next-generation wireless networks

In this paper, we address some of the challenges in building
multi-user testbeds specifically geared towards wireless
experimentation. These challenges include supporting multiple
users to access the shared resources, facilitate repetitive tasks
of deploying software, launching experiments and collecting
the results of the experiment. In particular, we focus on the
software aspects associated with 24/7 operation of the testbed
with no human intervention, that minimize experiment setup
and cleanup time thereby optimizing the usage of the testbed.
Additionally, we also touch upon several aspects of wireless
experimentation such as collecting cross layer information
from the devices, emulation of mobility using spatial switching
which might be beneficial to researchers.

The organization of the paper is as follows: Section 2
covers the different aspects of open-access multi-user
experimentation that influenced the design of our testbed.
Section 3 discusses the features unique to wireless experiments
such as exposing PHY/MAC layer information from drivers to
experimenters through a set of function calls, as well as
controlled mobility emulation using spatial switching on the
grid. Section 4 describes other important services supported by
our framework. Section 5 describes a few use cases to
demonstrate the flexibility of our architecture and Section 6
concludes the paper.

II. DESIGN FOR MULTI-USER EXPERIMENTATION

Supporting multi-user experimental facility presents some

interesting challenges including routine ones such as user

account maintenance, access control, user portal for

experimenters as well as more complex ones related to

optimizing the usage of the testbed by accommodating as many

users as possible in a given time duration. In this section, we

focus more on the latter which have influenced our software

design. As opposed to wired experimentation, where users can

have access to the shared facility simultaneously and can be

segregated either at the MAC layer using VLANs or IP layer

using firewalls or a combination of both, wireless

experimentation poses an interesting challenge due to the

inherent broadcast nature of the medium, thereby affecting the

other nodes in the vicinity. Partitioning a wireless grid in a

controlled fashion for simultaneous experiments could be

achieved either by introducing physical barriers that block

radio propagations from one portion to the other or ‘soft’ walls

introduced by using an array of noise generators. The former

approach is difficult to reconfigure and involves physical

movement of objects (RF shields) to the portion requiring

isolation and hence not scalable. We are currently in the

process of experimenting with the latter and the details are the

subject of a separate paper.

Nevertheless, until any of the above schemes are in place, we

use a simple sequential scheduling allowing one set of

experiments to use the entire shared facility at a time. Thus,

given the sequential nature of usage, it becomes necessary to

accommodate as any users as possible and our software

architecture and design is primarily influenced by this criterion.

As identified earlier, in most of the experiments, setting up the

experiment (using scripts or other control mechanisms) and

collecting results of the experiments and collating them usually

is a significant contributor to the overall experiment time. In

fact, it would not be an exaggeration to say that it sometimes

takes up more time in setup than the actual experiment.

Hence, our design goal is to reduce this setup time and

simplifying data collection as much as possible. In order to

understand the design, a typical experiment life cycle is first

studied as shown in Fig. 1 below.

Figure 1 Experiment flow

As seen, an experiment usually comprises the following steps:

1. Selection of nodes which will be a part of the experiment

2. Selecting the roles played by each of these nodes in the

experiment (sender, receiver, AP, forwarder etc)

3. Deploying necessary software on each node corresponding

to the role they play each

4. Configuration of wireless interfaces (Ad-hoc or Managed,

Power levels, Channel settings etc)

5. Collecting results at run-time and collate them (statistical

analysis or simple time plots)

These steps can be broadly divided into two main categories:

choreographing an experiment and measurement collection. By

providing means to launch experiment, we can reduce the

initial setup times. Also, by enabling mechanisms to collect

results from the experiment at run-time reduces the

measurement collection time. Usually, most experimenters log

data locally and later extract these results using scripts.

However, this would mean more time than necessary spent on

the grid and hence delaying the subsequent experiment.

Software components addressing the above processes are

described below.

A. Choreographing an experiment

Deploying an experiment typically involves a protocol
between the experiment controller and the wireless nodes that
allows powering up of nodes, initial interface configurations, as
well as capturing and reporting the state of each process back
to the experiment controller. In our framework, the experiment
controller is called the NodeHandler and the corresponding
client side software residing on the nodes that responds to
commands from the NodeHandler is the NodeAgent. We refer
the readers to [3] for further details on the software model. The
interactions between NodeHandler and nodeAgent(s) can be
visualized in Fig. 2.

Figure 2 Interactions between NodeHandler, Services and

NodeAgent

The above flow diagram represents the protocol or
messages that precede/accompany an experiment. Note that
this messaging needs to be scale up to a large number of nodes
since one command from the experiment controller elicits
several responses from the individual nodes back to this
controller. Hence, we choose a reliable multicast
implementation as the underlying transport mechanism for
scalability.

The entire experiment is usually captured in a Ruby script
that is descriptive: it defines the nodes, their roles and the
measurements to be collected. A sample experimental script is
shown below in Figure 3. In this experiment, node1-2 sends
UDP datagrams of 1024 bytes at the rate of 300 Kbps to the
receiver1-4. The wireless settings use 802.11b with the receiver
acting as an AP (this is done using the “Master” mode on the
card) and the sender is the client (using the setting “Managed”
on the card.

Note how the actual interfaces are abstracted (w0) to hide
the hardware specific interface nomenclature (e.g Atheros
bases cards show up as athX whereas Intel and Cisco cards
show up as ethX

Figure 3 Sample experiment script

Support services for installing images on the nodes
(Frisbee) and powering on/off/resetting nodes (Chassis
Manager Controller) are also provided and are discussed in the
next section. The NodeHandler interprets the script and
communicates with the Chassis Manager Controller to power

on the specified nodes involved in the experiment. It then
awaits nodes to boot up and the nodeAgent to report back to the
nodeHandler. In software terminology, this is like a barrier
implementation that waits until all nodes have reported back to
the nodeHandler.

Once the nodeAgents have reported back, the nodeHandler
then requests the nodeAgents to do initial configuration settings
for the wireless interfaces. Note that the nodeAgents can
deduce which wireless card is installed on the nodes, load the
appropriate driver module and issue commands to configure
the same. We currently support Atheros-based and Intel-based
802.11a/b/g cards. A sample command and its actual
implementation is shown below.

Thus, the nodeAgent provides an abstraction of a wireless

interface to the experimenters (thereby simplifying the
configuration to merely the right mode, channel etc.). After the
interfaces have been configured, the nodeHandler directs the
agents to launch the application based on the role which the
node plays in the experiment. For e.g., suppose that we have
one sender and one receiver and the actual application
corresponding to the sender and receiver is netperf and
netserver respectively, the nodeAgent launches them
accordingly with the right command line options. For each
application definition, we could have multiple prototypes. E.g
using the same underlying application (Netperf), we could have
different prototypes such as UDP sender or TCP sender. The
actual bindings between the prototype (sender or receiver) and
the application can be configurable and is captured in the
prototype definition [3].

Thus, using this mechanism, we attempt to reduce the initial
setup times to merely writing the script for the nodeHandler to
run. Note that this communication takes place over a dedicated
wired channel so as to avoid interference with the actual
wireless experiment subsequently. Next, we focus on the run-
time measurement collection framework that alleviates the
burden of logging, measurement reporting and collating by
providing the application developers a simple library call for
reporting the measurement.

B. Measurement collection framework (ORBIT Measurement

Library- OML)

As mentioned earlier, the main motivation behind the
measurement collection framework (OML) is the ability to
offload the experimental results at run-time so as to clear up the
resources quickly for the subsequent experiment. The OML
framework is based on client/server architecture and uses IP
multicast for the client to report the collected data to the server
in real-time. It defines the data structures and functions for
sending/receiving, encoding/decoding and storing experiment
data. With user-friendly and generic APIs, it can be easily

NodeHandler command to nodeAgent

node.net.w0.mode = “ad-hoc”

node.net.w0.essid = “xyz”

Actual commands issued by nodeAgent

(e.g.for Intel based cards)

iwconfig eth2 mode ad-hoc

iwconfig eth2 essid xyz

Experiment.name = "tutorial-1"

Experiment.project = "orbit:tutorial"

Define settings used in the experiment

defProperty('rate', 300, 'KBits per second

sent from sender')

defProperty('packetSize', 1024, 'Size of

packets sent from sender')

Define nodes used in experiment

defNodes('sender', [1,2]) {|node|

assume the right image to be on disk

 node.image = nil

 node.prototype("test:proto:sender", {

 'destinationHost' => '192.168.1.4',

 'packetSize' => Experiment.property

 ("packetSize"),

 'rate' => Experiment.property("rate"),

 'protocol' => 'udp'

 })

 node.net.w0.mode = "managed"

}

defNodes('receiver', [1,4]) {|node|

 # assume the right image to be on disk

 node.image = nil

 node.prototype("test:proto:receiver" , {

 'hostname' => '192.168.1.4',

 'protocol' => 'udp'

 })

 node.net.w0.mode = "master"

}

allNodes.net.w0 {|w|

 w.type = 'b'

 w.essid = "helloworld"

 w.ip = "%192.168.%x.%y"

}

Now, start the application

whenAllInstalled() {|node|

 Experiment.props.packetSize = 1024

 Experiment.props.rate = 300

 allNodes.startApplications

 wait 60

 allNodes.stopApplications

 wait 10

 Experiment.done
}

integrated into user applications. Users can define what
measurements are to be collected and stored. The clients on the
experiment nodes collect measurements and send them to the
collection server over a multicast channel after encoding them
into XDR [5] format. OML supports multiple multicast
channels and instances of the collection server per experiment
to enhance the network scalability and provide reliability of
data collection by load balancing and redundancy.

An SQL database is used for persistent storage of experiment
data that also allows access using standard data analysis tools
like Matlab. Note that although OML can be extended for
various wired and wireless networking testbeds and distributed
systems for data collection

Figure 4 OML Component Architecture

In order to use the measurement framework, the application
developers only need to invoke simple library calls such as the
one shown below

By enabling type-safe transport layer (using XDR
encoding), we can also support reporting of standard data types
such as int, float, double, string etc. The measurements can be
either time-based or sample based. In addition, the OML
framework allows run-time filters to be applied to either of
these measurement techniques to report minimum, maximum,
average or sum of time-based or sample-based measurements.
Additional filter can be defined easily using templates
provided. For e.g., using the above framework, one can get the
average value of a metric over the last X seconds or last Y
packets, where X, Y and the filter (average, mean, max) can be
specified at run-time. This feature can also be used to limit the
amount of measurement information flowing over the control
channel in case of a large number of nodes involved in the
experiment. The readers are referred to [6] for further details.

So far the methodology discussed above is general and can
be applied to any testbed whether wired or wireless. In the next

section, we focus on certain requirements that are specific to
wireless experiments.

III. DESIGN FOR WIRELESS SPECIFIC EXPERIMENTATION

A. Access to PHY/MAC layer information - Libmac

Recently, there has been a lot of ongoing research on
understanding the interactions of various protocol layers in
wireless networks. Several algorithms [7,8] have been
proposed that make use of information across protocol layers
(PHY-MAC) in order to select better routes or adapt
accordingly. A minimum common requirement for all these
algorithms is the availability of information from the lower
layers using driver modifications and/or using ioctl calls to
extract statistics reported by the driver. In this section, we
describe Libmac, which is a customizable library that provides
interfaces to access information from the driver either on a per
packet granularity or asynchronously, thus hiding the gory
kernel level details from the application developer. The
architecture is shown in Figure 5.

�

Figure 5 Libmac architecture

Libmac makes uses of Libpcap [9] library to capture
packets (in parallel to the regular kernel protocol stack) and
instructs the driver to append PHY layer information to the
incoming frames. These frames are passed up to the application
layer, where the information can then be decoded and reported
to the database by using the measurement framework described
earlier. We also provide support to inject 802.11 frames using
Libnet [10] and append parameters to outgoing frames
(information such as transmit power can be appended to the
outgoing frames). Libmac currently supports Madwifi [11]
driver-based Atheros cards as well as Intel IPW2200 driver
[12] for the Intel cards with access to RSSI, PHY Rate, and
noise information on a per packet granularity. We refer the
readers to [13] for more information on the actual interfaces for
application developers.

B. Mobility emulation using spatial switching

In order to support conducting experiments involving
mobility, earlier approaches [14, 15] have been proposed using
carefully planned hardware setup involving antenna shielding.
EWANT [16] eliminates variable attenuators through a
hardware switch to connect a radio to different antennas over
time. This number of antennas is limited by the antenna switch
and does not scale to larger networks. Our approach uses
software spatial switching to meet these goals. It emulates

 oml_initialize(argc, argv);

 //Measure RSSI and noise
 oml_report(rssi, noise);

mobility by switching to different radio and antenna positions
as time progresses. Thus, the emulated trajectory comprises a
number of discrete steps that approximate the actual path a
moving node would take as illustrated in Figure 5.

Figure 6 Spatial Switching. The path shows an actual path of a

mobile node, which the system emulates by choosing the radio

node that best approximates the current position.

Note that at any position packets are transmitted over real
radio interfaces, thus this emulator can be used to evaluate the
effect of interference or other physical and link layer effects on
higher layer protocols. We implement spatial switching in
software using the Gigabit Ethernet connections available on
the ORBIT testbed, because it allows us to scale to a large
number of nodes at much lower cost than using hardware
antenna switches. The software spatial switching system uses
split-stack architecture, as illustrated in Fig. 7.

Figure 7 Split-stack architecture. The network stack of a

single mobile node is split between a virtual mobile node

and a grid node.

Throughout an experiment the application and network
layer of a mobile node reside on the same machine, denoted as
a virtual mobile node. As time progresses, it uses the link and
physical layers of different grid nodes by reconfiguring the
tunnel. The virtual mobile node can be either a dedicated grid
node or a server that is on the same local area network as the
grid nodes. The network stacks of the virtual mobile nodes and
the grid nodes are tied together by spatial switching
components. On the virtual mobile nodes, they provide a
virtual network interface, fake0, which is associated with a grid
node radio interface. This means that most applications can be
integrated with this system by changing the routing table to
point to this virtual interface.

We also present a benchmark result using AODV routing in
[17] that illustrates how the emulator can be used for mobile
systems experiments and how noise generation can create
multi-hop topologies on the testbed.

IV. SUPPORT SERVICES

In addition to the software components mentioned in
previous sections, there are various support services that are
used for various vital functions such as controlling node
powers, serial console access to nodes, and fetching and
installing images to and onto the nodes. Figure 8 summarizes
the entire software architecture.

Figure 8 Software Architecture and Services

A. Chassis Manager Controller

• The purpose of the chassis manager controller is to

allow remote power on/off/reboot of the nodes. The

chassis manager controller communicates the chassis

manager, which is a hardware component residing on

the node and is connected to the power supply.

• In addition to that, it provides periodic reports on the

node’s health by monitoring CPU temperature,

voltage levels etc.

• It provides serial console to the experimenters (or

administrators) as a back channel to monitor and

rescue nodes in case of OS crashes or other failures

Figure 9 Chassis Manager Controller

B. Fetching and installing images to and onto nodes

Since users get complete root access to the nodes during
their experiment reservation, the easiest way to ensure a clean
node for subsequent experiments is to fully install a new image
on every node at the beginning of every experiment (at the
beginning, this will be done when experiment control switches

from one organization to the other). However, in theory, it
should be possible and permissible to potentially to do this
before every experiment. We re-use Frisbee [18], a disk
imaging application which was developed by the Emulab team
[19]. Frisbee implements a secure multicast protocol to image
the disk of many nodes simultaneously. Initial benchmarks
have shown that it takes roughly 5-6 minutes to install image
on 64 nodes simultaneously. This number is expected to stay
reasonably bounded (w.r.t number of nodes) since we the
underlying transport is multicast-based

C. Noise injection using controlled interface

Another important aspect of the testbed is the ability to
create arbitrary topologies typically of larger dimensions onto
the grid by trying to match the link characteristics of the
original topology. Currently, ORBIT hardware supports
injection of AWGN noise at desired power levels and center
frequencies using Agilent Vector Signal Generator using
distributed noise antennas positioned at appropriate positions
on the grid

D. Experimenters interface

Currently, we use a simple mechanism for reserving time slots

on the grid. This is completely Web-based as shown in the

Figure below. The grid usage is in units of one hour with a

maximum reservation of four hours

Figure 10 Portal for grid reservation

During the time reservation, users are allowed access to the

experimental controller (through VPN and SSH) and can run

their experiments using scripts from command-line. We are

currently working on leveraging this to allow GUI based

support for experiment execution. A separate run-time and

post-experiment database allows users to quickly view results

during experiment run-time as well archive them for future

retrievals and offline analysis as shown in the figures 11.

V. SAMPLE EXPERIMENTS USING THE TESTBED

In this section, we present a two sample experiments out of
several others that we have performed on the testbed.

A. System model for 802.11 based wireless mesh deployment

This experiment was performed to address capacity scaling

issues and performance limitations associated with

conventional “flat” mesh network. We also evaluated the

performance improvement obtained by using a hierarchical

approach that organizes mobile nodes (MN), forwarding nodes

(FN) and access points (AP) into a three-tier hierarchy. This

resulted in significant improvement in the achievable capacity,

coverage and QoS. The model was evaluated in terms of key

performance measurements such as system throughput,

average delays and packet losses for both hierarchical

deployment and flat topologies

Figure 11 Portal for Experiment Results

Figure 12 Flat vs Hierarchical topologies

1) Experimental Evaluation

In order to validate our system model, we considered a scaled

area which roughly covers 0.9 sq. km having 20 users, 4 FNs

and 2 APs. The two topologies were evaluated for comparison

- Flat topology and a hierarchical topology as seen in Fig 12.

Each run had 20 users generating increasing offered loads in

steps of 0.75Mbps (from 0.75 - 3 Mbps) towards the sink

(AP). These flows represented a few users who were trying to

access the Internet using a gateway. We measured the total

system throughput, average delays and packet loss for both the

flat and hierarchical topologies under increasing offered loads.

2) Results
It was observed that the hierarchical system scales to about

50 Mbps system throughput with reasonable packet delay and
packet loss. This capacity of ~50 Mbps per sq-Km is sufficient
to handle the traffic density in our urban coverage area
scenario. By comparison, the flat ad-hoc network reaches a
capacity limit at 20 Mbps and has much higher packet delay
and packet loss

Figure 13 System performances (flat vs hierarchical)

B. Investigate the impact of frequency diversity and PHY layer

rate adaptation on the performance of 802.11 multi-hop ad-hoc

networks in terms of throughput

1) Motivation
The experiment was motivated by the fact that default

802.11-based ad-hoc networks using commercially preset auto-
rate PHY and a single frequency channel suffer from
performance degradations caused by link quality fluctuations
and MAC layer self-interference respectively. A baseline ad-
hoc network scenario was set up to determine end-to-end multi-
hop flow throughput with default rate control and single
channel operation. These results were then compared with
those obtained with multiple channels and alternative PHY-rate
selection methods demonstrating the potential for significant
performance improvements

2) Experimental Evaluation
In the baseline case, we used default auto rate adaptation

implemented in the card as well as a single channel and
measured the end-to-end flow throughput for a three hop
network shown below, under the influence of different levels of
injected noise. The offered load was increased from 2 Mbps to
8 Mbps under the influence of noise from -18 dBm to -5 dBm.

Figure 14 Baseline case: single channel and auto rate

It can be seen that the throughput saturates around 4 Mbps

irrespective of the offered load as we reduce the noise power

levels. At higher noise levels (in the left side of the graph), the

rate fluctuation causes the overall system throughput to

decrease until it finally reaches zero where one (or more) of

the links is completely cut off because of the noise

In this next scenario, we used default auto rate adaptation

implemented in the card but used orthogonal channel

assignments for forwarding. The end- to- end flow throughput

was measured under the influence of different levels of

injected noise. In the previous case using single channel, the

throughput saturates at around 4.2 Mbps. In this case,

however, the throughput increases up to 16 Mbps by using

three different channels, a gain of ~4x for the specific flow

under consideration. In the previous case, there is zero

throughput at -5 dBm, where as in this case, a low throughput

(~2 Mbps) can still be sustained. We believe the reason for

this is that the link between 1 and 2 is completely cut off in the

first case, even though the other two links are still operational

Figure 15 Default auto rate with frequency diversity

In the final scenario, we fixed the link rates using different

combinations of PHY rate settings (R1, R2, R3) on the three

links manually. Also, orthogonal channel assignments were

used as before for forwarding. The end –to- end flow

throughput was measured under the influence of different

levels of injected noise.

Figure 16 Fixed rate with frequency diversity

Auto rate performs better than only the settings of (6, 6, 6) and

(12, 6, 12). In all the other cases, up to (36, 36, 36), we see

1 2 3 4
 Channel 48 Channel 48 Channel 48

 With default auto-rate adaptation

1 2 3 4
 Channel 36 Channel 48 Channel 64

With default auto-rate adaptation

and frequency diversity

1 2 3 4
 Channel 36 Channel 48 Channel 64

 With fixed rate settings and

frequency diversity

R1 R3

that setting reasonably chosen fixed rates on each link

performs better than auto-rate adaptation. The improvement is

as large as ~3x from auto rate to the best rate selection case.

This shows that auto-rate algorithm implemented on the

driver/firmware is possibly too conservative because when the

rate fallbacks to a lower level, it ramps up gradually thereby

reducing the efficiency of the link utilization.

VI. CURRENT TESTBED STATUS

Recently, we extended our testbed to 400 wireless radio

nodes arranged in a 20×20 grid housed in a remote facility as
shown in Figure 17. The nodes are mounted off the ceiling and
are separated by one meter apart. Each node has two 802.11
wireless a/b/g cards and by operating the second interface on a
different channel, multi-channel forwarding can also be
implemented.

 Every node is a small form factor PC with 1GHz VIA C3
CPU, 512 MB RAM, and 20 GB hard disk. The nodes also
have two 1000BaseT Ethernet ports, which are used for control
messages (such as nodeHandler commands and OML data
collection). The testbed also incorporates a raw waveform
generator that is connected to specifiable antennas on the grid.
This generator can be remotely controlled to inject AWGN
noise at a desired power level and frequency band, thereby
enabling the creation of arbitrary link quality levels and related
ad-hoc network topologies.

Figure 17 20××××20 wireless grid

VII. CONCLUSIONS

In this paper, we presented the software design of a novel
radio grid emulator testbed that is intended to facilitate a broad
range of experimental research on next-generation protocols
and applications. We have also explained a typical
experimental lifecycle and provided sample experiments as
proof-of-concept validation of the testbed design. Early end-
user experiments on the ORBIT radio grid are expected to
begin in the near future, and should lead to further validation
and refinement of the testbed’s design. Further details on the
testbed can be found on the project website [20].

VIII. REFERENCES

[1] NSF Workshop on Network Research Testbeds,, Chicago, Il,
Oct 2002, http://www net.cs.umass.edu/testbed_workshop

[2] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation
Wireless Network Protocols,” Proceedings of the IEEE WCNC
2005, New Orleans, USA. http://www.orbit-lab.org

[3] Maximilian Ott, Ivan Seskar, Robert Siracusa, Manpreet Singh,
"ORBIT Testbed Software Architecture: Supporting
Experiments as a Service", Proceedings of IEEE Tridentcom
2005, Trento, Italy, Feb 2005

[4] Netperf homepage, http://www.netperf.org/netperf/NetperfPage.
html.

[5] RFC 1014, “XDR External Data Representation Standard,
http://www.faqs.org/rfcs/rfc1014.html

[6] M. Singh, M. Ott, I. Seskar and P. Kamat, “ORBIT
Measurement Framework and Library (OML): Motivations,
Design, Implementation and Features”, Proceedings of IEEE
Tridentcom 2005, Trento, Italy.

[7] B. Awerbuch, D. Holmer, and H. Rubens, “High Throughput
Route Selection in Multi-Rate Ad Hoc Wireless Networks”,
Proceedings of Wireless On Demand Network Systems (WONS
2004), pp. 251-268

[8] Y.-C. Hu and D.B. Johnson, “Exploiting Congestion
Information in Network and Higher Layer Protocols in Multihop
Wireless Ad Hoc Networks”, Proceedings of International
Conference on Distributed Computing Systems, ICDCS 2004,
pp. 301-310.

[9] Libpcap packet capture library, http://www.tcpdump.org

[10] Libnet library, http://www.packetfactory.net/libnet/

[11] Multiband Atheros Driver for Wifi,
http://sourceforge.net/projects/madwifi/

[12] Intel® PRO/Wireless 2200BG Driver for Linux, http://
ipw2200.sourceforge.net/

[13] Libmac library, http://www.winlab.rutgers.edu/~kishore/
libmac_docs/ index.html

[14] J. T. Kaba and D. R. Raichle, “Testbed on a desktop: strategies
and techniques to support multi-hop manet routing protocol
development”, In ACM MobiHoc, pages 164–172. ACM Press,
2001.

[15] E. Hernandez and A. Helal., “RAMON: Rapid-mobility network
emulator”, In IEEE LCN, Nov 2002.

[16] S. Sanghani, T.X. Brown, S. Bhandare, and S. Doshi, “
EWANT: The emulated wireless ad hoc network testbed”, In
IEEE WCNC, volume 3, pages 1844–1849, Mar 2003.

[17] K. Ramachandran, S. Kaul, S. Mathur, M. Gruteser, I. Seskar,
“Towards Large-Scale Mobile Network Emulation Through
Spatial Switching on a Wireless Grid”, Workshop on
Experimental Approaches to Wireless Network Design and
Analysis (E-WIND 2005)

[18] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci, and Chad
Barb, “Fast, Scalable Disk Imaging with Frisbee”, USENIX
2003, June 2003.

[19] Network Emulation Testbed, http://www.emulab.net/

[20] The ORBIT Wireless Testbed, http://www.orbit-lab.org

