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Abstract—Most of the contemporary research in wireless 

networks is primarily based on simulations or in-house small 

scale experimental setups that are highly customized for the 

experiment and hence difficult to re-use. Although, this may be 

useful for smaller experiments, it is very difficult to replicate the 

process without writing extensive scripts for controlling and 

collating the results of the experiment which may take up more 

time than the actual experiment in some cases. The main 

hindrance to facilitating experiments is the lack of a flexible 

framework that will allow researchers to conduct several 

different experiments with ease and to be able to repeat them as 

often as necessary for statistical consistency. The above 

considerations motivated the ORBIT testbed project, which is a 

multi-user experimental facility to support research on next-

generation wireless networks. In this paper, we describe the 

software architectural framework to facilitate repeatable wireless 

experiments that provides essential services to choreograph 

experiments as well as automates the routine tasks of 

measurement collection, thereby allowing researchers to focus 

mainly on algorithms and data analysis. In particular, we address 

key considerations to be taken into account such as capturing all 

experiment parameters to facilitate repeated experimentation as 

well as a framework for data collection. We also present use cases 

to demonstrate the flexibility of the architecture to perform 

different types of experiments including mobility emulation along 

with key results and observations. 
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I.  INTRODUCTION 

With the reduction in prices of 802.11 products and 
increased availability, there is a growing trend in experimental 
evaluation of wireless protocols. This has been motivated 
mainly by the limitations of the existing simulation tools that 
provide simplified abstractions of the physical layer, thus 
failing to capture realistic phenomenon such as fading, 
multipath etc. The above observation also led to an NSF-
sponsored initiative [1] recently which concluded that “open 
wireless multi-user experimental facility (MXF) testbed” for 
wireless networking would be increasingly important to the 
research community. These considerations motivated the 
ORBIT
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 testbed project which aims to provide a flexible, open-
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access multi-user experimental facility to support research on 
next-generation wireless networks 

In this paper, we address some of the challenges in building 
multi-user testbeds specifically geared towards wireless 
experimentation. These challenges include supporting multiple 
users to access the shared resources, facilitate repetitive tasks 
of deploying software, launching experiments and collecting 
the results of the experiment. In particular, we focus on the 
software aspects associated with 24/7 operation of the testbed 
with no human intervention, that minimize experiment setup 
and cleanup time thereby optimizing the usage of the testbed. 
Additionally, we also touch upon several aspects of wireless 
experimentation such as collecting cross layer information 
from the devices, emulation of mobility using spatial switching 
which might be beneficial to researchers. 

The organization of the paper is as follows: Section 2 
covers the different aspects of open-access multi-user 
experimentation that influenced the design of our testbed. 
Section 3 discusses the features unique to wireless experiments 
such as exposing PHY/MAC layer information from drivers to 
experimenters through a set of function calls, as well as 
controlled mobility emulation using spatial switching on the 
grid. Section 4 describes other important services supported by 
our framework. Section 5 describes a few use cases to 
demonstrate the flexibility of our architecture and Section 6 
concludes the paper. 

II. DESIGN FOR MULTI-USER EXPERIMENTATION 

Supporting multi-user experimental facility presents some 

interesting challenges including routine ones such as user 

account maintenance, access control, user portal for 

experimenters as well as more complex ones related to 

optimizing the usage of the testbed by accommodating as many 

users as possible in a given time duration. In this section, we 

focus more on the latter which have influenced our software 

design. As opposed to wired experimentation, where users can 

have access to the shared facility simultaneously and can be 

segregated either at the MAC layer using VLANs or IP layer 

using firewalls or a combination of both, wireless 

experimentation poses an interesting challenge due to the 

inherent broadcast nature of the medium, thereby affecting the 

other nodes in the vicinity. Partitioning a wireless grid in a 

controlled fashion for simultaneous experiments could be 



achieved either by introducing physical barriers that block 

radio propagations from one portion to the other or ‘soft’ walls 

introduced by using an array of noise generators. The former 

approach is difficult to reconfigure and involves physical 

movement of objects (RF shields) to the portion requiring 

isolation and hence not scalable. We are currently in the 

process of experimenting with the latter and the details are the 

subject of a separate paper. 

Nevertheless, until any of the above schemes are in place, we 

use a simple sequential scheduling allowing one set of 

experiments to use the entire shared facility at a time. Thus, 

given the sequential nature of usage, it becomes necessary to 

accommodate as any users as possible and our software 

architecture and design is primarily influenced by this criterion. 

As identified earlier, in most of the experiments, setting up the 

experiment (using scripts or other control mechanisms) and 

collecting results of the experiments and collating them usually 

is a significant contributor to the overall experiment time. In 

fact, it would not be an exaggeration to say that it sometimes 

takes up more time in setup than the actual experiment. 

Hence, our design goal is to reduce this setup time and 

simplifying data collection as much as possible. In order to 

understand the design, a typical experiment life cycle is first 

studied as shown in Fig. 1 below. 

 

Figure 1 Experiment flow 

As seen, an experiment usually comprises the following steps: 

1. Selection of nodes which will be a part of the experiment 

2. Selecting the roles played by each of these nodes in the 

experiment (sender, receiver, AP, forwarder etc) 

3. Deploying necessary software on each node corresponding 

to the role they play each  

4. Configuration of wireless interfaces (Ad-hoc or Managed, 

Power levels, Channel settings etc) 

5. Collecting results at run-time and collate them (statistical 

analysis or simple time plots) 

These steps can be broadly divided into two main categories: 

choreographing an experiment and measurement collection. By 

providing means to launch experiment, we can reduce the 

initial setup times. Also, by enabling mechanisms to collect 

results from the experiment at run-time reduces the 

measurement collection time. Usually, most experimenters log 

data locally and later extract these results using scripts. 

However, this would mean more time than necessary spent on 

the grid and hence delaying the subsequent experiment.  

Software components addressing the above processes are 

described below. 

A. Choreographing an experiment 

Deploying an experiment typically involves a protocol 
between the experiment controller and the wireless nodes that 
allows powering up of nodes, initial interface configurations, as 
well as capturing and reporting the state of each process back 
to the experiment controller. In our framework, the experiment 
controller is called the NodeHandler and the corresponding 
client side software residing on the nodes that responds to 
commands from the NodeHandler is the NodeAgent. We refer 
the readers to [3] for further details on the software model. The 
interactions between NodeHandler and nodeAgent(s) can be 
visualized in Fig. 2. 

 

Figure 2 Interactions between NodeHandler, Services and 

NodeAgent 

The above flow diagram represents the protocol or 
messages that precede/accompany an experiment. Note that 
this messaging needs to be scale up to a large number of nodes 
since one command from the experiment controller elicits 
several responses from the individual nodes back to this 
controller. Hence, we choose a reliable multicast 
implementation as the underlying transport mechanism for 
scalability.  

The entire experiment is usually captured in a Ruby script 
that is descriptive: it defines the nodes, their roles and the 
measurements to be collected. A sample experimental script is 
shown below in Figure 3. In this experiment, node1-2 sends 
UDP datagrams of 1024 bytes at the rate of 300 Kbps to the 
receiver1-4. The wireless settings use 802.11b with the receiver 
acting as an AP (this is done using the “Master” mode on the 
card) and the sender is the client (using the setting “Managed” 
on the card.  

Note how the actual interfaces are abstracted (w0) to hide 
the hardware specific interface nomenclature (e.g Atheros 
bases cards show up as athX whereas Intel and Cisco cards 
show up as ethX 
 



Figure 3 Sample experiment script 

Support services for installing images on the nodes 
(Frisbee) and powering on/off/resetting nodes (Chassis 
Manager Controller) are also provided and are discussed in the 
next section. The NodeHandler interprets the script and 
communicates with the Chassis Manager Controller to power 

on the specified nodes involved in the experiment. It then 
awaits nodes to boot up and the nodeAgent to report back to the 
nodeHandler. In software terminology, this is like a barrier 
implementation that waits until all nodes have reported back to 
the nodeHandler. 

Once the nodeAgents have reported back, the nodeHandler 
then requests the nodeAgents to do initial configuration settings 
for the wireless interfaces. Note that the nodeAgents can 
deduce which wireless card is installed on the nodes, load the 
appropriate driver module and issue commands to configure 
the same. We currently support Atheros-based and Intel-based 
802.11a/b/g cards. A sample command and its actual 
implementation is shown below. 

 

 

 

 

 
Thus, the nodeAgent provides an abstraction of a wireless 

interface to the experimenters (thereby simplifying the 
configuration to merely the right mode, channel etc.). After the 
interfaces have been configured, the nodeHandler directs the 
agents to launch the application based on the role which the 
node plays in the experiment. For e.g., suppose that we have 
one sender and one receiver and the actual application 
corresponding to the sender and receiver is netperf and 
netserver respectively, the nodeAgent launches them 
accordingly with the right command line options. For each 
application definition, we could have multiple prototypes. E.g 
using the same underlying application (Netperf), we could have 
different prototypes such as UDP sender or TCP sender. The 
actual bindings between the prototype (sender or receiver) and 
the application can be configurable and is captured in the 
prototype definition [3]. 

Thus, using this mechanism, we attempt to reduce the initial 
setup times to merely writing the script for the nodeHandler to 
run. Note that this communication takes place over a dedicated 
wired channel so as to avoid interference with the actual 
wireless experiment subsequently. Next, we focus on the run-
time measurement collection framework that alleviates the 
burden of logging, measurement reporting and collating by 
providing the application developers a simple library call for 
reporting the measurement.  

B. Measurement collection framework (ORBIT Measurement 

Library- OML) 

As mentioned earlier, the main motivation behind the 
measurement collection framework (OML) is the ability to 
offload the experimental results at run-time so as to clear up the 
resources quickly for the subsequent experiment. The OML 
framework is based on client/server architecture and uses IP 
multicast for the client to report the collected data to the server 
in real-time. It defines the data structures and functions for 
sending/receiving, encoding/decoding and storing experiment 
data. With user-friendly and generic APIs, it can be easily 

NodeHandler command to nodeAgent 

node.net.w0.mode = “ad-hoc” 

node.net.w0.essid = “xyz” 

 

Actual commands issued by nodeAgent 

(e.g.for Intel based cards) 

iwconfig eth2 mode ad-hoc 

iwconfig eth2 essid xyz 

Experiment.name = "tutorial-1" 

Experiment.project = "orbit:tutorial" 

 

# Define settings used in the experiment 

 

defProperty('rate', 300, 'KBits per second 

sent from sender') 

defProperty('packetSize', 1024, 'Size of 

packets sent from sender') 

 

# Define nodes used in experiment 

 

defNodes('sender', [1,2]) {|node| 

# assume the right image to be on disk 

  node.image = nil   

  node.prototype("test:proto:sender", { 

    'destinationHost' => '192.168.1.4', 

    'packetSize' => Experiment.property     

                   ("packetSize"), 

    'rate' => Experiment.property("rate"), 

    'protocol' => 'udp'     

  }) 

  node.net.w0.mode = "managed" 

} 

 

defNodes('receiver', [1,4]) {|node| 

  # assume the right image to be on disk 

  node.image = nil   

  node.prototype("test:proto:receiver" , { 

    'hostname' => '192.168.1.4', 

    'protocol' => 'udp' 

  }) 

  node.net.w0.mode = "master" 

} 

 

allNodes.net.w0 {|w| 

  w.type = 'b' 

  w.essid = "helloworld" 

  w.ip = "%192.168.%x.%y" 

} 

 

# Now, start the application 

 

whenAllInstalled() {|node| 

  Experiment.props.packetSize = 1024 

  Experiment.props.rate = 300 

 

  allNodes.startApplications 

 

  wait 60  

  allNodes.stopApplications 

 

  wait 10 

 

  Experiment.done 
} 



integrated into user applications. Users can define what 
measurements are to be collected and stored. The clients on the 
experiment nodes collect measurements and send them to the 
collection server over a multicast channel after encoding them 
into XDR [5] format. OML supports multiple multicast 
channels and instances of the collection server per experiment 
to enhance the network scalability and provide reliability of 
data collection by load balancing and redundancy. 

An SQL database is used for persistent storage of experiment 
data that also allows access using standard data analysis tools 
like Matlab. Note that although OML can be extended for 
various wired and wireless networking testbeds and distributed 
systems for data collection 

 

Figure 4 OML Component Architecture 

In order to use the measurement framework, the application 
developers only need to invoke simple library calls such as the 
one shown below 

 

 

By enabling type-safe transport layer (using XDR 
encoding), we can also support reporting of standard data types 
such as int, float, double, string etc. The measurements can be 
either time-based or sample based. In addition, the OML 
framework allows run-time filters to be applied to either of 
these measurement techniques to report minimum, maximum, 
average or sum of time-based or sample-based measurements. 
Additional filter can be defined easily using templates 
provided. For e.g., using the above framework, one can get the 
average value of a metric over the last X seconds or last Y 
packets, where X, Y and the filter (average, mean, max) can be 
specified at run-time. This feature can also be used to limit the 
amount of measurement information flowing over the control 
channel in case of a large number of nodes involved in the 
experiment. The readers are referred to [6] for further details.  

So far the methodology discussed above is general and can 
be applied to any testbed whether wired or wireless. In the next 

section, we focus on certain requirements that are specific to 
wireless experiments.  

III. DESIGN FOR WIRELESS SPECIFIC EXPERIMENTATION 

A. Access to PHY/MAC layer information - Libmac 

Recently, there has been a lot of ongoing research on 
understanding the interactions of various protocol layers in 
wireless networks. Several algorithms [7,8] have been 
proposed that make use of information across protocol layers 
(PHY-MAC) in order to select better routes or adapt 
accordingly. A minimum common requirement for all these 
algorithms is the availability of information from the lower 
layers using driver modifications and/or using ioctl calls to 
extract statistics reported by the driver. In this section, we 
describe Libmac, which is a customizable library that provides 
interfaces to access information from the driver either on a per 
packet granularity or asynchronously, thus hiding the gory 
kernel level details from the application developer. The 
architecture is shown in Figure 5.  

�

Figure 5 Libmac architecture 

Libmac makes uses of Libpcap [9] library to capture 
packets (in parallel to the regular kernel protocol stack) and 
instructs the driver to append PHY layer information to the 
incoming frames. These frames are passed up to the application 
layer, where the information can then be decoded and reported 
to the database by using the measurement framework described 
earlier. We also provide support to inject 802.11 frames using 
Libnet [10] and append parameters to outgoing frames 
(information such as transmit power can be appended to the 
outgoing frames). Libmac currently supports Madwifi [11] 
driver-based Atheros cards as well as Intel IPW2200 driver 
[12] for the Intel cards with access to RSSI, PHY Rate, and 
noise information on a per packet granularity. We refer the 
readers to [13] for more information on the actual interfaces for 
application developers. 

B. Mobility emulation using spatial switching 

In order to support conducting experiments involving 
mobility, earlier approaches [14, 15] have been proposed using 
carefully planned hardware setup involving antenna shielding. 
EWANT [16] eliminates variable attenuators through a 
hardware switch to connect a radio to different antennas over 
time. This number of antennas is limited by the antenna switch 
and does not scale to larger networks. Our approach uses 
software spatial switching to meet these goals. It emulates 

      oml_initialize(argc, argv); 

      //Measure RSSI and noise 
      oml_report(rssi, noise); 



mobility by switching to different radio and antenna positions 
as time progresses. Thus, the emulated trajectory comprises a 
number of discrete steps that approximate the actual path a 
moving node would take as illustrated in Figure 5. 

 

Figure 6 Spatial Switching. The path shows an actual path of a 

mobile node, which the system emulates by choosing the radio 

node that best approximates the current position. 
 

Note that at any position packets are transmitted over real 
radio interfaces, thus this emulator can be used to evaluate the 
effect of interference or other physical and link layer effects on 
higher layer protocols. We implement spatial switching in 
software using the Gigabit Ethernet connections available on 
the ORBIT testbed, because it allows us to scale to a large 
number of nodes at much lower cost than using hardware 
antenna switches. The software spatial switching system uses 
split-stack architecture, as illustrated in Fig. 7.  

 

Figure 7 Split-stack architecture. The network stack of a 

single mobile node is split between a virtual mobile node 

and a grid node. 

Throughout an experiment the application and network 
layer of a mobile node reside on the same machine, denoted as 
a virtual mobile node. As time progresses, it uses the link and 
physical layers of different grid nodes by reconfiguring the 
tunnel. The virtual mobile node can be either a dedicated grid 
node or a server that is on the same local area network as the 
grid nodes. The network stacks of the virtual mobile nodes and 
the grid nodes are tied together by spatial switching 
components. On the virtual mobile nodes, they provide a 
virtual network interface, fake0, which is associated with a grid 
node radio interface. This means that most applications can be 
integrated with this system by changing the routing table to 
point to this virtual interface. 

We also present a benchmark result using AODV routing in 
[17] that illustrates how the emulator can be used for mobile 
systems experiments and how noise generation can create 
multi-hop topologies on the testbed. 

IV. SUPPORT SERVICES 

In addition to the software components mentioned in 
previous sections, there are various support services that are 
used for various vital functions such as controlling node 
powers, serial console access to nodes, and fetching and 
installing images to and onto the nodes. Figure 8 summarizes 
the entire software architecture. 

 

Figure 8 Software Architecture and Services 

A. Chassis Manager Controller 

• The purpose of the chassis manager controller is to 

allow remote power on/off/reboot of the nodes. The 

chassis manager controller communicates the chassis 

manager, which is a hardware component residing on 

the node and is connected to the power supply. 

• In addition to that, it provides periodic reports on the 

node’s health by monitoring CPU temperature, 

voltage levels etc.  

• It provides serial console to the experimenters (or 

administrators) as a back channel to monitor and 

rescue nodes in case of OS crashes or other failures 

 

Figure 9 Chassis Manager Controller 

B. Fetching and installing images to and onto nodes 

Since users get complete root access to the nodes during 
their experiment reservation, the easiest way to ensure a clean 
node for subsequent experiments is to fully install a new image 
on every node at the beginning of every experiment (at the 
beginning, this will be done when experiment control switches 



from one organization to the other). However, in theory, it 
should be possible and permissible to potentially to do this 
before every experiment. We re-use Frisbee [18], a disk 
imaging application which was developed by the Emulab team 
[19]. Frisbee implements a secure multicast protocol to image 
the disk of many nodes simultaneously. Initial benchmarks 
have shown that it takes roughly 5-6 minutes to install image 
on 64 nodes simultaneously. This number is expected to stay 
reasonably bounded (w.r.t number of nodes) since we the 
underlying transport is multicast-based 

C. Noise injection using controlled interface 

Another important aspect of the testbed is the ability to 
create arbitrary topologies typically of larger dimensions onto 
the grid by trying to match the link characteristics of the 
original topology. Currently, ORBIT hardware supports 
injection of AWGN noise at desired power levels and center 
frequencies using Agilent Vector Signal Generator using 
distributed noise antennas positioned at appropriate positions 
on the grid 

D. Experimenters interface 

Currently, we use a simple mechanism for reserving time slots 

on the grid. This is completely Web-based as shown in the 

Figure below. The grid usage is in units of one hour with a 

maximum reservation of four hours 

 

Figure 10 Portal for grid reservation 

During the time reservation, users are allowed access to the 

experimental controller (through VPN and SSH) and can run 

their experiments using scripts from command-line. We are 

currently working on leveraging this to allow GUI based 

support for experiment execution. A separate run-time and 

post-experiment database allows users to quickly view results 

during experiment run-time as well archive them for future 

retrievals and offline analysis as shown in the figures 11. 

 

V. SAMPLE EXPERIMENTS USING THE TESTBED 

In this section, we present a two sample experiments out of 
several others that we have performed on the testbed. 

A. System model for 802.11 based wireless mesh deployment  

This experiment was performed to address capacity scaling 

issues and performance limitations associated with 

conventional “flat” mesh network. We also evaluated the 

performance improvement obtained by using a hierarchical 

approach that organizes mobile nodes (MN), forwarding nodes 

(FN) and access points (AP) into a three-tier hierarchy. This 

resulted in significant improvement in the achievable capacity, 

coverage and QoS. The model was evaluated in terms of key 

performance measurements such as system throughput, 

average delays and packet losses for both hierarchical 

deployment and flat topologies 

 

 

Figure 11 Portal for Experiment Results 

Figure 12 Flat vs Hierarchical topologies 

1) Experimental Evaluation 

In order to validate our system model, we considered a scaled 

area which roughly covers 0.9 sq. km having 20 users, 4 FNs 

and 2 APs. The two topologies were evaluated for comparison 

- Flat topology and a hierarchical topology as seen in Fig 12. 

Each run had 20 users generating increasing offered loads in 

steps of 0.75Mbps (from 0.75 - 3 Mbps) towards the sink 

(AP). These flows represented a few users who were trying to 

access the Internet using a gateway. We measured the total 

system throughput, average delays and packet loss for both the 

flat and hierarchical topologies under increasing offered loads. 

 

2) Results 
It was observed that the hierarchical system scales to about 

50 Mbps system throughput with reasonable packet delay and 
packet loss. This capacity of ~50 Mbps per sq-Km is sufficient 
to handle the traffic density in our urban coverage area 
scenario.  By comparison, the flat ad-hoc network reaches a 
capacity limit at 20 Mbps and has much higher packet delay 
and packet loss 



 

Figure 13 System performances (flat vs hierarchical) 

B. Investigate the impact of frequency diversity and PHY layer 

rate adaptation on  the performance of 802.11 multi-hop ad-hoc 

networks in terms of throughput 

1) Motivation 
The experiment was motivated by the fact that default 

802.11-based ad-hoc networks using commercially preset auto-
rate PHY and a single frequency channel suffer from 
performance degradations caused by link quality fluctuations 
and MAC layer self-interference respectively.  A baseline ad-
hoc network scenario was set up to determine end-to-end multi-
hop flow throughput with default rate control and single 
channel operation. These results were then compared with 
those obtained with multiple channels and alternative PHY-rate 
selection methods demonstrating the potential for significant 
performance improvements 

2) Experimental Evaluation 
In the baseline case, we used default auto rate adaptation 

implemented in the card as well as a single channel and 
measured the end-to-end flow throughput for a three hop 
network shown below, under the influence of different levels of 
injected noise. The offered load was increased from 2 Mbps to 
8 Mbps under the influence of noise from -18 dBm to -5 dBm. 

 

 

 

 

 

 

Figure 14 Baseline case: single channel and auto rate 

It can be seen that the throughput saturates around 4 Mbps 

irrespective of the offered load as we reduce the noise power 

levels. At higher noise levels (in the left side of the graph), the 

rate fluctuation causes the overall system throughput to 

decrease until it finally reaches zero where one (or more) of 

the links is completely cut off because of the noise 

 

In this next scenario, we used default auto rate adaptation 

implemented in the card but used orthogonal channel 

assignments for forwarding. The end- to- end flow throughput 

was measured under the influence of different levels of 

injected noise. In the previous case using single channel, the 

throughput saturates at around 4.2 Mbps. In this case, 

however, the throughput increases up to 16 Mbps by using 

three different channels, a gain of ~4x for the specific flow 

under consideration. In the previous case, there is zero 

throughput at -5 dBm, where as in this case, a low throughput 

(~2 Mbps) can still be sustained. We believe the reason for 

this is that the link between 1 and 2 is completely cut off in the 

first case, even though the other two links are still operational 

 

 

 

 

 

 

 

Figure 15 Default auto rate with frequency diversity 

In the final scenario, we fixed the link rates using different 

combinations of PHY rate settings (R1, R2, R3) on the three 

links manually. Also, orthogonal channel assignments were 

used as before for forwarding. The end –to- end flow 

throughput was measured under the influence of different 

levels of injected noise. 

 

 

 

 

 

 

Figure 16 Fixed rate with frequency diversity 

Auto rate performs better than only the settings of (6, 6, 6) and 

(12, 6, 12). In all the other cases, up to (36, 36, 36), we see 

1 2 3 4 
 Channel 48  Channel 48  Channel 48 

 With default auto-rate adaptation 

1 2 3 4 
 Channel 36  Channel 48  Channel 64 

With default auto-rate adaptation 

and frequency diversity 

1 2 3 4 
 Channel 36  Channel 48  Channel 64 

 With fixed rate settings and 

frequency diversity 

R1  R3 



that setting reasonably chosen fixed rates on each link 

performs better than auto-rate adaptation. The improvement is 

as large as ~3x from auto rate to the best rate selection case. 

This shows that auto-rate algorithm implemented on the 

driver/firmware is possibly too conservative because when the 

rate fallbacks to a lower level, it ramps up gradually thereby 

reducing the efficiency of the link utilization. 

 

VI. CURRENT TESTBED STATUS  

Recently, we extended our testbed to 400 wireless radio 

nodes arranged in a 20×20 grid housed in a remote facility as 
shown in Figure 17. The nodes are mounted off the ceiling and 
are separated by one meter apart. Each node has two 802.11 
wireless a/b/g cards and by operating the second interface on a 
different channel, multi-channel forwarding can also be 
implemented. 

 Every node is a small form factor PC with 1GHz VIA C3 
CPU, 512 MB RAM, and 20 GB hard disk. The nodes also 
have two 1000BaseT Ethernet ports, which are used for control 
messages (such as nodeHandler commands and OML data 
collection). The testbed also incorporates a raw waveform 
generator that is connected to specifiable antennas on the grid. 
This generator can be remotely controlled to inject AWGN 
noise at a desired power level and frequency band, thereby 
enabling the creation of arbitrary link quality levels and related 
ad-hoc network topologies. 

 

Figure 17 20××××20 wireless grid 

VII. CONCLUSIONS 

In this paper, we presented the software design of a novel 
radio grid emulator testbed that is intended to facilitate a broad 
range of experimental research on next-generation protocols 
and applications. We have also explained a typical 
experimental lifecycle and provided sample experiments as 
proof-of-concept validation of the testbed design. Early end-
user experiments on the ORBIT radio grid are expected to 
begin in the near future, and should lead to further validation 
and refinement of the testbed’s design. Further details on the 
testbed can be found on the project website [20]. 
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