Brief Conexity Notes
C. Rose

Some of you asked for a few notes on convexity. Here they are.

Definition: A vector-argument, real valued function \(g(x) \) is strictly convex iff for \(\lambda \in [0, 1] \) and \(x_1, x_2 \) in the domain of \(g() \) we have

\[
g(\lambda x_1 + (1 - \lambda) x_2) \leq \lambda g(x_1) + (1 - \lambda) g(x_2)
\]

with equality iff \(\lambda = 0, 1 \).

Simple convexity (not strict) relaxes the strict inequality except at the endpoints. That is, the expression can be satisfied with equality other than at \(\lambda = 0, 1 \).

The above definition is powerful since it allows us to apply convexity to multi-variate functions. The geometric interpretation is that for a function to be convex, it must lie below a line drawn between ANY two points in the domain of the function.

One can also use the same basic idea to define *convex sets*. For example, a set is called convex if the line connecting any two points in the set is also completely contained in the set – that is, all points on the line are also in the set for any two chosen endpoints. This concept is useful in optimization — something we do a lot of as EE’s.

In any case, our definition of convexity is completely general and our old baby definition for single-variable functions is included in our super definition. Here’s why. For any function \(f(x) \) on some simply-connected region \((x_1, x_2)\) (OOOOOOOH! here’s another use for convex regions – all convex regions MUST be simply connected since if they’re not, you can draw a line from one of the regions to another and the line will not be completely contained in the set!) we have

\[
f(x) = f(a) + \frac{df(a)}{dx}(x-a) + \frac{d^2 f(\xi)}{dx^2} \frac{1}{2} (x-a)^2
\]

where \(\xi \) is between \(a \) and \(x \). This is an often forgotten fact from Calculus 101. In any case, we first see if for \(\frac{d^2 f(\xi)}{dx^2} > 0 \) we satisfy our expression for convexity with \(a \in (x_1, x_2) \). So we let \(a = \lambda x_1 + (1 - \lambda) x_2 \) to obtain

\[
f(x_1) > f(\lambda x_1 + (1 - \lambda) x_2) + f'(\lambda x_1 + (1 - \lambda) x_2) \left[(1 - \lambda)(x_1 - x_2)\right]
\]

where the strict inequality is owed to the positivity of the second derivative. Similarly,

\[
f(x_2) > f(\lambda x_1 + (1 - \lambda) x_2) + f'(\lambda x_1 + (1 - \lambda) x_2) \left[\lambda(x_2 - x_1)\right]
\]
From these we obtain
\[
\lambda f(x_1) + (1 - \lambda)f(x_2) > f(\lambda x_1 + (1 - \lambda)x_2)
\]

Now for the reverse arrow we’d like to show
\[
\{\lambda f(x_1) + (1 - \lambda)f(x_2) > f(\lambda x_1 + (1 - \lambda)x_2)\} \Rightarrow \left\{ \frac{d^2 f}{dx^2} > 0 \right\}
\]

Well, I’ll leave it to you to show that if there exists a single value \(\chi \) for which \(\frac{d^2 f(\chi)}{dx^2} < 0 \) then the formal “super-convexity” definition will not be satisfied. That is, you should find it relatively easy to show that for such a \(\chi \) we will have
\[
\left\{ \frac{d^2 f(\chi)}{dx^2} \leq 0 \right\} \Rightarrow \{\lambda f(x_1) + (1 - \lambda)f(x_2) \leq f(\lambda x_1 + (1 - \lambda)x_2)\}
\]

for some values of \(x_1 \) and \(x_2 \) and \(\lambda \neq 0, 1 \).