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Abstract� In traditional call admission control (CAC) schemes,
mobile users are always the passive roles during the admission
procedures and the base station determines whether to admit or
reject the call requests without the involvement of mobile users.
In this paper, we propose a novel stochastic CAC framework
that allows the mobile user to be an active entity during the
CAC process. The objective of each mobile user is to maximize
its utility function based on its own decision (i.e., to join the queue
or not to join the queue). The optimal stochastic decision is in the
sense that the probability for a mobile user to join the queue will
maximize the expectation of the utility function. In other words,
in the long run, the mobile user will bene�t from the optimal
joining probability p∗. We further show that the optimal join
probability for a mobile user could be quite different depending
on the number of mobile users waiting in the queue. Finally, we
illustrate the structure of the optimal join probability p∗ under
various utility functions, which indicates that the optimal user's
policy depends on the utility functions. Moreover, we �nd that
even if the theoretical structure of service time in the system are
quite different for various queue scheduling schemes, the optimal
p∗i are identical in most of circumstance.

I. INTRODUCTION

Call admission control (CAC) investigates the issue of
how to ef�ciently utilize the limited resource of wireless
bandwidth. With the rapid evolvement of wireless technology
and increasing demand of the mobile users, the CAC problem
is gaining more and more attention.

Extensive research efforts have been conducted to investi-
gate CAC issues and reveal plenty of insights [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10]. In [6], user mobility is considered by
the CAC scheme with arbitrary call-arrival rate, which requires
the global information on the call arrival process and user
mobilities. The proposed scheme is analyzed in terms of a
more realistic network topology and their results show that
the CAC algorithm achieves high throughput with guaranteed
Quality of Service (QoS) and call blocking probabilities.
In [7], the mathematical model for on/off traf�c model is
obtained for cellular networks provisioning voice and best-
effort data service. The traf�c is characterized by a three-
dimensional birth-death model that effectively captures the
complicated interaction between on/off voice traf�c and best-
effort data traf�c under a completely sharing situation. The
close form for the performance metrics are derived and the
minimum amount of resources to guarantee the required QoS
is obtained.

A common feature shared by the existing literature is that
the mobile subscribers always are the passive roles during
the CAC procedures. The mobile users are either admitted
to the system or denied by the system. They do not have any
control or choice during such an admission control process.
However, with the rapid development of CPU and DSP chip,
the modern mobile terminals, like PDA, smart phone and
handset etc, become more and more powerful in terms of
computational capacity. In addition, mobile users have more
information like their location and service requirements than
the base station has. It is desirable for the system to fully
utilize the mobile node's capability to improve the admission
control's performance from CAC perspective.

Towards this direction, we propose a new stochastic ad-
mission control paradigm that makes mobile users actively
participate into the CAC procedure. The new scheme allows
the mobile users to decide whether to join the system or not,
but in a probability or stochastic sense rather than a deter-
ministic sense. For example, if the probability of the mobile
users joining the system (say `p') is greater than 0.5, then the
mobile users are more willing to join the system. For `p' is
smaller than 0.5, it suggests that the mobile users are more
reluctant to join the system. We identify the optimal strategy
for the mobile users in sense that the optimal portfolios will
maximize the mobile users's utility. In other words, without
following the suggested optimal strategy, the mobile users only
reduce their own utilities.

In addition, call blocking or dropping probability are not
always good performance metrics for all the situations. For
example, if the call waiting time is too long, some users will
run of patient and leave the system. In such a case, even
though the calls are not blocked, the users are not satisfactory
with the admission service. Hence, call blocking probability
is not a good signal to re�ect the users' requirements in
certain circumstance. Instead, we propose the notion of utility
function for the CAC system. Utility functions are widely
deployed to formulate the problems in the �elds like Internet
congestion [11], [12], game theory [13], [14], supplying chain
and inventory theory [15], [16], etc. In this paper, We de�ne
the utility function for each user to capture the gain and loss
during the CAC process. The objective of each mobile user
is to maximize its own utility function. We show that for
different utility functions, the optimal join probability, `p' is



quite different and even for the same utility function, `p' could
be very different as well depending on the number of mobile
users in the queue. We explore certain structures of `p' under
various situations, which suggest that simply joining or not
joining the queue is not optimal in most of circumstances.
More interestingly, we �nd that even if the theoretical structure
of service time are quite different according to the queue
scheduling scheme, the optimal joining probability p∗i are
identical.

The rest of paper is organized as follows. We describe
the system model in Section II and present our stochastic
CAC scheme in Section III. In Section IV, we illustrate how
to optimize the utility function and display the structure of
optimal join probability according to different queue size.
We provide numerical results in Section V and this paper is
concluded in Section VI.

II. SYSTEM MODEL

We consider a single cell with capacity of C channels and
buffer size of n. Each mobile user requests one channel for
service. The call arrival follows Poisson process with rate λ
and the channel holding time is exponentially distributed with
rate µ as in [17], [2]. Once there is a call arrival to the base
station (BS) and there is one channel available, the call request
will be served immediately. If no resource left at that time,
the call will be put into the queue to wait until it can get the
service. Since the total queue size is �nite n, when the queue
is full, the coming request will be blocked.

Note that although we present a very simple model without
multiple classes of services and handoff consideration, etc, the
idea in this paper can be extended to the general settings with
more cumbersome illustration. The purpose of using such a
simple model is to reduce the complexity of queueing analysis
and highlight the idea of stochastic admission control based
on utility function.

III. STOCHASTIC CAC SCHEME

In this section, we describe how our CAC scheme admits
a call request stochastically. When there is a new call request
arriving at the BS, if the BS has the available channels, it will
allocate one of the channels to the call. If all the channels are
occupied by the ongoing calls, the BS will notify the mobile
user that currently there is no resource available and the new
call could be put into the queue (if the queue is not full yet)
to wait until the channel is available. Up to here, the our CAC
scheme is indifferent from the existing ones, and the difference
is the following. After receive such a noti�cation, the mobile
user will decide whether to join the queue or not. If the mobile
user decide to join the queue, then the BS will put it into the
queue; if not, the mobile user simply leaves the system and
the BS discards the request. The pseudocode of the admission
control procedures is displayed in Figure 1.

Whether a mobile user joins the queue or not is based on
by its utility function. The objective of each mobile user is to
maximize its utility function. In other words, if join the queue
tends to increase the utility, the mobile user will join. If not,
the mobile user will avoid joining. Since the system is random

Algorithm 1: Stochastic Admission Control
Input: Acall arrival `M'; remaining number of channels `C';

the remaining buffer capacity `B'.
optimal join probability pi for M.

Output: An admission decision of a BS.
Method:

1. A call M arrives at the BS
2. IF C > 0
3. Accept the call
4. C ← C− 1
5. ELSE
6. Notify M that there is no available channel and ask

M whether it wants to join the queue to wait or not
7. M will generate a uniform random variable x ∈ [0, 1]
8. IF M wants to join the queue (i.e., x > pi)
9. IF B > 0
10. put the call into the queue
11. B ← B− 1
12. ELSE
13. Reject the call
14. END
15. ELSE (i.e., x ≤ pi)
16. M withdraws the call request and leaves the system
17. END
18. END

Fig. 1
THE STOCHASTIC ADMISSION CONTROL SCHEME-PART I: ADMISSION

CONTROL.

in that the arrival is random and service is random as well, the
utility function is de�ned through the expectation of certain
random variables as shown in Section IV.B. Thus, the decision
of joining the queue is not deterministic as well, rather it is a
stochastic decision. We therefore denote p as the probability to
join the queue. For example, p = 0.8 means that on average,
the mobile user will join the queue 8 times out of 10 times
(not join the queue for 2 times). If p = 0.2, the mobile user
is more reluctant to join the queue compared with p = 0.8.
As a special case, for p = 1 (p = 0), the mobile user will
always join (not join) the queue and hence this degenerates to
the deterministic case.

Moreover, we found out depending on the utility function,
the join probability p could be very different for different
number of mobile users in the queue. We further denote pi

as the joining probability for a mobile user when the system
has i−1 users waiting in the queue already. The BS calculates
pi, for i = 1, ..., n, which maximize the mobile user's utility
in Section IV.B.

We point out that if the mobile user does not follow the join
probability pi, it will only hurt its performance in the long run,
because pi is the optimal join probability for the mobile user
as shown in the next section.

IV. OPTIMIZE UTILITY FUNCTION

In this section, we present the de�nition of utility function
and illustrate how to maximize the utility function under
different situations.
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A. De�nition of Utility Function
Denote ~p = (p1, p2, ..., pn) as the probability vector, where

pi is the probability for a mobile user to join the queue
when there are already i − 1 mobile users waiting in the
queue. Let t be the average service time of the mobile user.
Assume a mobile user will gain a constant `α' as the bene�t
of completing this call, and pay β(t) as the cost, which is the
function of waiting time t and monotone non-decreasing in t,
because from the mobile user's point of view, the more waiting
time it experiences, the more cost for it pays. Moreover, let
Q be number of mobile users waiting in the queue.

We de�ne the utility function U(t, ~p) as the expected
revenue for a mobile user who arrives at the base station
and has to wait in the queue 1. For a given queue length
Q = i, i ≥ 0, if a mobile user joins the queue, the revenue for
the mobile user will be α−β(ti, pi). The mobile user joins the
queue with probability pi, and does not join with probability
of 1 − pi (obtains zero revenue.) Thus, the expected revenue
for a mobile user can be stated as

U(t, ~p) = E{E{ α− β(ti) | Q > 0 }}

=
n∑

i=1

PiE{ α− β(ti) | Q = i }

=
n∑

i=1

Pi{pi × [α− β(ti)] + (1− pi)× 0}

=
n∑

i=1

Pipi [α− β(ti)] , (1)

where Pi is the conditional probability Prob{Q = i−1 | Q ≥
0} that is the probability of i− 1 mobile users waiting in the
buffer, given the buffer is not empty ( Q ≥ 0) for i = 1, ..., n.

Thus, the objective of a mobile user is to maximize the
utility by controlling the probability of joining the queue, ~p =
(p1, p2, ..., pn). That is,

max U(t, ~p) (2)
s.t. 0 ¹ ~p ¹ 1

TABLE I
LIST OF NOTATIONS

Notation Representation
λ Average arrival rate
µ Average service rate
C Number of channel in the system
n Queue size
pi Join probability for a mobile user seeing queue length of i
Pi Conditional probability that there are i− 1 mobile users

in the queue given the queue is not empty
Q Number of mobile users in the queue
α Bene�t for a mobile user to complete a call

β(t) Cost function for a mobile user to obtain the service

1We do not consider the situation that a mobile user arrives at the system
and the base station has available channels, because it can get service right
away without waiting.

B. Queueing Analysis

In order to further illustrate U(t, ~p) in (1), we proceed
queueing analysis to acquire Pi and the average waiting time
ti. We can characterize the system dynamics by a continuous
time Markov Chain and state the balance equation as follows.

πi+1 =
λ

(i + 1)µ
πi, 0 ≤ i < C,

πi+1 =
λ× pi−C

Cµ
πi, C ≤ i < C + n,

After simple calculations, we get

π1 =
λ

µ
π0, π2 =

λ

µ

λ

2µ
π0,

... ...

πC =
(

λ

µ

)C 1
C!

π0,

... ...

πC+i =
(

λ

µ

)C+i
∏i

j=1 pj

Ci

1
C!

π0,

... ...

πC+n =
(

λ

µ

)C+n
∏n

j=1 pj

Cn

1
C!

π0,

In addition, we know that

π0 + π1 + · · ·+ πC+n = 1.

We have πC+i in terms of ~p = (p1, ..., pn) as

πC+i =

(
λ
µ

)C+i Qi
j=1 pj

Ci
1
C![∑C

k=0

(
λ
µ

)k
1
k! + 1

C!

∑n
k=1

(
λ
µ

)k+C Qk
i=1 pi

Ck

] . (3)

for i = 1, 2..., n− 1.
Now, we are ready to calculate the conditional probability

Pi by

Pi = Prob{Q = i | Q ≥ 0}
=

Prob{Q = i, Q ≥ 0}
Prob{Q ≥ 0}

=
πC+i−1

n∑

j=1

πC+j−1

, i = 1, 2..., n.

By substituting πC+i in (3), we have

Pi =

(
λ

µ

)C+i−1

C1−i

i−1∏

j=1

pj

n∑

k=1

(
λ

µ

)C+k−1

C1−k
k−1∏

j=1

pj

, i = 1, ..., n. (4)
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C. ti in FIFO and LIFO Queue

In this subsection, we present how to obtain ti. We further
divide the discussion into two cases: (i) �rst-in-�rst-out queue
(FIFO) and (ii) last-in-�rst-out queue (LIFO). In the long run,
it is fair to each mobile user for either case, while two typical
queue scheduling schemes produces different structures of ti.

For FIFO queue, the structure of ti is straightforward.
Since the service time is exponentially distributed, the average
waiting time given i users already in the queue is

tFIFO
i = 1/µ + i/Cµ = (C + i)/Cµ. (5)

As to LIFO queue, the structure of ti is more complicated
than that of FIFO queue.

τi,1 =
λpi+1

λpi+1 + Cµ

τi,2 =
Cµ

λpi+1 + Cµ

where P1 is the probability that the coming event is an arrival
and P2 is the probability that the coming event is a departure.

Theorem 1: Assume user i is the last one in the queue
currently and given the next event to the system is an arrival,
i.e., user i + 1, instead of a departure from the system. The
average waiting time in the queue for user i just before the
user i + 1 joins the queue is 1

λ+Cµ .

N(T)t0 t-x

x

arrival

Fig. 2
THE ARRIVAL PROCESS.

Proof: Since the service time for each server is exponen-
tial distribution with average 1

µ , the service time for total C

servers is exponential distribution with average 1
λ+Cµ . In other

words, the departure process from the system with C servers
is Poisson process N(t) with rate λ + Cµ. Suppose t is large
enough and γt is past waiting time for user i, which is the last
one in the queue and the �rst one to be served, if one departure
occurs. Then, γt > x if and only if there is no departure from
time interval [t− x, x], i.e., N(t)−N(t− x) = 0. Hence the
distribution function of γt is given by

Fγt(x) = Prob(γt ≤ x)
= 1−Prob(γt > x)
= 1−Prob(N(t)−N(t− x) = 0)

= 1− e−(λ+Cµ)x [(λ + Cµ)x]0

0!
= 1− e−(λ+Cµ)x

E{γt} =
∫ ∞

0

P (γt > x)dx

=
∫ ∞

0

e−(λ+Cµ)xdx

=
1

λ + Cµ

Theorem 2: The time spent in the system for ith arrival has
the Erlang distribution given by

tLIFO
i =

1
Cµ

n−1∏

j=i

τj,1

τj,2
+

n−1∑

j=i

1
τj,2

1
(λpj+1 + Cµ)

j−1∏

k=i

τk,1

τk,2
. (6)

Proof: We know that the total time for user i spent in
the system, ti consists of two parts: (i) the waiting time in the
queue, Wi and (ii) the service time in the server. That is,

tLIFO
i = Wi +

1
µ

,

where 1
µ is the average service in the server.

The average waiting time for the last user n in the queue
Wn (n is the queue size) has the highest priority to join the
service. So long as the system has one departure, user n will
join the server, and hence the average waiting time will be 1

Cµ .
While all other users i (i = 1, 2, ..., n−1) has two possibilities

The average waiting time Wi can be stated in the recursive
fashion.

Wn =
1

Cµ

Wn−1 = τ2
1

λpn + Cµ
+ τ1(

1
λpn + Cµ

+ Wn + Wn−1)

... = ...

W2 = τ2
1

λp3 + Cµ
+ τ1(

1
λp3 + Cµ

+ W3 + W2)

W1 = τ2
1

λp2 + Cµ
+ τ1(

1
λp2 + Cµ

+ W2 + W1)

Then, after simple algebra calculation, we can have

Wi − τi,1

τi,2
Wi+1 =

1
τi,2(λpi+1 + Cµ)

τi,1

τi,2
Wi+1 − τi,1τi+1,1

τi,2τi+1,2
Wi+2 =

1
τi+1,2(λpi+2 + Cµ)

τi,1

τi,2
... = ...

n−3∏

j=i

τj,1

τj,2
Wn−2 −

n−2∏

j=i

τj,1

τj,2
Wn−1 =

1
τn−2,2(λpn−1 + Cµ)

n−3∏

j=i

τj,1

τj,2

n−2∏

j=i

τj,1

τj,2
Wn−1 −

n−1∏

j=i

τj,1

τj,2
Wn =

1
τn−1,2(λpn + Cµ)

n−2∏

j=i

τj,1

τj,2
,

By taking the summation over all the above equations, we
have

Wi −
n−1∏

j=i

τj,1

τj,2
Wn =

n−1∑

j=i

1
τj,2

1
(λpj+1 + Cµ)

j−1∏

k=i

τk,1

τk,2
,
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Then,

Wi = Wn

n−1∏

j=i

τj,1

τj,2
+

n−1∑

j=i

1
τj,2

1
(λpj+1 + Cµ)

j−1∏

k=i

τk,1

τk,2
.

With Wn = 1
Cµ , the result follows.

With Pi and ti (tFIFO
i and tLIFO

i , respectively), we can
substitute them into Eqn. (1) to calculate the utility function.

V. NUMERICAL RESULTS

In general, the utility function in (1) is not convex, nor
concave function in most situations. We have to rely on the
numerical methods to obtain the optimal solutions. Here, we
explore some properties of the utility function to know the
certain structure of the optimal solution.

We present three cases with different utility functions and
use generic algorithm to search the optimal solutions. Since
the solution is in a multi-dimensional Euclidian space, we
cannot plot them in one �gure. We thus list some typical
values for ~p, present the optimal solution p∗i with bold fonts
for the comparison purpose and explain the implications of the
optimal solutions for both FIFO and LIFO queues. In addition,
we provide the optimal t∗i (for FIFO and LIFO, respectively)
corresponding to p∗i . Although the underlying rationale is still
not clear, we report the interesting observation that even if the
theoretical structure of tFIFO

i and tLIFO
i are quite different,

the optimal p∗i are identical in most of circumstance, which is
robust against queue scheduling scheme.

Case 1: The system parameters are con�gured as C =
20, n = 6, λ = 20, µ = 1, α = 30, β(t) = 2ti, and thus
the utility function is given by U(t, ~p) =

∑6
i=1 Pipi(30 −

2ti). We are interested in the optimal ~p that maximize the
utility function, i.e., ~p∗ = arg max0¹~p¹1

∑5
i=1 Pipi(30−2ti).

The numerical results for both tFIFO
i and tLIFO

i are ~p∗ =
(1, 1, 1, 1, 1, 1). The resulting ~p∗ is so called �join dominant�.
In other words, in any situations, the mobile user prefers to join
the queue with probability 1, rather than leave the system, and
the expected utility for the mobile user is maximized to 27.65
compared to other strategies displayed in Tables II and III.

TABLE II
CASE 1: PERFORMANCE COMPARISON OF FIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.00
0.2 0.2 0.2 0.2 0.2 0.2 5.57
0.4 0.4 0.4 0.4 0.4 0.4 11.13
0.6 0.6 0.6 0.6 0.6 0.6 16.66
0.8 0.8 0.8 0.8 0.8 0.8 22.17
1.0 1.0 1.0 1.0 1.0 1.0 27.65

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
1.05 1.10 1.15 1.20 1.25 1.30

Case 2: The system parameters are set as C = 20, n = 6,
λ = 20, µ = 1, α = 10, β(t) = 10t, and the utility function
is given by U(t, ~p) =

∑5
i=1 Pipi(10 − 10ti). We can obtain

~p∗ = arg max0¹~p¹1 U(t, ~p) = (0, 0, 0, 0, 0, 0). Such structure
of ~p∗ is so called �not join� dominant. The mobile users will
not join the queue to wait no matter how many users wait in

TABLE III
CASE 1: PERFORMANCE COMPARISON OF LIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.00
0.2 0.2 0.2 0.2 0.2 0.2 5.57
0.4 0.4 0.4 0.4 0.4 0.4 11.13
0.6 0.6 0.6 0.6 0.6 0.6 16.66
0.8 0.8 0.8 0.8 0.8 0.8 22.17
1.0 1.0 1.0 1.0 1.0 1.0 27.65

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
1.30 1.25 1.20 1.15 1.10 1.05

the queue 2 and leave the system immediately. In other words,
to wait in the queue (no matter what is the queue length)
will only reduce the mobile user's utility in the long run. We
present the comparison in Tables IV and V.

TABLE IV
CASE 2: PERFORMANCE COMPARISON OF FIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.0000
0.2 0.2 0.2 0.2 0.2 0.2 −0.125
0.4 0.4 0.4 0.4 0.4 0.4 −0.328
0.6 0.6 0.6 0.6 0.6 0.6 −0.661
0.8 0.8 0.8 0.8 0.8 0.8 −1.147
1.0 1.0 1.0 1.0 1.0 1.0 −1.750

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 0 0 0 0 0

TABLE V
CASE 2: PERFORMANCE COMPARISON OF LIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.0000
0.2 0.2 0.2 0.2 0.2 0.2 −0.125
0.4 0.4 0.4 0.4 0.4 0.4 −0.328
0.6 0.6 0.6 0.6 0.6 0.6 −0.661
0.8 0.8 0.8 0.8 0.8 0.8 −1.147
1.0 1.0 1.0 1.0 1.0 1.0 −1.750

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 0 0 0 0 0

Case 3: In both previous cases, the mobile user will
join with either probability 1 or probability 0. In this case,
we choose utility function as U(t, ~p) =

∑6
i=1 Pipi[30 −

2pi(ti + i)2] with C = 20, n = 6, λ = 20, µ = 1,
α = 30, β = 2pi × (ti + i)2. We obtain numerically the
optimal solution given by ~p∗ = arg max0¹~p¹1 U(t, ~p) =
(1, 0.489, 0.265, 0.174, 0.109, 0.125). When the system does
not have any available channels, the best strategy for the
mobile user depends on the number of users waiting in the
queue. When there is nobody in the queue, the mobile user
will join the queue with probability 1; When there is one use
waiting in the queue, then the mobile user will join with
probability 0.489 rather than simply join or simply leave.
In this situation, the mobile user will join the queue in the

2Even there is nobody in the queue, the mobile user may prefer not to wait
in the queue, if it cannot get service right away.
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stochastic sense, not in the deterministic sense. Intuitively, on
average, for 1000 times, it will join 489 times and not join 511
times. So on and so forth for p3, p4, p5 and p6. The interesting
observation is that given the utility function as in the this
case, pi does not monotone decrease in i. For example, p5

is less than p6, and this shows that the mobile user is more
tentative to join a queue with a larger queue size (e.g., 5 users
in the queue ) than a smaller queue size (e.g., 4 users in the
queue). In addition, we can clearly see that the optimal p∗i are
identical for both FIFO and LIFO queue scheduling, although
t∗i of FIFO and LIFO are different from each other. We also
examine the other combinations of the system parameters and
the same observations hold. We provide the detailed data in
Tables VI and VII.

TABLE VI
CASE 3: PERFORMANCE COMPARISON OF FIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.00
0.2 0.2 0.2 0.2 0.2 0.2 5.54
0.4 0.4 0.4 0.4 0.4 0.4 9.28
0.6 0.6 0.6 0.6 0.6 0.6 8.56
0.8 0.8 0.8 0.8 0.8 0.8 −0.36
1.0 1.0 1.0 1.0 1.0 1.0 −20.1
1.0 0.489 0.265 0.174 0.109 0.125 13.20

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
1.05 1.10 1.15 1.20 1.25 1.30

TABLE VII
CASE 3: PERFORMANCE COMPARISON OF LIFO QUEUE.

p1 p2 p3 p4 p5 p6 Utility
0.0 0.0 0.0 0.0 0.0 0.0 0.00
0.2 0.2 0.2 0.2 0.2 0.2 5.54
0.4 0.4 0.4 0.4 0.4 0.4 9.31
0.6 0.6 0.6 0.6 0.6 0.6 8.73
0.8 0.8 0.8 0.8 0.8 0.8 0.16
1.0 1.0 1.0 1.0 1.0 1.0 −18.9
1.0 0.489 0.265 0.174 0.109 0.125 13.16

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
1.0825 1.0646 1.0593 1.0564 1.0573 1.05

Traditional CAC can be interpreted as an �always join�
scheme until the queue is full. In our analysis, we can see that
in most of cases �always join� strategy may not be the optimal
and the optimal strategy depends on the utility functions of the
mobile users.

VI. CONCLUSION

In traditional CAC schemes, mobile users always become
a passive party during the admission procedures and the BS
decides whether to admit or reject the call request without the
involvement of the mobile users. In this paper, we propose
a novel stochastic CAC scheme that allows the mobile user
to be an active role during the CAC process to fully utilize
the mobile users' capability and hence improve the system
performance. The objective of each mobile user is to maximize
the utility function by its own decision (to join the queue or
not to join the queue). The optimal stochastic decision is in

the sense that the probability for a mobile user to join the
queue will maximize the expectation of the utility function. We
further show that the optimal join probability for a mobile user
could be quite different, when it observers different number
of mobile users waiting in the queue. Finally, we illustrate
the structure of the optimal join probability ~p∗ under various
utility functions, which indicates that simply to join the queue
all the time is not optimal in most situations. As the future
work, we may (i) consider incorporate handoff price into the
utility function and analyze the impact of handoff; (ii) explore
the underlying reason for the same optimal p∗i structure against
the queue scheduling mechanism.
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