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ABSTRACT
The goal of this work is to enable user authentication via finger in-
puts on ubiquitous surfaces leveraging low-cost physical vibration.
We propose VibWrite that extends finger-input authentication be-
yond touch screens to any solid surface for smart access systems
(e.g., access to apartments, vehicles or smart appliances). It inte-
grates passcode, behavioral and physiological characteristics, and
surface dependency together to provide a low-cost, tangible and
enhanced security solution. VibWrite builds upon a touch sens-
ing technique with vibration signals that can operate on surfaces
constructed from a broad range of materials. It is significantly dif-
ferent from traditional password-based approaches, which only au-
thenticate the password itself rather than the legitimate user, and
the behavioral biometrics-based solutions, which usually involve
specific or expensive hardware (e.g., touch screen or fingerprint
reader), incurring privacy concerns and suffering from smudge at-
tacks. VibWrite is based on new algorithms to discriminate fine-
grained finger inputs and supports three independent passcode
secrets including PIN number, lock pattern, and simple gestures
by extracting unique features in the frequency domain to capture
both behavioral and physiological characteristics such as contact-
ing area, touching force, and etc. VibWrite is implemented using
a single pair of low-cost vibration motor and receiver that can be
easily attached to any surface (e.g., a door panel, a desk or an appli-
ance). Our extensive experiments demonstrate that VibWrite can
authenticate users with high accuracy (e.g., over 95% within two
trials), low false positive rate (e.g., less 3%) and is robust to various
types of attacks.
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1 INTRODUCTION
The process of authentication verifies a user’s identity and is fre-
quently deployed at almost every corner of our daily lives. In
particular, the increasingly wide deployment of smart access sys-
tems, which are defined as those used for keyless controlling ac-
cess to corporate facilities/apartment buildings/hotel rooms/smart
homes/vehicle doors, require the authentication process to play a
broader role in numerous daily activities beyond the common form
authentication on touch screen devices, such as mobile phones.
The classic physical-key based access methods do not possess user
authentication functionality. A market report shows that the de-
ployment of smart security access systems is expected to grow
rapidly at an annual rate of 7.49% and will reach a market value
of $9.8 billion by the year of 2022 [1]. The current authentica-
tion process in smart security access systems mainly relies on tra-
ditional solutions supported by intercom, camera, card, or finger-
print based techniques. These approaches however involve expen-
sive equipment, complex hardware installation, and diverse main-
tenance needs. The trend of employing low-cost low-power tangi-
ble user interfaces (TUI) to support user authentication in various
facility entrances, apartment doors and vehicles has gained indus-
try attentions recently. For example, token devices (e.g., smart ring,
glove or pen) could be utilized for associating identities of their
touch interactions [28, 46], and an ultra-thin sensing pad can be de-
ployed in automobiles to perform driver authentication [7]. More-
over, isometric buttons appearing on new models of microwave
ovens and stove tops and rotary inputs (e.g., used by iPod) can re-
place the regular physical buttons to provide better functionality
and flexibility [2]. These new approaches appear promising of con-
ducting user authentication and operating appliances/devices in
smart systems leveraging capacitive sensing. However, these tech-
niques require that the touched surface possesses electric conduc-
tivity and an electric field that produces/stores electrical energy,
which largely limits the wide deployment of such solutions.

Along this direction, we start a new search in developing a low-
cost general user authentication approach, which has the capabil-
ity to work with any solid surface for smart access systems. The
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Figure 1: Illustration of a finger touching on a solid surface
under physical vibration, and three independent types of se-
crets for pervasive user authentication.

convenience of executing user authentication via touching any sur-
face is enticing. For instance, a driver can just place his palm
against the driver side window to access and start the vehicle. This
has already been visualized in the popular movie ”Mission Impos-
sible 5”, in which the featured BMW muscle car can be unlocked
instantly when the lead actor pressed his palm against the side win-
dow. In another instance, a user can place his hand on the door
panel of his apartment to perform authentication and unlock the
entrance door without card access. Furthermore, electronic appli-
ances in smart homes have a growing need to provide customized
services for advanced safety needs such as prohibiting children and
elderly people to operate risky appliances (e.g., oven and dryer), ad-
justing room temperature/lighting conditions and recommending
TV content. A low-cost solution of tangible user authentication
enabled on any solid surface could eliminate the need of installing
touch screens on such electronic devices and make the customized
services easy to deploy. Toward this end, our work seeks a gen-
eral user authentication solution with smart access capability that
can work with any solid surface (such as a door, a table or a ve-
hicle’s window), not limited to touch screens, and with minimum
hardware and maintenance cost.

Existing Solutions. The traditional authentication solutions
are based on passwords (i.e., texts and graphical patterns) [14, 16,
26, 40, 44]. However, all these approaches are based on the knowl-
edge of the passwords, and thus suffer from password theft or
shoulder surfing. Another direction of authentication involves phys-
iological biometrics (e.g., fingerprints, iris patterns and face) [9,
18, 22, 24]. These mechanisms are less likely to suffer from iden-
tity theft. However, they usually require installation of expensive
equipments and stir privacy concerns of the users. Furthermore, re-
cent studies [15, 32, 36] allowusers to rely on their familiar biometric-
associated features (e.g., a sequence of 2D handwriting and corre-
sponding pressure) extracted from mobile devices’ sensitive touch
screens instead of tedious passwords for user authentication. These
approaches rely on touch screens, and are hard to be extended to

general security access systems such as accessing corporate facil-
ities, apartment buildings and smart homes when touch screens
are not always available. In addition, oily residues, or smudges, on
the touch screen surface may be used to recover user’s graphical
password (i.e., smudge attacks) [10].

Finger-input based Authentication over Any Surface
through a Single Sensor. In this work, we introduce a new
authentication system grounded on low-cost, low-power tangible
user interface, called VibWrite, which has the flexibility to be de-
ployed on ubiquitous surfaces. VibWrite leverages physical vibra-
tion to support authentication to emerging smart access security
systems. To enable touching and writing on any surface during
the authentication process, VibWrite builds upon a touch sensing
technique using vibrations that is robust to environmental noise
and can operate on surfaces constructed from a broad range of ma-
terials. As shown in Figure 1(a), when a vibration motor actively
excites a surface resulting in the alteration of the shockwave prop-
agation, the presence of the object or finger touching in contact
with the surface can thus be sensed by analyzing the vibrations
received by the sensor. VibWrite supports generalized vibration
sensing based on a low-cost single sensor prototype that can be
attached to solid surfaces (such as a door, a table or an appliance)
and sense user touches and perform authentication flexibly from
anywhere. By relying on the vibration signals in a relatively high
frequency band (i.e., over 16kHz), the system is hardly audible or
distracting to the user, and is less susceptible to environmental
interference from acoustic (i.e., mainly within a lower frequency
band [41]) or radio-frequency noise. More importantly, vibration
propagation is highly dependent on the surface material and shape
in specific scenarios. VibWrite thus provides enhanced security
by integrating location/surface uniqueness through such low-cost
and tangible vibration-based user-interface. As another example,
the vibration response of an office door is different from that of
a house door. The unique behavioral information is embedded in
both the behavioral biometrics as well as the surface being touched
(e.g., the specific door in the office), making the system hard to be
forged by attackers.

VibWrite provides users to choose from three different forms of
secrets including PIN, lock pattern, and gesture (and signature in
the future) to gain secure access as shown in Figure 1(b). The au-
thentication process can be enabled on any solid surface beyond
touch screens and without the constraint of the limited screen size.
It is resilient to side-channel attacks when an adversary places a
hidden vibration receiver on the authenticating surface or a nearby
microphone to capture the received vibration signals. It is also ro-
bust to various adversarial activities, including the seemingly very
powerful ones that observe the legitimate user’s input multiple
times and are aware of the passcode secret. It can authenticate
the legitimate user and reject attacks well because of the following
insights: 1) our study shows that vibration signals have the capa-
bility to perform cm-level location discrimination; and 2) unique
features are embedded in a user’s finger pressing at different loca-
tions on a solid surface. Such unique features reflect the charac-
teristics of the user’s finger touching on the medium (e.g., a door
panel or a desk surface) including locations of touching, contacting
area, touching force, and etc., making them capable to discriminate
different touching locations of the same user and different users



when touching on the same location. Thus, VibWrite enables users
to finger-input (i.e., touch or write) on solid surface and is robust
to passcode theft or passcode cracking by integrating 1) passcode,
2) behavioral and physiological characteristics (e.g., touching force
and contacting area), and 3) surface dependency (e.g., house door
or office desk) together to provide enhanced security. The main
contributions of VibWrite are summarized as follows:

• We develop the first vibration-signal-based finger-input authen-
tication system, which can be deployed on any solid surface for
smart access systems (e.g., apartment entrances, car doors, elec-
tronic appliances and corporate desks).

• VibWrite captures intrinsic human physical characteristics pre-
senting at specific location/surface for authentication through
extracting unique features (e.g., frequency response and cepstral
coefficient) in the frequency domain.

• VibWrite has the flexibility to support three types of secrets (i.e.,
PIN, lock pattern, and gesture) to meet different application re-
quirements by developing new techniques of virtual grid point
derivation, featured-based dynamic time warping (DTW) and
distribution analysis based on earth mover’s distance (EMD).

• VibWrite is implemented using a single pair of low-cost vibra-
tion motor and receiver, which involves minimum hardware in-
stallation and maintenance.

• We perform extensive experiments including authenticating le-
gitimate users and modeling various types of attacks. The re-
sults demonstrate that VibWrite can effectively verify legitimate
users with over 95% accuracy within two trials and less than 3%
false positive rate.

2 RELATED WORK
User authentication becomes a critical step under the growing pri-
vacy concerns. Traditional user authentications utilize text-based
passwords [26]. To ensure that a user’s password cannot be easily
guessed, the user has to memorize long strings of random char-
acters, making it inconvenient [40]. Graphical passwords are pro-
posed to ease the memory burden by letting users choose their
pre-selected images from random choices of pictures [14, 16, 40]
or Cued Clicked Points (CCP) in a sequence of images [12]. Ad-
ditionally, grid lock pattern based approaches [25, 44] have been
widely adopted to keep the user’s mobile devices protected. Re-
cent graphical authentication methods can resist shoulder surfing
attacks by utilizing the Convex Hull Click Scheme [49] or the eye-
gaze version of CCP [20]. However, these strategies eventually
perform the authentication based on the knowledge of the pass-
words (e.g., text-based, image-based and lock pattern-based) and
cannot tell whether the password is entered by the legitimate user
or not.

To ensure that the secret inputs used for authentication are
physically from the legitimate user, biometrics-based schemes
(e.g., fingerprints [9], iris patterns [22], retina patterns [24], and
face [18]) have been drawn considerable attention recently. How-
ever, physiological biometrics are sensitive personal information,
which may involve privacy concerns, thus are not widely accepted.
To reduce the privacy concerns, a compromised approach is to au-
thenticate users based on their behavioral characteristics, includ-
ing unique keystroke dynamic [33], mouse movements [50], and

gait patterns [31]. Although these approaches are less sensitive in
terms of privacy, they are designed for continuous user verifica-
tion during the period that the user operates the keyboard, moves
a mouse or takes a walk, rather than one-time authentication.

To provide authentication to the emerging smart access systems
needed by corporate facilities, apartment buildings, hotel rooms,
and smart homes, techniques involving intercom [29], camera [43],
access card [34] and fingerprint [9] have been explored. For ex-
ample, KinWrite [43] uses Kinect, a vision-based platform, to cap-
ture the user’s 3D handwriting patterns for authentication. These
approaches usually involve expensive hardware, complex installa-
tion process, and diverse maintenance efforts. Recent studies suc-
cessfully combine 2D handwriting and behavior features such as
corresponding writing pressure, writing speed, and correlation be-
tween multiple fingers on touch screens to provide enhanced se-
curity [15, 32, 36]. The limitation is that the authentication relies
on touch screens, which may suffer from smudge attacks [10] and
are not always available in smart access systems. Toward this end,
we propose VibWrite that extends the authentication process be-
yond touch screens to any solid surface leveraging vibration sig-
nals. VibWrite will have the authentication capability in a broad
array of applications including entry access (e.g., smart building,
car doors) and supporting customized services in appliances and
devices at smart homes. The authentication process combines pass-
word and human physical traits, and supports three types of secret
independently including PIN, lock pattern, and gesture input for
emerging smart access systems.

3 PHYSICAL VIBRATION PROPAGATION
Physical vibration is a mechanical phenomenon, which creates a
mechanical wave transferring the initial energy through amedium.
Similar to the transmission of wireless signals, when a vibration
signal travels through a medium, it experiences attenuation along
the propagation path and reflection/diffraction when the signal
hits the boundary of two different media (e.g., the contacting area
between a finger and a medium). Figure 2(a) illustrates the reflec-
tion and diffraction of a vibration signal propagating in a solid
surface when a finger touches the area in between the vibration
signal generator and receiver. When the vibration signal hits the
contacting area of the finger, part of the signal reflects back to the
surface and the rest of it propagates into the finger (i.e., absorption)
and bounces back to the surface along a different propagation path.
The vibration signal is affected by the touching location of the fin-
ger and traverses different paths before reaching the receiver (i.e.,
vibration sensor). Thus, the touching location information is em-
bedded in the various interference effects captured at the receiver.

Furthermore, when a finger touches the surface of an object (e.g.,
a table), the flexibility of the object is affected not only by the touch-
ing location but also the strength of touch. A recent study [45] uti-
lizes these properties to enable a commodity phone to recognize
the force applied to its phone body and screen. To mathematically
model the vibration effect on the object under an external force
caused by the finger touch, we consider a spring-mass-damper sys-
tem as shown in Figure 2(b). A free body diagram with the mass
M represents the vibrating surface, while the external force Ft is
caused by the finger touch. Moreover, the vertical shaft has an
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Figure 2: Illustration of the propagation characteristics of
vibration signals on a solid surface.

effective spring constant of Ks and a damping coefficient of Kd .
When the surface has a vertical displacement of x , we have

Ft = Kd (
d

dt
)x + Ksx +M(

d

dt
)2x . (1)

To satisfy the equilibrium condition, the vertical displacement x
is dependent on the external force Ft . This indicates that the fin-
ger touching force could be captured by analyzing the received
vibration signals and utilized as a biometric-associated feature in
VibWrite. Note that the above analysis also works on vertical pla-
nar surface (e.g., door panel) as the equilibrium condition could be
analyzed along the direction perpendicular to the surface.

In addition, Dong et al. [17] experimentally demonstrate that
the vibration energy absorbed into the human finger-hand-arm
system is different under different vibration frequencies. In our
empirical study we find that the frequency response of the same
user finger-press presents higher correlation than that of different
users when they touch the same location on a surface. This impor-
tant observation suggests that the vibration propagation proper-
ties are strongly influenced by unique human physical traits such
as contacting area, touching force and etc., which can assist ubiq-
uitous user authentication together with passcode on any surface
beyond touch screens.

4 APPROACH OVERVIEW
In this section, we present the attack model and system overview
of VibWrite.

4.1 Attack Model
We consider the following attacks that are harmful to the proposed
ubiquitous authentication functionalities.
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Figure 3: Overview of VibWrite architecture.

BlindAttack. An adversary randomly touches on the authenti-
cation surface equipped with the VibWrite system, hoping the ran-
dom touching events can result in similar impacts to the vibration
signals as the legitimate user does and passes the authentication.

Credential-aware Attack. An adversary has the prior knowl-
edge of the legitimate user’s credentials, including the PIN number,
lock pattern or personal gesture, but does not possess the knowl-
edge of the VibWrite setting details such as the grid size, gesture
region, and the authentication surface.

Knowledgeable Observer Attack. An adversary is capable of
both observing the legitimate user’s hand movements when he is
passing the authentication system via shoulder surfing or video
taping as well as knowing the user’s credentials and VibWrite set-
ting details. The adversary tries to imitate the legitimate user’s
hand or finger movements based on his understanding of the user’s
credentials to pass the authentication.

Side-channel Attack. An adversary makes an effort to hack
the VibWrite system directly in the hope of capturing the similar
vibration signals of the legitimate user by placing a hidden vibra-
tion receiver on the authentication surface or employing a micro-
phone in a nearby location.

4.2 System Overview
The basic idea underlying VibWrite is to analyze unique features
from the received vibration signals to enable authentication on
ubiquitous object surfaces such as entrances (e.g., apartment build-
ing or car doors) and smart home appliances (e.g., hot stove and
dryer). In particular, VibWrite can be triggered when a person
moves closer to the security access area (e.g., a door panel), which
can be easily achieved using low power proximity sensors or mo-
tion sensors [37, 39]. As illustrated in Figure 3, the vibration motor
then generates low annoyance vibrations and VibWrite starts tak-
ing inputs of vibrational signals from the vibration receiver. The
system first performs Data Calibration (Section 5.2) including data
synchronization and clock drift effect mitigation to ensure the re-
ceived vibration signals always synchronized and eliminate the



effects caused by the clock drift (i.e., inconsistent sampling fre-
quency).

VibWrite then extracts and selects vibration features (Section 5)
in the frequency domain from the synchronized vibration signals
within a sliding window. We find that Spectral Point-based Feature
(i.e., frequency amplitude of each spectral point) and MFCC-based
Feature (Mel-frequency cepstral coefficient [27]) reflect the intrin-
sic physical traits embedded in the user’s finger inputs. The system
further performs feature selection based on the Fisher Score [19]
on top of the Spectral Point-based and MFCC-based features by se-
lecting a subset of features exhibiting more discriminative power
among different touching locations as well as maintaining feature
consistency within each touching location.

The extracted vibration features are used by two phases in Vib-
Write: profiling and authentication. In both PIN number based and
lock pattern based authentications, a grid is drawn on the touch-
ing surface. In the profiling phase, the features are extracted and
captured while a user first enrolls in the system and presses his
finger at different grid points on the touching surface. These fea-
tures are labeled and saved to build the user’s profile in Grid Profile
Construction.

During the authentication phase, the received vibration signals
are utilized to extract vibration features. The extracted features
then serve as inputs to Grid Point Index Trace Derivation via a clas-
sifier based on Supporting Vector Machine (SVM) trained by the
grid profiles. The classifier compares the extracted features with
the stored ones in the profile to filter out the signal segments be-
fore and after the finger inputs and derive grid point trace con-
taining finger touching inputs. The derived grid point trace would
then be put into Grid Point Index Filtering (Section 6.2) to eliminate
the incorrectly classified grid point indices and obtain the ones
corresponding to the finger presses in the grid point index trace.
Next, the filtered grid point trace would be recovered to the PIN
sequence/lock pattern via PIN Sequence Derivation or Lock Pattern
Derivation (Section 6.3). The recovered PIN number/lock pattern is
then compared with the local stored PIN/lock pattern information
for the final authentication.

Independently, VibWrite also enables the user to perform simple
gestures (e.g., drawing a circle on the surface) for authentication
without the restrictions of pressing/passing the grid points on the
authentication surface. Different from the fixed grids in PIN/lock
pattern based authentication, using gestures provides more flex-
ibility for authentication. However, even for the same user, the
same finger gesture could be slightly different at different authen-
tication times due to the lack of consistency. Thus, the mecha-
nism for gesture-based authentication in VibWrite needs to cap-
ture the intrinsic gesture behavior to deal with gesture inconsis-
tency while preserving individual diversity. In particular, during
the gesture-based authentication, VibWrite first identifies the sig-
nal segment containing the gesture operation via Gesture Segmen-
tation. In the profiling phase, the extracted feature sequence (i.e.,
Spectral Point-based and MFCC-based features) from the gesture
segments are saved to build the specific user’s profile. To measure
the similarity of generated features in the authentication phase to
the gesture profiles, VibWrite addresses the gesture inconsistency
problem by considering both time warped feature sequences and
the distribution of the features. This is achieved by calculating
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Figure 4: Example of generated vibrations between 16kHz
and 22kHz.

both MD-DTW (Multi-Dimensional Dynamic Time Warping) Dis-
tance [42] and EMD (Earth Mover Distance) [35] of the extracted
feature sequences to the profiles. The weighted distance combina-
tion inWeighted Distance Matching obtains the combined distance
from the two techniques. Finally, VibWrite makes decision as user
authenticated or access denied by checking a threshold to the cal-
culated distances between input gestures and the stored profiles.

5 VIBRATION SIGNAL DESIGN AND
FEATURE EXTRACTION & SELECTION

In this section, we first describe the details of vibration signal de-
sign and calibration. We then present how to extract and select
unique features for the authentication process in VibWrite.

5.1 Vibration Signal Design
To facilitate finger-input based user authentication via physical vi-
bration, the vibration signals used in our system need to contain a
broad range of frequencies to increase the diversity of vibration fea-
tures in the frequency domain. Specifically, we generate repeated
chirp vibration signals to linearly sweep frequency from 16kHz to
22kHz, which are hardly audible to most human ears [21]. Addi-
tionally, such frequency range is much higher than the frequency
range of ambient noise and the vibrations caused by human body
(e.g., breathing and heart beating). This makes our system less pos-
sible to be interfered by these unrelated noises. Figure 4 illustrates
an example of the generated vibration signal and its correspond-
ing spectrogram.In particular, there is a short pseudo-noise (PN)
sequence preamble played before the repeated chirp vibrations,
which is used for the signal synchronization. We leave the details
in Section 5.2. After transmitting PN pilot, with a 50ms pause, the
vibration motor repeatedly transmits the chirp vibration signal to
keep its continuous sensing capability while performing authenti-
cation. The length of each chirp vibration signal is set to T=10ms ,
which provides high time resolution to enable continuously finger-
input sensing.

5.2 Vibration Signal Calibration
Vibration Signal Synchronization. The timing of the VibWrite’s
vibration motor and receiver needs to be synchronized, so that we
could guarantee that each sliding window being used to extract
vibration features contains the same parts of the chirp vibration
signals without time delay. Therefore, they can be used for further
comparison of their extracted features and capture the difference
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Figure 5: Illustration of clock drift effect mitigation.

in each window when the finger touches different positions on the
surface. In order to avoid the uncertainty, we add a pseudo-noise
(PN) sequence preamble (i.e., 2400 samples) [38], which has ideal
autocorrelation properties, at the beginning of the generated chirp
vibration signals as illustrated in Figure 4. We then synchronize
the received vibrations using cross-correlation between the PN se-
quence of the received vibration signal and the known generated
PN sequence.

Clock Drift Effect Mitigation. When the vibration receiver
senses the vibration, the analog voltage signals created by the sen-
sor will be converted into the digitized signals via an Analog to
Digital Converter (ADC). The ADC can be configured at a wide
range of rates, and it is usually set to sample the analog signals at
a fixed frequency driven by different application requirements. For
instance, a few options (e.g., 32kHz, 44.1kHz and 48kHz) can be set
in most smartphones’ audio ADCs in terms of the required audio
recording quality. However, we experimentally find that the sam-
pling ratemay be not a fixed value over time due to imperfect clock,
and there exists a small gap between the real sampling rate and the
configured sampling rate. To eliminate the effect caused by the
clock drift, we estimate the sampling rate offset during a short cal-
ibration phase at the beginning. During the calibration, the vibra-
tion motor periodically sends a short vibration chirp with a fixed
time interval (e.g., 2s). The time intervals between these chirps
should be fixed value as well if there is no clock drift. We use cross-
correlation to measure the sample delays of the received vibration
chirps over time, which is illustrated in Figure 5. We observe that
the number of the delayed samples increases linearly over time, in-
dicating that the real sampling rate is slightly larger than the con-
figured sampling rate but remains a relative fixed value. We then
use a least-squares based approach to fit a quadratic curve to the
measured delayed samples, and obtain the slop k to shift the start-
ing point Sp of each received vibration chirp to Sp = Sp − ⌊kt⌋,
where t is the time interval between the current vibration chirp
and the first received vibration chirp.

5.3 Spectral Point-based Feature Extraction
In order to extract unique vibration features from the received vi-
brations to discriminate the finger touches on different surface lo-
cations and distinguish different users touching a same surface lo-
cation, we first analyze the received vibration signals in the fre-
quency domain using a 200ms sliding window. Figure 6(a) presents
an example of the Fast Fourier Transform (FFT) of a time series of
the received vibration signals, ranging from 16kHz to 22kHz, in a
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(b) Distinguishable spectral points when
a finger presses 4 different locations

Figure 6: Illustration of the frequency response of the re-
ceived vibrations in a 0.2s time window. And the frequency
response is depicted at spectral points when a finger presses
4 different locations of a desk.

sliding window. The transmitted chirp vibration signal has funda-
mental frequencies that are all multiples of the frequency 1/T Hz,
where T is the time duration of each chirp vibration signal (e.g.,
T = 0.01s in VibWrite). We find that the amplitudes of some des-
ignated frequency components in the signals (i.e., peak values in
Figure 6(a)), called spectral points, are most sensitive to the minute
changes caused by finger touching or swiping. These spectral
points aremore sensitive to the finger touches and could be utilized
to differentiate different surface locations finger presses or finger
moving along. For example, in our preliminary experiments, the
vibration signals are collected when a user’s finger presses at four
different locations of a solid surface (i.e., wooden table) equipped
with our vibration motor and receiver. We observe obvious distin-
guishable patterns of the frequency amplitude at these 60 spectral
points (i.e., 22000−16000

100 = 60) between different locations, which
are shown in Figure 6(b). Furthermore, the spectral points in the
frequency domain may not be exactly spaced at 100Hz due to im-
perfect sampling module. We thus design a threshold-based strat-
egy (i.e., minimum distance between two neighboring peaks and
minimum height of each detected peak) to find peaks of the fre-
quency response to extract each spectral point feature.

5.4 MFCC-based Feature Extraction
The Mel-frequency cepstral coefficient (MFCC) is widely used to
represent the short-term power spectrum of acoustic or vibration
signals [27] and can represent the dynamic features of the signals
with both linear and nonlinear properties. While the MFCCs are
able to distinguish people’s sound differences in speech and voice
recognition, we find that they can also characterize the vibration
signals transmitting via themedium of a solid surface onwhich the
user’s finger touches, because the user’s behavioral and physiolog-
ical characteristics (e.g. touch area and pressure) and the touching
position can cause different changes to the vibration propagation.
We thus extract theMFCC-based features to characterize the differ-
ent vibration signatures when the user touches or writes at differ-
ent positions on the surface. In particular, we calculate the MFCCs
of the received vibration signals in each sliding window. The num-
ber of filterbank channels is set to 32, and 16-th order cepstral coef-
ficients are computed in each 20ms Hanning window, shifting 2ms
each time.
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Figure 7: MFCC feature illustration: (a) Example of the ex-
tractedMFCC features and (b) Pearson Correlation between
MFCC features when a finger presses three different loca-
tions on a desk surface.

Figure 7(a) shows the MFCCs extracted from the received vibra-
tion signals in a 0.2s sliding window when the user presses on a
solid surface. We observe that the extracted MFCCs have a period-
ical pattern, which is caused by the cycle of the repeated vibration
chirp signals. Figure 7(b) shows Pearson correlation coefficient [8]
of theMFCC-based featureswhen the user’s finger touches at three
different locations. In this experiment, twenty consecutive sliding
time windows (i.e., instances) are used to extract MFCCs for each
finger-touching location to compare the similarity between differ-
ent finger touches. We observe that theMFCC features of the same
finger-touching location present higher correlation than that of dif-
ferent locations, which confirms the effectiveness of utilizing the
MFCC features to characterize the user’s finger-touching on the
surface.

5.5 Feature Selection based on Fisher Score
From our experiments, we observe that not all extracted features
including both spectral points and MFCC are unique enough to
discriminate different touching locations and distinguish different
users touching the same location. The discrimination power is de-
pendent on the extracted features at specific frequencies or Mel-
frequency bands. We therefore propose to select features based
on Fisher Score [19] to find a subset of features which are more
distinct between classes (i.e., touching locations per user) and con-
sistent within a class. The fisher score of the r -th feature candidate
is defined as follows:

Fr =

∑c
i=1 ni (µi − µ)2

∑c
i=1 niδ

2
i

, (2)

whereni is the number of instances in class i . And µi and δ2i denote
the mean and variance of class i , i = 1, ..., c , corresponding to the r -
th feature candidate. µ denotes the mean of r -th feature candidates
in the whole data sets.

To analyze the feature difference between different frequency
bands, we consider each spectral point orMFCCs at each frequency
band as an individual feature candidate. Figure 8 shows the nor-
malized fisher scores of both the spectral point based and MFCC
based features that we use to perform user authentication. In Vib-
Write, we empirically choose top 30 spectral point based features,
and top 8 MFCC based features which are more sensitive to the
finger pressing and swiping.
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Figure 8: Fisher score of the feature candidates (a) spectral
point based and (b) MFCC based.

6 AUTHENTICATION USING PIN NUMBERS
AND LOCK PATTERNS

The VibWrite system allows users to perform PIN number based
authentication by touching grid points on a solid surface or con-
duct lock pattern based authentication by swiping finger through
the grid points. Depending on the type of applications, the solid
surface could be a range of options including an apartment door, a
car door, an executive’s office desk or a smart appliance. VibWrite
first converts the received vibration signals to a time series of grid
point indices, then filters out the incorrectly classified grid point
indices and finally determines the PIN sequence/lock pattern based
on the derived grid point indices.

6.1 Deriving Grid Point Index Traces
The system takes the received vibration signals as input when the
user enters PIN sequence/lock pattern. In particular, we apply a
sliding window to the vibration signals and derive vibration fea-
tures (e.g. spectrum-based feature and MFCC-based feature) in ev-
ery sliding window. We then apply a machine learning-based grid
point classifier based on the Support Vector Machine (SVM) using
LIBSVM [11] to estimate the finger-press positions in terms of the
grid point index for each sliding window, by leveraging the user’s
personal grid profile. The resulted grid point index trace is actually
an estimated finger-press position trace which reflects the finger
position changes among the grid point indices in the entire PIN se-
quence/lock pattern input duration. Note that when we derive grid
point index trace, it involves user’s behavior and physical charac-
teristics. It is highly difficult for an unauthorized user to obtain
correct grid point index at this step because the system needs to
compare with the authorized user’s profile, which integrates both
PIN/Lock pattern and the user’s behavior characteristics. Based on
the derived grid point index trace, we can recognize the user’s PIN
sequence/lock pattern input and verify their identities.

Figure 9 shows an example of the user’s PIN sequence/lock pat-
tern based authentication on a solid surface (e.g. an apartment
door) with a 3 × 3 grid. The predesigned grid is drawn in-between
the receiver and vibration motor as shown in Figure 9(a), and the
distance between the grid points is 3cm. The user first builds a
personal grid profile, which is discussed in Section 6.4. The user
then presses the grid points “1267” sequentially to input a PIN se-
quence and swipes the finger through the grid points “1-2-5-9” to
input a lock pattern as shown in Figure 9(a). The vibration features
during the PIN sequence/ lock pattern input are extracted in each
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(a) User presses a PIN sequence “1267”
and swipes a lock pattern “1−2−5−9”
on a 3 × 3 grid
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(b) Estimated finger position trace in
terms of grid point index when the user
enters the PIN sequence “1267”
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(c) Estimated finger position trace in
terms of grid point index when the user
swipes the lock pattern “1 − 2 − 5 − 9”
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(d) Example of an attacker entering the
legitimate user’s PIN sequence “1267” on
the same grid of the same desk surface.

Figure 9: Example of PIN sequence/lock pattern derivation in sliding windows when entering a PIN sequence/lock pattern on
a solid surface.

sliding window and are inputted to the SVM-based classifier. The
estimated finger position trace (i.e., grid point index trace) for the
PIN sequence input “1267” is shown in Figure 9(b). We observe
that when the user presses on a number with the finger staying on
the virtual key, the consecutive same grid points corresponding to
the key can be obtained, and when the user moves the finger in the
air to the next key, the vibration signals are classified as “E” repre-
senting “Empty” based on the vibration profile collected when no
finger presses the surface.

Figure 9(c) shows the estimated finger position trace of the lock
pattern “1-2-5-9”. We observe that when the finger swipes near
a virtual key, the vibration signals will be classified to the corre-
sponding grid point index. In particular, the consecutive same grid
points can be obtained for the duration beginning from the finger
moving close to, pressing on, to just swiping away from the virtual
key. Thus the derived grid point index trace can reflect the user’s
finger positions on the grid and can be utilized to further derive
the user’s PIN sequence/lock pattern inputs.

6.2 Grid Point Index Filtering
However, the derived grid point index traces contain incorrectly
classified grid point indices, which are due to the unstable vibra-
tion features caused by the varying finger touching area and force
when the finger is just detaching or pressing on the surface (e.g.,
the noises in Figure 9(b)), or are because the swiping finger is far
from any of the predesigned profiled virtual keys (e.g., the noisy in-
dices in Figure 9(c)). These incorrectly classified grid point indices
should be excluded when deriving the passcode patterns.

We develop a grid point index filter to determine the segments
that have consecutive same grid point indices. Intuitively, these
segments are corresponding to the time periods when the user’s
finger is pressing on or swiping near a grid point, which means
they aremore reliable results for identifying the PIN sequence/lock
pattern. The grid point index filter consists of three steps: 1) cal-
culating the difference between every two consecutive grid point
indices in the trace and the firm presses will generate consecutive
“0” for the differential grid point index; 2) searching for the starting
and ending points of the consecutive differential grid point indices
(i.e., 0s) to extract finger-press segment, indicating the finger posi-
tions of the firm finger presses right on or near virtual keys; 3)
removing the grid point indices from the trace that are out of the
finger-press segments. The red dots in Figure 9(b) and Figure 9(c)

are filtered grid point indices for the PIN sequence and lock pattern
derivation, respectively.

6.3 PIN Sequence/Lock-pattern Derivation
Next, we further confirm each finger-press segment based on their
time length and remove the incorrect finger location estimations
to derive the PIN sequence/lock pattern. The intuition is that when
users enter their PIN sequences, the finger press for each PIN num-
ber lasts for a certain amount of time. And when users draw their
lockpatterns, the duration beginning from the finger swiping close,
right pressing on, to finger swiping away from each virtual key
should last for an amount of time. The grid point index segments
shorter than this amount of time are highly possible to be incorrect
finger location estimations. We empirically determine the thresh-
old of minimum finger-press duration (i.e., 300ms) to remove the
finger-press segments with shorter time duration. Finally, given
the length of the user’s PIN sequence/lock pattern, the system finds
the same number of the longest finger-press segments as the valid
finger-press segments and derives the PIN sequence/lock pattern
by mapping the segments’ grid point indices to the virtual keys.

6.4 Grid Profile Construction
Wenotice that the users can generate individually unique vibration
features even by pressing at the same position of a solid surface
due to the individual’s different behavioral and physiological char-
acteristics (i.e., touching area and pressure on the surface). The
user’s such unique vibration features can provide another level
of security to our user authentication in addition to the secrecy
of passcodes.Our PIN/Lock-pattern based authentication requires
constructing the user’s profile corresponding to every grid point,
which enables successful identification of the input virtual keys
during authentication. Specifically, the VibWrite system records a
short time period (e.g., 1 to 5 seconds per grid point) of received
vibration signals when the user presses at each grid point. The
recorded vibration signals are used to derive the vibration features
in sliding windows. The feature in each sliding window is labeled
with corresponding grid point index. In addition, we also build
a profile when no finger touches the surface and label it as “E”
(i.e.,“empty”) to discriminate whether finger presses on the surface.

To illustrate the security provided by the user’s unique vibration
features in addition to the passcodes for PIN number/lock pattern
based authentication. We ask an attacker to enter the legitimate
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Figure 10: Illustrationof the four pre-definedfinger gestures
for gesture-based authentication.

user’s same PIN number “1267” via VibWrite on the same grid and
the same surface as shown in Figure 9(a). The VibWrite processes
the attacker’s vibration signals based on the legitimate user’s grid
profile and the results are shown in Figure 9(d). We observe that
nearly all the vibration features of the attacker are incorrectly clas-
sified and thus cannot pass the authentication, which verifies the
effectiveness of the individual physical characteristics contained
in the user’s grid profile.

7 AUTHENTICATION USING GESTURES
Different from PIN/lock pattern based authentications, using ges-
tures provides more flexibility for authentication. In particular,
VibWrite defines four simple finger gestures as shown in Figure 10:
swiping a single finger along three patterns including a triangle,
square and circle, and swiping two fingers horizontally.

7.1 Gesture Segmentation
To facilitate the gesture-based authentication, our system needs to
first detect the occurrence of the user’s gesture input from the re-
ceived vibration signals and remove the vibration signals with no
gestures (i.e., no touch on the surface). Specifically, VibWrite ex-
tracts vibration features from spectral points and MFCC and then
calculates vibration feature differences between the received vibra-
tion signals and those in the profile when no finger touches on the
surface. The intuition is that when the user inputs a gesture, the
finger swipes on the surface, causing the vibration features to dif-
fer largely from those when there is no finger touching. Figure 11
shows an example of calculated vibration feature differences when
the user inputs square gestures on the surface for five times. For
all the five gesture inputs, we observe the vibration feature differ-
ence grows higher (e.g. over 300) when the finger swipes on the
surface and falls back to lower values (e.g., around 200) when the
finger releases from the surface. We thus normalize the vibration
feature differences and segment each gesture via a threshold.

7.2 Distance Calculation of Feature Sequence
User authentication using such simple gestures is much harder due
to lack of unique secrecy to discriminate different users. More-
over, the speed, duration, and trajectory of the same user’s gestures
could be different from time to time, which causes gesture incon-
sistency and makes the generated vibration signals present differ-
ent lengths and results in varying density of locations within the
swiped pattern. In addition to feature extraction containing user’s
unique physical traits, we resort to two techniques to complete
the authentication process in high accuracy to cope with these
challenges: the Dynamic Time Warping (DTW) [42] is exploited
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Figure 11: Illustration of ges-
ture segmentation when a
user inputs gestures for five
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0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

Frequency Response Bins

Pr
ob

ab
ilit

y

 

 
User 1
User 2

Figure 12: Histogram of fre-
quency response at a spec-
tral point for two users swip-
ing a same gesture.

to deal with gesture inconsistency, and the earth mover’s distance
(EMD) [35] technique is employed to preserve individual diversity
because the feature distribution of the same user should have a
higher similarity than that from different users.

Specifically, we first derive a time series of vibration features
based on the vibration signals in segmented gestures using a slid-
ing window. The DTW technique stretches and compresses re-
quired parts to allow a proper comparison between two data se-
quences. Therefore, it is useful to compare the vibration feature
traces extracted from two segmented gestures regardless of dif-
ferent swiping speeds. In our system, vibration features are in a
format that reports both frequency amplitude at multiple spectral
points and MFCC coefficients, which is discussed in Section 5. To
performmultidimensional sequence alignment, our system applies
Multi-Dimensional Dynamic Time Warping (MD-DTW) [42], in
which the vector norm is utilized to calculate the distance matrix
according to:

d(vi ,v
′
j ) =

P∑

p=1

(vi (p) −v ′
j (p))

2
, (3)

where V = v1,v2, ...,vT and V ′=v ′
1,v

′
2, ...,v

′
T are two vibration

feature traces for gesture discrimination, and P is the number of
dimensions of the sequence data (i.e., the number of extracted fea-
tures within each window). A least cost path is found through
this matrix and the MD-DTW distance is the sum of the matrix
elements along the path.

Besides time warped feature sequence, we find that the his-
togram of the spectral point based features preserve individual di-
versity and can be used to distinguish different users when even
the same gesture is swiped. Figure 12 shows the feasibility study
results where two users swipe their fingers following an exactly
same circle gesture pattern on a desk surface. The histogram of fre-
quency response (quantized to 10 bins) at a specific spectral point
during their swiping presents distinct distributions that can clearly
distinguish these two users. We thus take the advantage of the
EMD-based distribution difference to preserve the individual diver-
sity during gesture based authentication. Specifically, we normal-
ize the EMD distance and MD-DTW distance to be integrated for
final authentication. If the integrated distance to the gesture pro-
files is larger than a threshold, VibWrite regards the swiped gesture
as an unknown gesture and fails the authentication. Otherwise, we



consider the swiped gesture is from the user whose profile results
in the minimum integrated MD-DTW and EMD distance.

7.3 Gesture Profile Construction
Unlike grid point profile construction, VibWrite does not need to
construct profiles for each grid point for the gesture-based authen-
tication. Instead, when constructing the gesture profile for a par-
ticular user, VibWrite collects the vibration signals while the user
swipes a finger following a predefined gesture. In particular, we
use the sequence of the vibration features extracted from the seg-
mented signals for building individual gesture profile. Though the
profile only contains simple gestures, such profile contains the
user’s unique behavior and physiological characteristics and is suf-
ficient to perform user authentication. We also build a profile with
the vibration signals when there is no finger touching on the sur-
face to determine the presence of finger touching or not for gesture
segmentation.

8 PERFORMANCE EVALUATION
In this section, we first describe the experimental setup and
methodology. We then present the performance of VibWrite in
terms of authenticating the legitimate user and its robustness un-
der various attacking scenarios.

8.1 Prototyping and Experimental Setup
We evaluate the performance of user authentication using PIN and
lock patterns on a 3×3 square-shaped grid. In practice, the grid pat-
terns could be flexibly extended as needed. The grid is drawn on a
solid surface in a typical office environment. The distance between
every two adjacent grid points is 3cm. We test with two different
surfaces as shown in Figure 13: one with the testing region resided
below the vibration motor and receiver on a wooden table (e.g., the
executive’s desk in a company), and the other with the testing re-
gion resided in between the motor and receiver on a door panel
(e.g., an apartment door). For the user authentication using ges-
tures, we remove the restriction of pressing/passing the grid points
on the authentication surface, and aim to utilize the simplest finger
gestures as shown in Figure 10. We want to demonstrate that even
the simplest finger gestures carry the unique behavioral and phys-
iological characteristics reflected by the physical vibrations. The
gesture patterns are drawn on the table within a 6cm × 6cm region
between the vibration motor and receiver to guide user’s swiping.

The vibration generator is implemented with a Linear Resonant
Actuator (LRA) based motor, which has a wide frequency response.
The frequency and amplitude of the generated vibration can be reg-
ulated by the frequency and peak-to-peak voltage of an input ana-
log signal. The low-cost vibration receiver is implemented with
a vibration receiver (i.e., piezoelectric sensor) and a low-power
consumption amplifier, which can be easily plugged into the stan-
dard audio jack of any audio recording device (e.g., mobile phone)
to sense vibration signals. The sampling rate of the vibration re-
ceiver is determined by the audio recording device, which is typi-
cally 48kHz.The size of vibration motor and receiver is very small,
which makes them easily to be attached to any solid surface. Com-
pared to other authentication systems based on cameras, touch
screens, or biometric readers, in VibWrite we seek to explore using
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Figure 13: Experimental setup of VibWrite on a wooden ta-
ble and door panel.

low-cost sensor settings (i.e., vibration motor and receiver) for the
potential of wide-deployment such as in apartment buildings, hotel
rooms, smart homes, office desks, etc. Besides the vibration motor
and receiver, our system needs additional supporting hardware in-
cluding, but not limited to, amplifier, ADC, micro-controller and
storage device to perform necessary data process, feature extrac-
tion and profile matching. With these required components, we
roughly estimate the cost of an end-to-end system could be main-
tained around tens of dollars (e.g., $20 ∼ $50). As a comparison,
some existing authentication systems (e.g., face recognition based
and fingerprint based [3, 5, 6]) may usually cost hundreds of dol-
lars.

8.2 Evaluation Scenarios & Data Collection
8.2.1 Legitimate User Verification. We recruit 15 participants to

evaluate the performance of VibWrite under three types of authen-
tication. 1 Our data is collected across three-month period, and 15
participants were involved across different days. Additionally, be-
fore the data collection, we allow users to practice multiple rounds
of authentication inputs on the authenticating surface to get famil-
iar with the VibWrite system. 1) For PIN number based authenti-
cation, each user is asked to sequentially press the 9 grid points
for 5s to create his/her grid profiles. During verification, each user
presses 10 random 4-digit PIN sequences as their passcodes. 2)
For lock pattern based authentication, our system uses the same
grid point profiles. During testing, each user swipes his/her finger
through 10 lock patterns to verify the system’s authentication per-
formance. 3) For gesture based authentication, each user chooses
one of the four gestures as shown in Figure 10 as their preferred
gestures and swipes the finger gesture 10 times. In total, we col-
lected 450 genuine input passcodes (i.e., PIN sequences, lock pat-
terns and gestures) for each motor/receiver placement to evaluate
legitimate user access authentication. We further collected attack
data to evaluate the VibWrite performance under attack scenarios.

8.2.2 Various Attack Scenarios. We evaluate the robustness of
VibWrite under various types of attack. Specifically, we choose one
user as a legitimate user and the rest users as attackers to launch
the attacks.

Blind Attack. The attacker randomly guesses the legitimate
user’s PIN, lock pattern and gesture and uses his/her finger to press
and swipe on the solid surface for 10 times. In total, we collected
420 blind attack inputs.

1The study has been approved by our institute IRB.
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Figure 14: Performance of verifying legitimate users when the testing region is below the vibration motor and receiver.

Credential-awareAttack. The attacker gets to know the legiti-
mate user’s PIN/lock pattern/gesture. But he has not observed how
the legitimate user presses his/her PIN numbers or swipes his/her
lock patterns and gestures on the authentication surface. The at-
tacker performs the same PIN/lock pattern/gesture as the legiti-
mate user did without knowing the legitimate user’s detailed be-
havior. Each attacker inputs the PIN/lock pattern/gesture 10 times.
In total, we collected 420 inputs.

Knowledgeable Observer Attack. The attacker not only
knows the legitimate user’s PIN/lock pattern/gesture but also ob-
serves how the legitimate user inputs them on the authentica-
tion surface. Each attacker practices 5 times and then inputs the
PIN/lock pattern/gesture 10 times, trying to pass the authentica-
tion. Again, 420 inputs are collected.

Side-channel Attack. In addition, we perform the side-
channel attack by placing additional vibration receivers on the
authentication surface. In particular, two receivers are employed:
one is placed adjacent to the original receiver, whereas the other
is placed at the other side of the surface opposite to the original
receiver.

8.3 Evaluation Metrics
Verification Accuracy/Attack Success Rate of PIN Number-
based Authentication. The verification accuracy/attack success
rate shows the percentage of correctly verified PIN numbers en-
tered by the legitimate user or attacker respectively during the user
authentication process. Specifically, it includes the complete PIN
sequence verification accuracy and the PIN digit verification accu-
racy. The complete PIN sequence verification accuracy measures
the rate of the user’s input PINs being completely recognized (i.e.,
all numbers in the PIN sequence are correctly recognized), while
the PIN digit identification accuracy shows the rate of successfully
recognizing each single PIN digit.

VerificationAccuracy/Attack Success Rate of Lock Patten-
based Authentication. The verification accuracy/attack success
rate shows the percentage of correctly verified lock patterns input
by the legitimate user or attacker respectively during the user au-
thentication phase. Similarly, it includes the complete lock pattern
verification accuracy and lock pattern segment verification accu-
racy.

ROCCurve of Gesture-basedAuthentication. ROC curve is
a plot of true positive rate (TPR) over false positive rate (FPR).The

TPR denotes the rate of the legitimate users passing the authentica-
tion while FPR denotes the rate of the attackers successfully pass-
ing the system. Through varying the feature distance threshold in
gesture-based authentication, we can achieve varied TPR and FPR
and obtain ROC curves to evaluate the system performance.

8.4 System Performance of Verifying
Legitimate Users

PIN Number-based Verification. Figure 14(a) shows the identi-
fication accuracy of each PIN digit and the complete PIN sequence
of 15 legitimate users. Our PIN number based authentication can
achieve a high verification accuracy. Specifically, the users can ob-
tain over 95% verification accuracy of recognizing each PIN digit
and the mean verification accuracy of the complete PIN sequence
reaches 90%. Moreover, the verification accuracy of each PIN digit
is higher than that of PIN sequence, since the complete PIN ver-
ification accuracy result requires that all the PIN numbers in the
PIN sequence are correctly identified. The results demonstrate our
system is effective in verifying all the legitimate users.

Lock Pattern-based Verification. Figure 14(b) shows the av-
erage authentication accuracy of the lock-pattern based verifica-
tion with different number of trials. Specifically, the average ver-
ification accuracy of the complete lock pattern reaches 79% and
95% with a single trial or two trials respectively, which requires
all the segments of the lock pattern to be correctly identified. In
addition, the accuracy of the lock pattern identification is slightly
lower than that of the PIN sequence based authentication, which
indicates that swiping a finger continuously on the surface gener-
ates more errors than pressing the finger separately on each grid
point. The above verification results show that our VibWrite can
achieve a good performance to authenticate users by lock patterns.

Gesture-based Verification. Figure 14(c) illustrates the effec-
tiveness of legitimate user verification in gesture-based authentica-
tion with ROC curves. 15 legitimate users perform their preferred
simple gestures (i.e., one of our four predefined gestures as shown
in Figure 10) ten times. With only one training instance (i.e., one
time swiping) for each user, we observe that given a requirement
of a 90% true positive rate, we can achieve as low as a 5% false
positive rate on average, which indicates only around 5% of ges-
ture trials have gained unauthorized access. We also observe that
the using both DTW and EMD techniques can provide slightly bet-
ter performance than that of only using EMD technique, since it
considers the similarity in both timewarped feature sequences and
the features’ distributions. The obtained high verification accuracy



and the low-training efforts demonstrate that VibWrite is capable
to distinguish different users even though they perform the same
simple gesture due to their distinct behavioral biometrics (i.e., fin-
ger tip size and structures).

Multiple Authentication Trials and Fall-back Strategy.
Figure 14(b) shows the average verification rate under different
number of trials. We observe that our system can achieve over 99%
verification rate with both of the PIN number and lock pattern in-
puts when users enter three trials. For the first-time user input, our
system can achieve around 89% and 79% accuracies when users en-
ter their PIN numbers or lock patterns, respectively. Additionally,
our system can integrate with any fall-back strategy to let the legit-
imate user bypass the system, e.g., the legitimate user can always
use a physical key to enter his vehicle/apartment.

8.5 Attacks on Legitimate User’s Credentials
Under blind attacks, both our PIN number and lock pattern based
authentications can achieve close to zero attack success rate. The
results are intuitive because the attackers’ random PIN guesses or
lock pattern guesses are nearly impossible to pass the legitimate
user’s system within limited trials. Similarly, for gesture-based au-
thentication, the TPR in the obtained ROC curve is close to 100%
when the FPR is close to 0%, which shows that the attackers’ ran-
dom gestures cannot successfully access the system.

Under credential-aware attacks, our system also achieves high
accuracy (i.e., close to 0% attack success rate) for all three types of
authentications. Since the attackers do not possess the knowledge
of the VibWrite setting details (e.g., grid size, gesture region and
the authentication surface), the attackers’ finger-inputs are hard to
generate the similar impacts on the vibration propagation as the
legitimate users do. Knowledgeable observer attack is the most ex-
treme attack, where the attacker is capable of knowing the user’s
credentials and observing the legitimate user’s finger inputs. Ad-
ditionally, the attacker has the knowledge of the VibWrite setting
details and can perform the finger inputs on the same authentica-
tion surface. Thus in the rest of this paper, we present the perfor-
mance evaluation results of our system under this more challeng-
ing knowledgeable observer attack.

PIN Number-based Authentication. Figure 15(a) shows the
performance of our VibWrite in PIN number based authentication
under knowledgeable observer attack, where 1 of 15 users alterna-
tively behaves as victim and other 14 users play as attackers. We
find that the VibWrite system is very effective in defending against
attackers even though they have the knowledge of the legitimate
user’s PIN and use the same VibWrite setting (e.g., grid size and
authentication surface). In particular, the attackers can only break
an average of around 7% single PIN digits. Furthermore, even if
the attackers can successfully verify several PIN digits, it is even
harder for them to break the complete PIN sequences of the legiti-
mate user. In particular, the attackers can only achieve an average
of 2% attack success rate in verifying complete PIN sequences.

Lock Pattern-based Authentication. Similarly, we ask the
15 users to alternatively play one victim and fourteen attackers,
who swipe 10 lock patterns after practice based on the knowledge-
able observation. Figure 15(b) depicts the attack success rate of
lock-pattern based authentication on each legitimate user under

the knowledgeable observer attack. The results show that the at-
tackers are hard to pass the system even though they imitate the
legitimate user’s behavior to swipe the same lock patterns on the
same grid of the same authentication surface after practice. Specif-
ically, for the user 4, 6-8 and 12-15, all the fourteen attackers can
hardly pass the legitimate user’s complete lock patterns in 10 trials
though they can successfully swipe around 5% accurate segments
of the lock patterns. The average attack success rates of the lock
pattern segment and the complete lock pattern are around 5% and
11% respectively. Moreover, we find the performance of the lock
pattern based authentication under knowledgeable observer attack
is comparably good to that of the PIN number based authentica-
tion.

Gesture-basedAuthentication. Weevaluate the performance
of VibWrite in gesture-based authentication under knowledgeable
observer attacks, where attackers try tomimic the legitimate user’s
swiping gestures. In order to test the worst case in VibWrite, we
only rely on one single training data for the legitimate user. Fig-
ure 15(c) shows the ROC curve, where we can achieve as low as a
3% false positive on average given a requirement of a 80% true pos-
itive rate. Even for only using EMD technique, we can still achieve
as low as a 8% false positive rate on average given a requirement of
a 80% true positive rate. The results indicate that, even for themost
challenging knowledgeable observer attack, VibWrite is still effec-
tive in defending against attackers and successfully authenticate
legitimate users in the meanwhile.

8.6 Side-channel Attacks
Attacks via a Vibration Receiver. One may suspect that attack-
ers can place hidden vibration receivers on the authentication sur-
face to recover the vibration signals and obtain the unique features
of the legitimate user. In reality, the hidden receiver cannot be
placed at the exact same location as the VibWrite’s receiver. Thus,
our Hidden1 and Hidden2 are placed at two representative loca-
tions that an adversary may choose to launch a side-channel at-
tack. Particularly, Hidden1 is placed adjacent to the original re-
ceiver, whereas Hidden2 is placed at the other side of the authen-
tication surface (around 3cm thickness) opposite to the original re-
ceiver. Figure 16 shows the mean and standard deviation of the
Pearson Correlation coefficients [8] between the signals received
by the original receiver and two hidden receivers after the designed
vibration chirps are generated 20 times. We observe that Hidden1
and Hidden2 can only achieve a very low correlation coefficient
less than 0.2. This indicates that the vibration signals received by
hidden receivers present very different patterns comparing to that
received by the original receiver even when the hidden receivers
are placed very close to the original receiver, making the attacks
via a hidden vibration receiver ineffective.

Attacks via a Nearby Microphone. Furthermore, a nearby
microphone can record the acoustic sounds emitted by the vibra-
tion motor, however, the additional transmission path (i.e., air be-
tween the vibration motor and microphone) can largely change
the vibration patterns, making it also difficult to recover the simi-
lar vibration signals received by VibWrite’s vibration receiver. Ad-
ditionally, a few new studies demonstrate that physical vibrations
can be recovered to a certain extent by using wireless signals [48]
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and high-speed cameras [13]. However, these solutions can only
recover relatively low-quality audio/vibrational signals due to the
limits of the hardware sensing ability in both vibration amplitude
and frequency. Thus, they are mainly used for eavesdropping hu-
man speech sounds whose frequency typically falls below 1KHz.

8.7 Impact of Training Data Size
PIN Number/Lock Pattern based Verification. Our system can
achieve around 90% accuracy in identifying each PIN digit/lock-
pattern segment with the grid point training time over 0.4 seconds
while the identification of complete PIN sequences or complete
lock pattern achieve over 80% accuracy with the grid point train-
ing time over 0.6 seconds as shown in Figure 17. Moreover, the PIN
sequence/lock pattern based authentication can achieve higher ac-
curacy with longer training time and the accuracy reaches stable
when the training size is over around 2 seconds.

Gesture-based Verification. From the results as shown in Fig-
ure 14(c) and Figure 15(c), we observe that our gesture-based verifi-
cation can obtain very high authentication accuracy with the train-
ing profile only containing one single gesture training instance.
The results also indicate that our gesture-based authentication sys-
tem could work with a very small training data size.

8.8 Impact of Surface and Vibration
Motor/Receiver Placement

We change the positions of the vibration motor and the piezoelec-
tric sensor to the center of each side and evaluate the PIN sequence
verification accuracy on the grid of the door panel surface. Ten
users are first asked to construct their individual grid profile and
then input their PIN sequences with this new experimental setup
for verification. The results in Figure 18 show that our PIN number
based authentication can achieve comparably high verification ac-
curacy for this setup. In particular, the accuracies of verifying the
complete PIN sequence and PIN digit are 88% and 94% respectively.
The similar results can also be observed for lock pattern based and
gesture based authentication. Thus our system is robust for differ-
ent vibration generator/receiver placements.

9 DISCUSSION
Serving as a concrete starting point of vibration-based authenti-
cation system, VibWrite is a low-cost and easy-to-deploy solution

that has a high potential to work at various places such as apart-
ment buildings, hotel rooms, smart homes, etc. We admit that the
current system is still not ready for the industrial deployment in
terms of its authentication/false-accept rates, thus a large space is
left for us to further improve the system. In this section, we in-
troduce a few limitations of the current VibWrite system and the
potential for future improvements.

Accuracy, and Further Improvement. The current system
achieves around 89% and 79% authentication rates with a single
trial when users enter their PIN numbers or lock patterns, respec-
tively. The accuracy number is comparable to a few recent low-cost
authentication/verification solutions (e.g., [23, 30, 47, 51]), which
use either gait patterns captured by existing Wi-Fi/smartphone or
passive sensing of embedded sensors on smartphones. Specifically,
the gait pattern based solution could achieve around 80% detec-
tion rate of unauthorized users when leveraging accelerometers
on smartphones [30] and 79% user recognition accuracy when us-
ing off-the-shelf Wi-Fi [47]. Multi-sensor (i.e., gyroscope, magne-
tometer and accelerometer) based smartphone authentication can
achieve around 70% and 90% accuracy in the studies [51] and [23],
respectively. However, the current VibWrite system is still far from
practical deployment as a legitimate user may need to try a few
times to pass the system. To improve the system performance, we
target to explore the following aspects in our future work includ-
ing deploying multiple sensor pairs, refining the hardware, and
improving the authentication algorithms. Specifically, more than
one pair of vibration transmitters and receivers can be employed to
help increase the dimension of the surface sensing features, which
can better represent each individual’s behavioral and physiological
characteristics. In addition, empirically we noticed that the unique-
ness of the features is affected by the stableness of the hardware
components as the weak analog signals extracted by the piezoelec-
tric sensor can be easily distorted when passing through electronic
components (e.g., amplifier andADC).We thus could build a higher
standard hardware signal processing component (e.g., ultra-low-
noise signal amplifier) to enhance the system. Meanwhile, the im-
provement of the vibration motor in terms of its power level, sta-
bleness and frequency response could become another venue to
explore.

CopingwithAdditional Physical Attacks. In addition to the
side channel attacks via a hidden vibration receiver or a nearby mi-
crophone, other types of physical attacks might be launched when



the system is deployed in practice. We discuss a couple of repre-
sentative ones below and show how VibWrite could be extended
in coping up with such attacks. Given that the proposed system
is highly dependent on the attached surface, such surface depen-
dency might be employed by an adversary to launch a denial-of-
service (DoS) attack (e.g., adhering tiny objects or a hidden vibra-
tion motor to the surface) to prevent the legitimate user from pass-
ing the system. To combat the DoS attack, VibWrite can develop
a simple mechanism to perform the surface sanity check periodi-
cally by comparing the received vibration signals with the empty
surface training profile. If the surface dissimilarity is detected, the
authentication surface will be examined. The most extreme case is
when an adversary gets access to the cable connecting the vibra-
tion motor/sensor and cut it to make the system not function at
all. On one hand, to deal with such a physical attack, the vibration
motor and receiver could be placed at the opposite side of the au-
thenticating surface hidden from the users and even placed inside
some enclosed cases hard to access without authorization. On the
other hand, the adversary does not gain much benefit in this attack
as he still cannot pass the authentication system. We leave the de-
tailed study of these adversarial cases as an avenue for our future
work.

System Maintenance. As a starting point, our system is eval-
uated in a relatively stable indoor environment. However, in prac-
tical deployment, there are many environmental factors that need
to be taken into consideration and may affect the system perfor-
mance. For instance, if the surface (e.g., car door panel) is exposed
to an outdoor environment, the surface’s vibration response may
be changed across different days affected by temperature, humid-
ity, wind, wetness, dirt, etc. Additionally, the temporary presence
of additional objects placed on the surface (e.g., a book placed
on the desk) could alter the received vibrations slightly different
from the trained one. The noticeable effect caused by these factors
might be reduced through further filtering or directional sensing
techniques. More robust machine learning methods grounded on
deep learning [4] can also be built in our future work to deal with
various environmental-related elements. In addition, future work
should continue the evaluation with more/diverse population sam-
ples, longer time periods and more influential factors to improve
the system robustness.

10 CONCLUSION
In this paper, we propose VibWrite, which implements the idea
of low-cost low-power tangible user authentication beyond touch
screens to any solid surface to support smart access applications
(e.g., apartment entrances, vehicle doors, or smart appliances). Uti-
lizing low-cost physical vibration, VibWrite performs ubiquitous
user authentication via finger-input by integrating passcode, be-
havioral and physiological characteristics, and surface dependency
together to provide enhanced security. VibWrite is built upon
a vibration-based touch sensing technique that enables touching
and writing on any solid surface through analyzing unique vibra-
tion signal features (e.g., frequency response and cepstral coeffi-
cient) in the frequency domain. It is easy to deploy and flexibly
provides users with three independent forms of secrets (includ-
ing PIN number, lock pattern, and simple gesture) to gain security
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access by developing new techniques of virtual grid point deriva-
tion, featured-based dynamic time warping (DTW) and distribu-
tion analysis based on earth mover’s distance (EMD). We perform
extensive experiments with participants input their passcodes by
using three forms of secrets. We also study the robustness of Vib-
write under various attacks trying to impersonate the legitimate
user or launching side-channel attacks to hack the VibWrite sys-
tem directly. Our results indicate that VibWrite is resilient to side-
channel attacks. And it can verify legitimate user with high accu-
racy under minimum training efforts while successfully deny the
access requests from unauthorized users with a low false positive
rate.
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