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Abstract—The inclusion of embedded sensors in mobile
phones, and the explosion of their usage in people’s daily
lives provide users with the ability to collectively sense
the world. The collected sensing data from such a mobile
phone enabled social network can be mined for users’
behaviors and their social communities, and to support a
broad range of applications including mobile healthcare
systems. However, such mobile healthcare systems built
upon social networks are vulnerable to clone attacks, in
which the adversary replicates the legitimate nodes and
distributes the clones throughout the network to undermine
the successful application deployment. Existing clone attack
mitigation approaches either only focus on the prevention
techniques or can only work in static or well-connected
networks, and hence are not applicable to our targeted
mobile healthcare systems. In this paper, we propose
a social closeness based method in a mobile healthcare
disease control system to detect any clone attacks that
may be launched to disrupt the normal operations of the
system. Our social closeness based method exploits the
social relationships among users for clone attack detection.
Specifically, we define a new metric called community
betweenness, which considers mobile users’ community
information. We find that the value of this metric changes
significantly under the clone attack, which is suitable to be
used for clone attack detection. We derive both analytical
and training based approaches to determine the threshold
setting of the community betweenness for robust clone
attack detection. Extensive trace-driven simulation studies
reveal that our social closeness based method can detect
clone attacks with high detection ratio and low false positive
rate.

I. INTRODUCTION

Mobile phones have become increasingly popular and
play significant roles in our daily lives. In particular, with
the rapid deployment of sensing technology in mobile
devices, the collected sensing data can be mined for un-
derstanding human behaviors. For example, we can use
mobile devices equipped with Bluetooth technology to
discover the encounter events between people such that
their social relationships can be derived and analyzed.
Information about users’ social relationships can assist
in the development of applications in various domains
including healthcare applications. For instance, the dis-
covered social relationships can be used to extract social
communities [1], [2], which reflect either close relation-
ships or similar behavioral patterns among people. Such
extracted social community information provides new
opportunities for epidemiology research and facilitate the

control of disease spread in the healthcare domain [3],
[4]. Furthermore, information about social communities
extracted from human contact traces can also be used
in other mobile healthcare systems to determine how
socially active senior citizens are.

However, wireless devices may easily be captured
by adversaries and unlimited number of clones of the
compromised nodes can be deployed. Since the cloned
devices have legitimate IDs and have access to security
keys and other credentials, they can participate in the
wireless network as a legitimate node. The existence of
the cloned devices may not affect the network perfor-
mance, however, they aim to have significant impact on
pervasive mobile healthcare systems. For example, in the
mobile healthcare systems presented for facilitating epi-
demiology research and disease propagation control [3],
[4] which utilize the social community information, the
adversary can attract more vaccine allocation to certain
geographical areas by deploying many cloned devices,
and thus undermine the regular operations of social
community-based mobile healthcare systems. Therefore,
detecting the presence of clone attacks is important
to support the wide deployment of emerging mobile
healthcare systems.

Nevertheless, detecting clone attacks is not an easy
task. The cloned devices have access to all the security
information of the compromised device and hence they
can pass all security checks without being detected.
Existing techniques for mitigating malicious attacks in
sensor networks mostly focused on attack prevention
through key distribution schemes [5]. These prevention-
oriented schemes are ineffective [6] in preventing the
launching of clone attacks since cloned devices have ac-
cess to the legitimate information and can thus fool other
legitimate devices without being detected. Recently, new
techniques utilizing the neighbors information [7], [8]
have been proposed for detecting clone attacks in wire-
less sensor networks. However, they can be applied either
only to static networks or for online social networks,
making them less suitable for mobile healthcare systems.

In this work, we take the view point of exploiting
users’ social relationships extracted from human contact-
based traces for detecting clone attacks in mobile health-
care systems. Our design goal is to enable clone attack
detection without relying on other hardware such as



GPS, which may drain a phone’s battery quickly and
their readings can also be easily hacked [9]. The basic
idea is that a user often belongs to one or two static
communities during a certain time of period, and the
community membership often remains unchanged during
that time period. However, the presence of cloned users
cause that victim user to belong to multiple distinct
social communities simultaneously, contradicting that
user’s regular social behaviors. Thus, we propose a social
closeness based approach that can detect clone attacks
in a mobile healthcare system even with colluded cloned
users. To the best of knowledge, our work is the first that
utilizes social closeness to detect the clone attack for the
emerging mobile healthcare systems.

In particular, our attack detection scheme develops
a new metric called community betweenness for distin-
guishing between legitimate and clone users. This metric,
computed based on mobile users’ social community
information, changes significantly during clone attacks.
Three variants are developed to compute this com-
munity betweenness value, namely contact-frequency
based, contact-duration based, and shortest-path based.
To make the detection more robust, we present an
analytical-based approach for determining the threshold
setting of the community betweenness value for a homo-
geneous mobile social network such that our detection
scheme can achieve a desirable detection rate with high
confidence. We then describe a training-based method for
determining such a threshold for heterogeneous mobile
social networks where the sizes of the communities vary
widely.

We show the effectiveness of our detection method
using the disease control mobile healthcare system pro-
posed in [3], [4]. We evaluated our detection scheme via
simulations using the SWIM trace and the MIT reality
mining trace [10], [11]. The results showed that our
scheme is highly effective for detecting various clone
attacks in this mobile healthcare system. Our technique
can also be applied to other mobile healthcare systems
that utilize human contact-based traces.

The rest of the paper is organized as follows. We
first put our work in the context of current research
in Section II. We then present the disease propagation
control framework (which we focus on as a case study)
in the mobile healthcare system and the attack model in
Section III. We next present our social community based
detection scheme in Section IV with the community
betweenness metric. We describe our analytical-based
and training-based approaches for robust detection in
Section V. In Section VI, we validate the feasibility
of our proposed detection scheme using the trace-driven
approach. Finally, we conclude our work in Section VII.

II. RELATED WORK

To thwart clone attacks, using tamper-resistant hard-
ware for mobile nodes appears effective. However, ap-

proaches with tamper-resistant hardware may involve
high cost and are hard to be applied to already de-
ployed mobile nodes. Furthermore, an attacker may still
be possible to bypass the tamper-resistant hardware to
extract secret keys from captured nodes given enough
time and computation ability even though the tamper-
resistant hardware makes it much harder to accomplish
this [12]. Thus, it is desirable to seek low cost detection
methods that do not require any hardware changes to
cope with clone attacks.

Along this direction, several software-based clone
attack detection schemes have been proposed for sensor
networks [7], [13]. The basic idea of these schemes
is to let each node report its neighboring information
and attempt to find conflicting reports. However, these
existing methods can only be applied to static networks
and cannot be used in networks with mobility. In [14],
when a node announces its location, each of its neighbors
sends a copy of the location claim to a set of randomly
selected witness nodes. Any conflicting location claims
will provide the evidence for clone attack detection.
However, the location information of nodes is needed
constantly for this scheme to work but such information
may not always be available. In our situation, the nodes
may be sparsely connected in the mobile social network,
it can be hard to find enough nodes as witnesses in the
clone attack detection.

Schemes based on having neighboring nodes vote for
checking the sanity of a given node based on their local
observations have been developed [15], [16]. However,
these schemes are not capable of detecting clones if
cloned nodes move only in close proximity with the vic-
tim node, and may also fail when multiple clone nodes
in close proximity collude. Our work is different in that
we aim to detect the presence of the clone attack by us-
ing the extracted social community information enabled
by the widely used mobile phones rather than adding
additional overhead on mobile users. Our approach can
smartly detect clone attacks when multiple users collude
to trick the system. Our work is the first to address the
clone attack problem in mobile healthcare systems which
exploits social community information to make either
control decisions (e.g. for effective vaccine distribution
and reduce disease propagation rate) or diagnosis (e.g.
whether seniors are depressed or socially active).

III. MODEL ASSUMPTIONS

In this section, we first describe the system model of
a mobile healthcare system that is used in this work.
We then present a high level overview of dynamic
community extraction method utilized in our mobile
healthcare system and describe our threat model.

A. System Model

In this work, we employ the mobile healthcare system
that provides effective vaccine distribution by utilizing



the social community information extracted from mobile
phone traces [4] and we refer the social community
as subsets of users within which user to user connec-
tions are dense, but between which connections are
less dense [2]. The mobile healthcare system can be
deployed for a geographical region, e.g. a town or a city.
Instead of the traditional random vaccine distribution,
targeting vaccination to a group of people with higher
risk of infection can provide more effective control of
an infectious disease propagation.

In our mobile healthcare system, each person has a
unique user identifier (e.g., phone number) and owns
a mobile device equipped with Bluetooth technology.
Each user then registers with the system by using his/her
identifier and mobile device’s Bluetooth ID. Encounter
traces collected by Bluetooth technology are sent to the
system server by each user and the server can derive
encounter events between users according to the registra-
tion information in the system. The dynamic community
extraction scheme is applied and the extracted social
community information is then used in the decision
process for targeted vaccine distribution. When a new
disease is discovered [17], those people within the same
communities as a sick person have higher risks of
being infected, and thus should receive disease alert or
vaccination messages sent by the server.

B. Preliminaries of Dynamic Community Extraction

In general, people may belong to different social
communities during different time periods. A social
community may appear several times during a day or
week. Instead of directly extracting communities from
the contact graphs constructed by the contact events, the
basic idea of the dynamic community extraction method
we are using is to first extract the communities for
each non-overlapping time period and then merge those
communities with high similarity [4].

In particular, a contact graph G = (V,E) consists
of a vertex set V and an edge set E. Each vertex
denotes a person, while each edge weight denotes how
frequent two persons meet during a time period. Each
contact graph is a representation of people’s relationships
where their relationship strength is derived based on the
frequency of their encounters. The dynamic community
extraction scheme constructs R contact graphs Gi =
{(Vi, Ei), i = 1, ..., R} from R non-overlapping periods.
Then, it extracts multiple communities from each contact
graph Gi using the hierarchical clustering algorithm [1],
and the modularity metric Q [18]. The community set
extracted from each time period is denoted as ASi.
Assume that each ASi has ki communities as follows:

ASi = {Ak
i , k = 1, ..., ki}. (1)

Furthermore, we compare each community in ASi

with all the communities discovered in ASi+1 to see
if a community in ASi can be merged or removed based
on one of the following conditions:

• It is part of a bigger community in ASi+1 and hence
can be removed.

• It can be merged with one community in ASi+1

using the community merge operation for two com-
munities Aj

i and Al
i+1 with an adjustable commu-

nity threshold τc:

|Aj
i ∩Al

i+1|
Max(|Aj

i |, |Al
i+1|)

> τc (2)

• It is a superset of a community Aj
i+1 in ASi+1,

then Aj
i+1 is removed from set ASi+1 .

At the end of such operation, the two sets ASi and
ASi+1 are unioned to form a new AS

′
i+1, which will

be merged with ASi+2 in the next round. The merging
process iterates through R time windows to yield the
final M social communities: AS = {Aj , j = 1, ...,M}.

C. Attack Model

The mobile healthcare systems are vulnerable to clone
attacks [3], [4], [17]. An adversary can capture mobile
devices equipped with Bluetooth capability within the
network and deploy unlimited number of clone devices
with duplicated Bluetooth IDs. Since these replicas have
legitimate IDs, the users carrying such devices can
participate in the mobile social network and thus signifi-
cantly affect the effectiveness of these mobile healthcare
systems.

Particularly, the adversary can distribute devices with
cloned Bluetooth IDs to a group of users from the same
geographical area who share similar interests with him.
These users can collude with the adversary to launch a
clone attack so as to gain some benefits. For example,
when there is an outbreak of a new infectious disease
with limited vaccine supply, some pharmacy companies
or clinics may be interested in having more vaccine shots
allocated to their geographical area e.g. county or town.
They can distribute devices with cloned IDs to different
colluded users. A registered user with cloned IDs may
end up belonging to many social communities. If he is
sick, users who are in the same social community with
him will have higher chances of being selected to receive
vaccinations. If an adversarial company replicate many
clone IDs which belong to legitimate registered users,
the number of vaccines allocated for this geographical
area will increase significantly. This attack strategy is
especially harmful when there is only a limited supply
of expensive vaccine shots.

IV. CLONE ATTACK DETECTION

In this section, we first describe our new metric of
community betweenness. We show how to calculate
the community betweenness values by providing three
methods. We then present our clone attack detection
criteria based on the community betweenness metric.
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Fig. 1. An example of computing community betweenness.

A. Overview

Our clone attack detection method is based on the
observation that users of mobile devices typically belong
to a number of stable communities. By stable, we mean
the communities that a user belongs to do not change
rapidly after that user’s community profile has been
constructed based on observations for a sufficient long
time period. However, when a clone attack is launched,
the number of communities a user with cloned device
ID belongs to may increase significantly within a short
time period, and hence such observation can be used for
clone attack detection.

To capture this observation in a quantitative way, we
propose the concept of community betweenness inspired
by the idea that the betweenness of a node in a network
graph is defined as the number of shortest paths between
pairs of other vertices which go through that node. [2]
has used betweenness as a measure of the centrality and
influence of a node in social or biological networks.
Thus, in order to find out which nodes in a social network
are always “between” different social communities for
clone attack detection, we generalize the betweenness
concept to community betweenness. The community
betweenness of a node is defined as the number of
shortest paths between pairs of communities that go
through that node in the contact graph. The basic idea
is that if there are users who share the same cloned
ID in a social network and these cloned nodes belong
to different communities, then almost all shortest paths
between these communities in the contact graph may
go through this cloned ID. Thus, this particular cloned
ID will have a higher community betweenness value
comparing to normal situations. More formal definition
of community betweenness is given in Section IV.B.

B. Definitions

We next define some basic concepts for computation
of the community betweenness: neighbor set, the shortest
path between a node and a node set, the distance between
a node and a node set, and the node-centric set in the
contact graph.

We consider a mobile network in which each node
is assigned with a unique identifier. We assume that
these nodes represent mobile devices having sensing ca-
pabilities, e.g., Bluetooth discovery that allows encounter
events between owners of devices to be recorded as

a contact-based trace. As in Section III, we construct
R contact graphs Gi = {(Vi, Ei) , i = 1, ..., R} for the
R non-overlapping time periods. In each contact graph,
each node represents a user (identified by a unique
identifier), and edges that connect the nodes represent
some encounter events between these two users. The
weight of each edge represents the cumulative contact
frequency of these encounters in a time period. Such
a contact graph is a geometric representation of the
relationships between users.

By utilizing the final dynamic communities AS =
{Aj , j = 1, ...,M} extracted in Section III, we define
the following concepts for a node k in a contact graph
Gj :

Definition 1. Neighbor set N(k): The collection of
node k’s 1-hop neighbors in a contact graph is defined
as its neighbor set N(k).

Definition 2. Shortest path between nodes: If node
k and node d are connected within the contact graph,
the shortest path Ps(k, d) between them is defined as
the path with the smallest hop length from node k to
node d, otherwise, Ps(k, d) = ∞.

Definition 3. Shortest path between a node and a
node set: Let ‖∗‖ be the number of nodes in a set and{
d1, ..., d‖D‖

}
be the nodes in a set D, the shortest path

Ps(k,D) from a node k to node set D is defined as:

Ps (k,D) = argmin
Ps(k,dl)

|Ps (k, dl)| , dl ∈
{
d1, ..., d‖D‖

}

(3)
Definition 4. Distance between a node and a node

set: The distance between node k and node set D is
defined as the hop length of the shortest path between k
and D:

Dist (k,D) = |Ps (k,D)| (4)
Definition 5. Node-centric set: Suppose node

k belongs to Mk different social communities:
{Ai |k ∈ Ai, i = 1, ...,Mk}. The node-centric set R(k)

of node k is defined as: R(k) = N(k)∩(
Mk⋃
i=1

Ai). In other

words, node k’s node-centric set includes its neighboring
nodes which belong to the same social community as k.

C. Community betweenness

1) Definition of Community Betweenness: Commu-
nity betweenness of node k is defined as the number
of shortest paths going through k between each node in
R(k) and any community which this node does not be-
long to in R(k). To compute the community betweenness,
we need to define the weight of the betweenness link be-
tween k and a node n in R(k). This link weight considers
the number of shortest paths going through k between
node n and other communities in R(k) that node n does
not belong to. Then, the community betweenness of node
k is the sum of all the betweenness link weights between
k and each node in R(k). Typically, whether two persons
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Fig. 2. The illustration of calculating community betweenness of node 7 in MIT Reality trace using Contact Frequency Based (CFB) method.

meet or not determines how likely one person can spread
a disease to another. But sometimes, the larger the
number of encounters between two persons, the higher
the chance of one person spreading a disease to another.
Thus, we define two variants on how the community
betweenness value is computed: (a) Contact Frequency
Based and (b) Contact Duration Based. In addition, we
further define another variant (c) Shortest Path Based,
where the community betweenness value is defined as
the number of shortest paths going through k between
any node n in R(k) and nodes in other communities
which node n does not belong to in R(k).

2) Variants of Betweenness Computation: The main
difference of the three variations is: (a) the Contact
Frequency Based betweenness utilizes the size of the
intersection set of R(k) and each community in its
link weight calculation; (b) the Contact Duration Based
betweenness relies on both the size of intersection set
and the cumulative contact times betweeen nodes during
the link weight calculation; and (c) the Shortest Path
Based betweenness considers the number of shortest
paths between nodes from different communities in R(k)
that go through node k for its link weight computation.
Details of each variant are given below. Initially, the link
weight between node k and each node in R(k) is set to
0.

Contact Frequency Based (CFB). If ∃Ai, n /∈ Ai

and Wi = Ai ∩ R(k) �= ∅ where n ∈ R(k), we then
compute the link weight Lnk between node k and n as
follows: If there exists one shortest path going through
node k from node n to set Wi (k ∈ Ps(n,Wi)), the link
weight Lnk between node n and k will be increased
by the number of nodes in Wi: Lnk = Lnk + ‖Wi‖,
otherwise it will not be changed. This process is repeated
for all n’s qualifying communities Ai to obtain the
final value of the link weight Lnk. The community
betweenness of node k is then the sum of all the link
weights between k and each node in R(k):

bet(k) =
∑

n∈R(k)

Lnk (5)

We next give an example to show how the CFB be-
tweenness value is computed: A contact graph of node k

is shown in Figure 1 with nodes {a, k}, {k, c, b}, {k, d}
and {e, f} belong to communities I-IV respectively and
the communities are shown as dotted circles. The cumu-
lative contact frequency in a time period between each
pair of neighboring nodes are also shown in Figure 1.
From the definitions above we see that k’s neighbors a, b
and c are in node-centric set R(k) because they belong
to the same community as k. We consider each node
in R(k) and compute its link weight between node k:
node a belongs to community I and its shortest path to
node set W2 = {b, c} (i.e., the intersection of R(k) and
community II) is path a-b and it does not go through
node k. Thus, from the definition of link weight, the
link weight between a and k should be 0. Similarly, the
weight link between b and k is also 0 because the shortest
path between b and W1 = {a} (i.e., the intersection of
R(k) and community I) also does not go through node
k. However, if we consider node c, its shortest path to set
W1 = {a} goes through node k. Thus, the link weight
between c and k will be increased by 1 because there is
only one node a in set W1. By now, we have considered
every node in R(k) and thus the computation process
stops. Thus, the contact frequency based community
betweenness of k should be 0 + 0 + 1 = 1.

Contact Duration Based (CDB). The computation
difference of the CFB and CDB community betweenness
lies in the link weight computation. If there exists
one shortest path which goes through node k (k ∈
Ps(n,Wi)) from node n to Wi, the link weight Lnk

will be increased by ‖Wi‖ × wnk. where wnk is the
cumulative contact times between node n and k in this
time period.

Thus, in Figure 1, the link weight between node c and
k using the CDB method should be 1×3 = 3. Similarly,
the link weight between a, b and k are 0, thus, the contact
duration based betweenness of k is 3.

Shortest Path Based (SPB). This method considers
the shortest paths between pairs of nodes from different
communities in R(k) instead of considering the shortest
paths between a node and node sets as in the former
two variants. The computation of Lnk for each qualified
community Wi is carried out as follows: if there exist mi



(0 < mi ≤ ‖Wi‖) nodes in Wi and each of them (node
g) satisfies the condition that the shortest path from node
n to g goes through node k (k ∈ Ps(n, g)), then the link
weight Lnk will be increased by mi.

Using the same example in Figure 1, node a in
community I has only one shortest path a-k-c which
goes through node k to W2 (i.e., the intersection of
R(k) and community II). Thus, the link weight between
k and a should be 1. Similarly, the weight between k
and c should also be 1. The link weight between k and
b is 0 because we cannot find a shortest path which
goes through k between b and a node in W1 (i.e., the
intersection of R(k) and community I). Thus, the SFB
based betweenness value for node k is 2.

3) Feasibility Study of Betweenness: Figure 2 il-
lustrates how the CFB community betweenness value
changes when a clone attack involving a particular node
(node 7) happens within the MIT [11] reality trace. Due
to the space limitation, we only show the results of CFB.
The similar trend is observed when using CDB and SPB.
In Figure 2, we show the neighbors and community
information of node 7 in an eight-hour time period by
the Node IDs versus Community IDs.

In the example depicted in Figure 2, the community
IDs marked as green squares represent the communities
which the nodes in R(7) belong to. The nodes depicted
in red circles represent the community IDs that a node
in R(7) belongs to. The blue dots and blue stars show
whether or not there exists a shortest path which goes
through node 7 between a node n in R(7) and the
intersection set of R(k) and another community that
node n does not belong to . For instance, in Figure 2
(a), node 37 belongs to communities 12 and 13 as shown
by the red circles. It also shows that the shortest path
between node 37 and the intersection set of R(k) and
communities 4,5 goes through node 7 while the shortest
path between node 37 and the intersection set of R(k)
and community 10 does not go through node 7.

Thus, using the definition of the Contact-Frequency
Based (CFB) community betweenness, we can compute
the betweenness link weights between each node n in
R(7) and node 7 by adding the number of red circles
in the rows which have blue dots in the corresponding
column of node n. The total community betweenness
can be computed by adding the link weights together.
Figure 2 (a) shows that the CFB community betweenness
of node 7 is 9 prior to a clone attack. After the clone
attack is launched, the CFB community betweenness
increases from 9 to 52 as Figure 2 (b) shows. The
changes of CFB community betweenness in Figure 2
confirm the feasibility of detecting the clone attack by
using community betweenness.

D. Detection Criteria

A straightforward method of detecting a clone attack
is to determine whether there exists any node with a

community betweenness value which exceeds a pre-
defined threshold during a time period. However, an
uncloned node may also have a high community be-
tweenness value in a particular time period. In order
to make the detection more robust, the presence of a
cloned node will be declared only when a node has
community betweenness values that exceed a pre-defined
betweenness threshold, τb for multiple (i.e., S) time
periods within an observation window which consists of
L time periods. Our detection module searches through
each consecutive observation window to declare the
presence of the clone attack when the ratio S/L is larger
than a (ratio) threshold τr.

V. ROBUST DETECTION

The choice of the community betweenness threshold
τb is critical for the performance of our clone attack
detection scheme. However, the complexity and varying
characteristics of the mobile social networks make it
difficult to provide a generic analytical framework for
determining a suitable τb. In this section, we show two
possible approaches to determine τb such that our clone
attack detection scheme yields robust detection results:
an analytical approach for homogeneous social networks
and a training based method for heterogeneous social
networks.

A. Analytical Approach

1) Modeling of the Contact Process: In a homoge-
neous social network, the size of each community is the
same and the number of nodes which two communities
have in common is also fixed. We propose a new contact
model by considering scenarios where nodes belong to
multiple communities, inspired by the small world graph
model [19] and the Watts and Strogatz model [20].
We note that the small world graph model [19] only
considered users belonging to a single community and
the Watts and Strogatz model did not take into consid-
eration the community concept. In our contact model,
N nodes are numbered sequentially and arranged in
a ring. Every consecutive K nodes within a ring are
in the same social community. Since one user may
belong to multiple communities, we let each pair of
neighboring communities in a ring have P common
nodes. To generate the sequence of encounter events,
each node selects the encountered nodes uniformly at
random every Q seconds: with probability q, it selects a
peer uniformly from its community members, whereas
it selects a peer uniformly at random from its non-
community members with probability 1− q.

An example of the contact model is illustrated in
Figure 3 (a): 76 nodes (N = 76) are arranged in a
ring and they have been divided into 19 communities.
Each community has 7 nodes (K = 7) and each pair of
neighboring communities in the ring have 3 nodes (P =
3) in common. Thus, nodes {1, ..., 7}, {5, ..., 11},...,
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Fig. 3. An example of the social network model and simulation
results.

{73, 74, 75, 76, 1, 2, 3} belong to communities (1) to
(19), respectively. The nodes marked with the dark color
in Figure 3 only belong to one social community and
the nodes marked with the light color belong to two
neighboring communities.

Based on our proposed contact model, we first derive
the probability distribution of community betweenness
bet(k) under normal situations and the detailed descrip-
tion of our analysis may be found in the technical re-
port [21]. Provided the knowledge about the probability
distribution, we can then determine the detection thresh-
old τb by using a confidence level α (e.g., α = 95%):

P (bet(k) ≤ τb) =
∑

xb≤τb

P (bet(k) = xb) = α (6)

For a high confidence level α = 95%, it is not likely that
the community betweenness value will be larger than τb
in a normal social network.

2) Evaluation: To evaluate the effectiveness of our
detection threshold setting under homogeneous social
networks, we generated human contact traces with
parameter setting similar to the well-known SWIM
trace [10], which contains 3 days of 76 persons’ mo-
bility patterns in conference and university campus en-
vironments. We let each node select a peer from its
community members with the probability 0.9 (q = 0.9)
every 600 seconds (Q = 600). We launch clone attacks
by randomly selecting a certain number of nodes in
the trace and modifying their node identifiers to be
that of the victim node. We studied detection ratio,
which is the percentage of clone nodes that are detected
by the detection scheme, and the corresponding false
positive ratio, the percentage of normal nodes that are
mistakenly detected as clone nodes. Figure 3 (b) depicted
the detection ratio when using CFB, CDB, and CPB
for community betweenness computation under different
number of clone nodes. We observed that our detection
scheme is effective under the homogeneous social net-
works and can achieve detection ratio over 80% and the
corresponding false positive ratios are zero for all the
scenarios.

B. Training Based Approach

The analysis using homogeneous social networks
shows the feasibility of our approach. When community
sizes and the number of overlapping nodes between

different communities vary significantly, we resort to
a training-based approach for choosing an appropriate
threshold so that we can achieve robust detection. The
basic idea is that we analyze historical contact traces to
determine typical community betweeenness values and
then choose appropriate detection thresholds for nodes
with similar encounter rates.

In particular, we first classify the nodes in a mobile so-
cial network into different sets based on their encounter
frequencies. We analyze the encounter frequencies of
all the nodes in a mobile social network and divide
these nodes into 3 categories: (i) nodes that have the
lowest 30% of encounter rates are classified as non-
active nodes, (ii) nodes that have the highest 30% of
encounter rates are classified as active nodes, and (iii) the
remaining 40% nodes are considered as regular nodes.

Next, we divide the training data into different time
periods and compute the average community between-
ness values over these time periods for each node in
three node sets specified above. Suppose there are Na,
Nr and Nn nodes respectively in the active, regular and
non-active sets and bia, bir and bin denote the average
community betweenness value of each node in these
three sets. Thus, the average community betweenness
values over time periods for these three sets of nodes
can be represented as: Ba =

{
bia, i = 1, ..., Na

}
, Br ={

bir, i = 1, ..., Nr

}
and Bn =

{
bin, i = 1, ..., Nn

}
, re-

spectively. Then, we determine the averages and standard
deviations of community betweenness values from Ba,
Br and Bn and they are denoted as AvgBa, AvgBr,
AvgBn and σa, σr, σn respectively. In our thresh-
old setting method, we empirically set the threshold
τb as the average value plus two standard deviations
(AvgBa+2σa, AvgBr +2σr, AvgBn+2σn) for nodes
from the active, regular and non-active sets respectively.

VI. PERFORMANCE EVALUATION

In this section, we conduct performance evaluation
of our detection methods based on the training based
approach when the community size and the number of
overlapping node vary.

A. Simulation Methodology

We conducted simulations by using two human
contact-based traces, SWIM [10] and MIT reality [11]
traces. The SWIM traces were generated from the SWIM
mobility generator to mimic human mobility traces for
76 participants during a 3-day period in conference and
university campus settings. The MIT traces, which lasted
for 20 days, were collected from smart phones equipped
with Bluetooth devices carried by 97 participants in an
university environment. Each trace contains information
about the IDs of the Bluetooth devices which are within
the transmission range of each other, and the starting and
ending times of their encounters.

We divide the SWIM trace into 72 time periods with
each time period being 1 hour. Similarly, we divide the
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(a) Contact Frequency Based (CFB) (b) Contact Duration Based (CDB)

Fig. 4. Detection ratio under different number of clone nodes when
the victim and clone nodes are from the same node set, either active
or regular, from the SWIM trace.

MIT trace into 60 non-overlapping time periods with
each time period being 8 hours. In both traces, we let
each observation window contain L = 12 time periods,
and set the ratio threshold τr = 0.5. We use the first
observation window of the traces as training data to
determine the community betweenness thresholds, and
the remaining observation windows as the testing data
to validate our detection approach.

We conduct extensive simulations on these two sets
of traces by varying the number of clone nodes from
1 to 4. Since nodes from the non-active set seldom
contact with other nodes, we only consider the nodes
from either the active or regular sets. For each testing
scenario, we randomly choose the nodes from either the
active or regular sets and repeat the simulation 50 times
to get a statistical view of the results. As in Section
V.A, we use the detection ratio and the corresponding
false positive ratio to evaluate the effectiveness of our
detection scheme.

B. Results

The results of using the Shortest Path Based (SPB)
betweenness in our clone attack detection scheme ex-
hibits the same trend as we observed when using the
Contact Frequency Based (CFB) betweenness. We thus
only present the results obtained from Contact Frequency
Based (CFB) and Contact Duration Based (CDB). Fur-
thermore, the results from the SWIM traces achieves the
similar detection ratio and false positive ratio to those
from the MIT Reality traces. Due to the space limitation,
we only present the results using the SWIM traces in the
following subsections. The detailed results may be found
in our comprehensive technical report [21].

Same Node Set Study. Figure 4 presents the detection
ratio versus the number of clone nodes with both the
victim and clone nodes belonging to the same node set
(can be either active or regular) using the Contact Fre-
quency Based (CFB) and Contact Duration Based (CDB)
betweenness in our clone attack detection scheme. In
Figure 4, the “active set” and “regular set” denote both
victim and clone nodes are from active set or regular
set, respectively. The “Same” and “Different” denote the
victim and clone nodes are chosen from the same or
different communities.

We observed that the detection ratio increases to
100% as the number of cloned nodes increases. This
is because more clone nodes increase the number of
shortest paths going through the victim node, which
increases its observed community betweenness value.
The corresponding false positive ratio remains at zero. In
addition, we found that the detection ratio is higher when
the nodes are from different communities than those
from the same communities. Moreover, higher detection
ratio is also achieved when both the victim node and
clone nodes are from the active set. This indicates that
our proposed approach is more effective when the victim
and clone nodes come from different communities or
from the active set. This is inline with the design of our
betweenness-based detection algorithm because clone
nodes from different communities or from the active set
result in having more shortest paths which go through
the victim node.

Different Node Set Study. Next, we let the clone
nodes and the victim node come from different node sets,
i.e., the victim node is chosen from the active sets while
the clone nodes are chosen from the regular sets, and
vice versa. Figure 5 depicted the results of using CFB
and CDB betweenness respectively, when victim node
and clone nodes are chosen from different node sets,
i.e., active or regular. The “active victim node” denotes
the victim node comes from active sets and the clone
nodes are from regular sets, and vice versa for “regular
victim node”. The “Same” and “Different” also denote
the victim and clone nodes are chosen from the same or
different communities.

We found that the detection ratio often improves when
the number of clone nodes increases or when the clone
nodes are from different communities. Comparing the
results from different combinations of victim and clone
nodes in Figure 5, we further observed that the detection
ratio is higher when the victim node is chosen from the
regular node set and the clone nodes are chosen from
the active node set. This is because typically active nodes
have larger number of neighboring nodes, and thus more
shortest paths exist. Thus, with a lower detection thresh-
old used for a regular node, the community betweenness
value for such a node during a clone attack can easily
exceed the threshold and hence be detected. Comparing
the first two bars in Figure 5 with Figure 4 when the
number of cloned nodes is 1 or 2, we found that the
detection ratio when the victim node and clone nodes are
all from active set is higher than the detection ratio when
the victim node is from the active set while the clone
nodes are from the regular set. The victim node from
an active set uses a higher detection threshold and thus
if the cloned nodes are from regular set, the community
betweenness value of the victim node may not exceed
the threshold for the attack to be detected. In addition,
when we compare the last two bars in Figure 5 with
Figure 4 when the number of cloned nodes is 1 or 2, we
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Fig. 5. Detection ratio under different number of clone nodes when
victim and clone nodes are from different node sets (active or regular)
from SWIM trace.

observe that the detection ratio is higher when the victim
node is chosen from the regular node set and the clone
nodes are chosen from the active node set. It is also inline
with our expectations: the cloned nodes from the active
set with more neighboring nodes cause the community
betweenness value of the victim node to easily exceed
the threshold.

Finally, we found that the false positive ratio is zero
for all clone attack scenarios, which is encouraging
as these results suggest that our proposed approach is
feasible and effective in detecting the presence of clone
nodes in a mobile social network.

VII. CONCLUSION

In this paper, we introduced clone attacks in a mo-
bile healthcare system and proposed a social commu-
nity based detection method that exploits the social
relationships to detect the presence of clone attacks.
The concept of community betweenness is introduced
by considering both the community and neighboring
information of mobile users. The existence of a clone
attack is identified by calculating the community be-
tweenness value of a node in multiple time periods.
To achieve robust attack detection, we developed both
analytical and training based approaches to find a suit-
able community betweenness threshold for clone attack
detection. Through extensive simulations using SWIM
and MIT Reality traces, we showed that by considering
social community information, our proposed method can
detect clone attacks efficiently with high detection ratio
and zero false positive rate. Our results demonstrated
the feasibility of exploiting the social community in-
formation derived from mobile device daily traces for
solving security problems (e.g., clone attacks) in mobile
healthcare systems.
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