
This work is supported in part by the US Army, Picatinny, under Contract No. W15QKN-05-D-0011.

NORM: A Decentralized Location Verification

Mechanism for Wireless Sensor Networks

Yingying Chen†, Jie Yang†, Xiuyuan Zheng† and Venkataraman Swaminathan∗

†Dept. of Electrical and Computer Engineering

Stevens Institute of Technology, Hoboken, NJ 07030
∗Acoustics and Networked Sensors Division

US Army, RDECOM-ARDEC, Picatinny, NJ 07806

ABSTRACT

The location of wireless devices and sensor nodes is a
critical input for many location-aware applications. Partic-
ularly, important tasks in tactical fields, such as monitoring
the status of soldiers and tracking the equipments, all rely
on the location information. However, adversaries may fal-
sify the location information and undermine the activities
supported by location. In this work, we propose NORM, a
decentralized location verification mechanism for wireless
sensor networks. To perform location verification, three
schemes are developed in NORM, namely Neighbor Exam-
ination scheme, Neighbor Verification scheme, and Neigh-
bor Localization scheme. Our simulation results provide
strong evidence that NORM is not only effective in detect-
ing abnormal locations caused by both naive adversaries as
well as sophisticated adversaries, but also robust when a
high percentage of sensor nodes are compromised.

1 INTRODUCTION

The rapid advancement in wireless technologies and
sensor devices is leading to a future where wireless sen-
sors will become pervasively deployed. This makes loca-
tion of wireless devices or sensor nodes a powerful infor-
mation source as it is a unique characteristic of each de-
vice. Thus, location can become a critical input for many
location-aware applications. Particularly, in tactical fields,
important tasks, such as monitoring the status of soldiers,
tracking the equipments, robotic navigation, and detect-
ing enemy activities, all rely on the location information.
There have been a plethora of schemes developed recently
to localize sensor nodes [Langendoen and Reijers 2003;
Bahl and Padmanabhan 2000; Niculescu and Nath 2001;
Kleisouris et al. 2008; He et al. 2003]. However, the perfor-
mance of the localization algorithms degrades significantly

when the sensors are deployed in hostile environments or
are attacked by adversaries [Chen et al. 2006].

Although there has been some work in secure local-
ization [Li et al. 2005; Liu et al. 2005; Lazos and Pooven-
dran 2004], they only targeted to enhance the robustness
of localization, and adversaries may falsify the location in-
formation by compromising sensor nodes or intercepting
the location information when it is reported. Compromised
location information is a serious threat because of their im-
pact on critical tactical applications, and it is thus desir-
able to conduct location verification before it is used by
location-based tasks.

In this work, we propose a method called Neighbor
ObseRvation Mechanism (NORM), for position verifica-
tion of wireless devices and sensor nodes. NORM is a
software component deployed in each sensor node, and can
assist sensor information processing and position verifica-
tion in autonomous systems. We investigate NORM under
two adversarial models, a naive adversary and a sophisti-
cated adversary model. We further develop three schemes,
namely, Neighbor Examination (NE) scheme, Neighbor
Verification (NV) scheme, and Neighbor Localization (NL)
scheme, to detect the abnormal location caused by both ad-
versarial models.

Comparing with prior position verification tech-
niques [Capkun and Hubaux 2005; Du et al. 2005], which
required specialized hardware, network deployment knowl-
edge, or a central verification center, the main advantage
of NORM is that it utilizes the existing wireless network
infrastructure without deployment knowledge. Moreover,
NORM performs position verification of a sensor node in a
fully distributed way depending on the spatial consistency
relationship inherited between a sensor node and its neigh-
bors. Our simulation results demonstrated the effectiveness
of NORM in detecting abnormal locations and the robust-
ness of NORM under the severity of attacks in terms of the
percentage of compromised sensor nodes in the network.
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We show that different position verification schemes can
be applied to different scenarios based on application re-
quirements.

The remainder of the paper is organized as follows.
Section 2 discusses previous research in localization and
position verification. We provide an overview of our prob-
lem and present the adversarial models in Section 3. We
then present NORM in Section 4 and develop three position
verification schemes. To evaluate the effectiveness and the
robustness of NORM, our simulation results are provided
in Section 5. Finally, we conclude our work in Section 6.

2 RELATED WORK

Recent research efforts have resulted in a number of
localization algorithms [Langendoen and Reijers 2003].
They can be categorized as range-based and range-free.
Range-based algorithms [Bahl and Padmanabhan 2000;
Kleisouris et al. 2008] involve distance calculation to
landmarks with known positions using the measurement
of various physical properties, whereas range-free algo-
rithms [Niculescu and Nath 2001; He et al. 2003] use
coarser metrics to place bounds on node positions. Fur-
ther, the performance of the localization algorithms can be
corrupted by attacks. [Li et al. 2005] provides a broad sur-
vey of potential physical attacks to localization schemes.
Moreover, secure localization mechanisms are developed
to enhance the robustness of localization schemes [Li et al.
2005; Liu et al. 2005; Lazos and Poovendran 2004]. Covert
base stations whose positions are not known to the attacker
are employed in [Capkun and Hubaux 2006] to perform se-
cure positioning.

[Sastry et al. 2003] was the first to propose secure ver-
ification of location claims by measuring the signal prop-
agation time. It provided a foundation for securely us-
ing location in wireless information systems. [Capkun and
Hubaux 2005; Lazos et al. 2005] proposed Verifiable Mul-
tilateration technique to verify a sensor’s location. This
method required specialized hardware to perform nanosec-
ond processing and precise ranging. [Du et al. 2005] per-
formed position verification based on consistency check
of the observed neighbors and the network deployment
knowledge. It assumes a highly dense network where
the positions of the node follow a Gaussian distribution,
which is contrary to the structure of many deployed sys-
tems where much lower densities are typical. The work
that is the closest to ours is [Y. Wei and Z. Yu and Y.
Guan 2007], where the information of neighboring nodes
is used to perform verification. However, a central veri-
fication server is needed to conduct location verification.
Our work is different in that NORM is a fully distributed
position verification mechanism without using specialized
hardware and network deployment knowledge.

Figure 1: Illustration of two adversarial models: a naive
adversary and a sophisticated adversary model.

3 PROBLEM OVERVIEW

In this section, we provide a high-level overview of our
problem. We then present the two adversarial models that
affect the location verification process.

3.1 Overview

In tactical fields, sensors are usually deployed to per-
form monitoring and tracking. For information processing
or data fusion, a sensor may need to request data from an-
other sensor. In addition to the traditional identity-based
authentication, the increasingly ubiquitous trends of the
wireless sensor networks are enabling the information ac-
cess based on the client sensor being in the right place
at the right time [Chen et al. 2006]. Thus, to facilitate
location-aware computing paradigms, the access control of
the information can be extended from solely identity-based
authentication and built upon position verification of the
client sensor.

However, adversaries (or enemies) may report incor-
rect location information to claim that they are in the au-
thorized region in order to access the restricted data in a
sensor node. The traditional approach for position verifi-
cation is to use a centralized server that contains all the
location information and can thus verify the position of the
client sensor. This kind of approach inherently introduces
an issue related to the location privacy. And consequently,
sensor nodes may be tracked by the central server. In addi-
tion, due to environmental constraints, the deployment of a
central verification server is not always possible, especially
in tactical fields. As opposed to the traditional centralized
location verification methods, we propose NORM, which
is a decentralized mechanism to perform position verifica-
tion based on the observation from the neighboring nodes
of the client sensor. Thus, in NORM, when a sensor node
reports its location, it also needs to send its neighbor list,
which will be used to help verifying the reported location.
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3.2 Adversary Model

In this work, we consider two adversarial models, a
naive adversary and a sophisticated adversary model. In
both models, the adversary claims the position of the com-
promised sensor atP , while its true position is atP0. As
shown in Figure 1, the compromised sensor nodeSA’s true
location is atP0, but the adversary claims its position is at
P .

For a naive adversary, it either sends an arbitrary
neighbor list or reports neighbors of the compromised sen-
sor node consistent with their reported locationP . Whereas
for a sophisticated adversary, it reports the true neighbors
around the compromised sensor’s true positionP0 to trick
the system. For instance, in Figure 1, the naive adversary
at the sensor nodeSA reportsP as the position ofSA and
sends sensor nodes{S5, S6, S7, S8, S9} around locationP
as neighboring nodes ofSA, whereas the sophisticated ad-
versary sends the true neighbors ofSA, {S1, S2, S3, S4},
around locationP0.

If a sensor node is compromised, it will not respond to
any verification requests for confirming the observation of
other nodes. Further, we define anAnomaly Distance (AD)
as the distance between the reported location and the true
location (i.e.AD = ‖P−P0‖). We want to design position
verification schemes that can detect the abnormal location
when AD exceeds certain distances.

4 NORM: N EIGHBOR OBSERVATION

M ECHANISM

In this section, we present our Neighbor ObseRvation
Mechanism (NORM) for position verification of wireless
devices and sensor nodes. NORM is a software component
deployed in each sensor node. Comparing to prior position
verification techniques, [Capkun and Hubaux 2005; Du
et al. 2005], the main advantage of NORM is that it does not
require special hardware, deployment knowledge, or a cen-
tral verification center. NORM performs position verifica-
tion of a sensor node in a fully distributed way, depending
on the spatial consistency relationship inherited between a
sensor node and its neighbors. We next describe three de-
tecting schemes we developed in NORM. For illustration
purpose, we use the example when a sensor nodeSB needs
to verify the reported location of the sensor nodeSA.

4.1 Defeating Naive Adversaries

Neighbor Examination (NE) Scheme: The NE
scheme performs position verification based on the direct
response from neighbors of the node under verification, i.e.,
SA. The sensor nodeSB issues a special verification re-
quest to each neighbor,Si, with i = 1, 2, ...N (N is the
total number of neighbors), reported in the neighbor list

of the client sensorSA, and asks whether it hasSA in its
neighbor list. When the sensorSi receives the request, if
Si hasSA in its neighbor list,Si confirms and reports its
current positionPi back. IfSi is compromised by the ad-
versary, based on our adversary model,Si will keep silent
and does not respond. We then define the neighbor exami-
nation probabilityPex as

Pex =

∑
K

i=1
Si

N
, (1)

whereK is the total number of neighbors that responds to
the request fromSB. If Pex > α whereα is the confidence
level, SB determines thatSA passes the neighbor exami-
nation. A naive adversary, who sends an arbitrary neigh-
bor list or reports neighbors around locationP when lying
about the location of the compromised sensor node, will
thus result inPex < α and fail the neighbor examination
scheme.

4.2 Defeating Sophisticated Adversaries

A sophisticated adversary may claim that the compro-
mised sensor node is at locationP , but report the neigh-
boring nodes around sensor’s true locationP0. The NE
scheme cannot detect the abnormal locations reported by
sophisticated adversaries. The Neighbor Verification and
the Neighbor Localization schemes are thus developed to
detect abnormal locations reported by sophisticated adver-
saries that send the neighboring information around the true
location of the node under verification to trick the system.

Neighbor Verification (NV) Scheme:Like in the NE
scheme,SB first issues a special verification request to each
neighbor,Si with i = 1, 2, ...N , reported in the neighbor
list of the client sensorSA, and asks whether it hasSA in
its neighbor list. When the sensorSi receives the request,
if Si hasSA in its neighbor list,Si confirms and reports its
current positionPi back. Based on the reported positions of
the responded neighbors,SB then needs to conduct further
neighbor verification. Given that the neighboring nodes of
SA must be within the communication rangeRA of SA,
the distance between the estimated locations ofSA and its
neighbor||PA − Pi|| should be withinRA for an honest
sensor node.SB could complete the position verification
of SA if ||PA − Pi|| < RA for all i = 1...K.

However, since there are localization errors from the
location estimation process [Bahl and Padmanabhan 2000;
Elnahrawy et al. 2004], we define

||PA − Pi|| < RA + r, (2)

wherer is a random variable introduced by localization er-
rors. We may assume localization errors are Gaussian. Un-
der this assumption,r also follows a Gaussian distribution
with meanµ and varianceσ. Thus the probability thatPA
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Figure 2: Illustration of the Neighbor Localization (NL)
scheme.

andPi are neighbors is given by

Pr(Pi) = Pr(r > (||PA − Pi|| − RA))

= 1 − F (||PA − Pi|| − RA), (3)

with F (r) as the Cumulative Distribution Function ofr,

F (r) =
1√

2πσ2

∫ r

−∞

exp(− (u − µ)2

2σ2
) du. (4)

Further, we define the neighbor verification probability
Pve, which is the joint probability that allPi, i = 1...K,
are the neighbors ofPA as:

Pve =

K∏
i=1

Pr(Pi). (5)

We then set a confidence levelβ such that ifPve > β, we
declare thatSA passes the Neighbor Verification scheme.
Otherwise, the reported location information ofSA is de-
clared as compromised.

Neighbor Localization (NL) Scheme: The NL
scheme utilizes the location ofSA’s neighboring nodes to
estimate the position ofSA and further to verify the re-
ported position ofSA. The estimated position̂P of SA is
expressed as:

P̂ =
1

K

K∑
i=1

(Xi, Yi), (6)

whereK is the total number of responded neighbors toSB,
(Xi, Yi) is the position of theith neighbor. Under the nor-
mal situation, the distance between the sensor nodeSA’s
true locationP0 and the estimated location̂P from NL
scheme should be small. However, ifSA is compromised,
the distance between the reported locationP of SA andP̂

should be large.
As illustrated in Figure 2, the distance betweenP0

and P̂ is much smaller than the distance betweenP and
P̂ . Therefore, we define aMaximum Tolerable Distance
(MTD) as the threshold of declaring the abnormal loca-
tion in NL scheme. In particular, letD = ‖P − P̂‖. If

D > MTD, NL scheme declares the location reported by
SA is compromised.

5 SIMULATION RESULTS

In this section, we first present our evaluation metrics.
We then introduce the simulation methodology. We next
present our simulation results.

5.1 Evaluation Metrics

In order to evaluate the performance of NORM, we use
the following metrics:

Detection Rate: The detection rate is defined as the
percentage of actual abnormal location that are determined
to be abnormal:

DR =
Ntp

Np

, (7)

whereNtp is the number of abnormal locations, i.e., true
positive, detected by NORM andNp is the total number of
abnormal locations, i.e., positive.

False Positive Rate:The false positive rate is defined
as the percentage of normal location that are falsely deter-
mined to be abnormal location:

FPR =
Nfp

Nn

, (8)

whereNfp is the number of normal locations falsely deter-
mined to be abnormal locations, i.e., false positive, andNn

is the total number of normal locations.
Receiver Operating Characteristic (ROC) curve:

To evaluate NORM we want to study the false positive
rate and detection rate together. The ROC curve is a plot
of the detection accuracy of the abnormal location against
the false positive detection. It can be obtained by varying
the detection thresholds. The ROC curve provides a direct
means to measure the trade off between false-positive and
correct detections.

5.2 Simulation Methodology

In our simulation setup, we deploy200 to 500 sensors
randomly in a350m × 350m square field. The commu-
nication range of the sensor node is modeled to follow a
Gaussian distribution with mean at30m and standard devi-
ation as2m. Under this setup each sensor node can observe
average number of neighbors ranging from4 to11. Further,
we simulate the localization error of a sensor node by mod-
eling the localization errors of theX andY coordinates to
follow a Gaussian distribution with zero mean and standard
deviation of3m. This corresponds to the localization error
with a median of3m and can range from0 to 11m, which
is inline with previous experimental findings [Elnahrawy
et al. 2004].
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Figure 3: Naive Adversaries: Receiver Operating Charac-
teristic (ROC) curve for impact of anomaly distance.

We then randomly choose sensor nodes that are com-
promised by adversaries. The default percentage of com-
promised sensor nodes is set to 0.1. Based on our adversary
model, a compromised sensor node will keep silent when
receiving special verification requests. To evaluate the ef-
fectiveness of NORM, we vary Anomaly Distance (AD),
percentage of compromised sensor nodes, network density
and localization error in our simulation study.

5.3 Evaluation Results

Impact of Anomaly Distance (AD):Figure 3 presents
the ROC curve under various Anomaly Distance when the
Neighbor Examination (NE) scheme is used to detect ab-
normal locations caused by naive adversaries. We observed
that NE scheme can achieve detection rates over 95% when
the FPR is less than 10%. For the case ofAD = 25m,
which is less than the average communication range (i.e.,
30m) of sensor nodes, the detection rate is above 90%
when the FPR reaches 5%. Further, the detection rate
achieves 99% when the false positive rate is 5% for the case
of AD = 40m. Moreover, we found that the larger the AD
is, the higher the detection rate can achieve. Specifically,
by examining the condition ofFPR = 0.05 the detection
rate increases from 91% to over 99% when AD increases
from 25m to 40m.

Figure 4 presents the ROC curves under various
Anomaly Distance when NV and NL schemes are used re-
spectively to detect the abnormal locations caused by so-
phisticated adversaries. Both NV as well as NL schemes
present similar detection performance to NE scheme when
AD ranges from25m to 40m: the detection rate increases
with the increasing of the Anomaly Distance. In particular,
the detection rates are above 92% when the FPR is 5% for
both NV and NL schemes under the case ofAD = 25m.
The detection rates are close to 100% when the FPR is 5%
for both NV and NL schemes under the case ofAD =
40m. This indicates our position verification schemes are
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Figure 4: Sophisticated Adversaries: Receiver Operating
Characteristic (ROC) curve for impact of Anomaly Dis-
tance.
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Figure 5: Impact of network density.

effective in detecting abnormal locations caused by both
naive as well as sophisticated adversaries. We further ob-
served that NV scheme outperforms NL scheme when FPR
is below 5%, whereas NL scheme outperforms NV scheme
when FPR is above 5%. Therefore, we can choose proper
detection schemes according to the application tolerance to
the false positive rate.

Impact of Network Density: By varying the num-
ber of sensor nodes from 200 to 500 in our simulated net-
works, we evaluated how the network density impact the
performance of NORM. In this setup, each sensor node can
observe in average4 neighbors for the deployment of200
sensors and11 neighbors for the deployment of500 sen-
sors in the network respectively. Figure 5 presents the de-
tection rate versus number of sensor nodes under all three
schemes. We observed that the detection rate increases
with the increasing of network density. In particular, when
the number of sensors increases from200 to 500, the detec-
tion rate increases from 85% to 98% for NV scheme, from
90% to 99% for NE scheme and from 83% to 98% for NL
scheme respectively, under the condition of FPR less than
10%. Further, we found that NV scheme outperforms NL
scheme when the number of sensors is small (e.g.200),
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Figure 6: Impact of Percentage of Compromised Sensor
Nodes in Network.

whereas the NL scheme outperforms NV scheme when the
number of sensors is large (e.g.500). Since NL scheme
relies on positions of neighbors to estimate the location of
a sensor node, the denser the network, the more accurate
the position estimation can become and thus the higher de-
tection rate NL scheme can achieve. Hence, based on dif-
ferent network density, we can choose different schemes to
perform position verification.

Impact of Percentage of Compromised Sensor
Nodes: We vary the percentage of compromised sensor
nodes in the network to evaluate the robustness of NORM
when large number of nodes are compromised in the net-
work. Figure 6 presents the relationship between the detec-
tion rate and the percentage of compromised sensor nodes.
The false positive rate is set at 10% and the Anomaly Dis-
tance equals to30m.

As shown in Figure 6, the detection rates of the three
schemes drop gradually from above 98% to 80% as the per-
centage of compromised nodes increases from 10% to 60%.
A key observation of this experiment is that the perfor-
mance of NORM is still over 80% even when the percent-
age of compromised nodes is extensively large (i.e. 60%),
which indicates that NORM is robust in detecting abnormal
locations under the situation when large number of nodes
are compromised.

Impact of Localization Error of Sensor Nodes: We
further examine how the localization error can impact the
performance of NORM. In this experiment, we vary the
standard deviation of the localization error of the X and Y
coordinates of a sensor node from1m to 5m. We note that
1m standard deviation corresponds to a mean localization
error of1.3m, whereas5m standard deviation corresponds
to a mean localization error of6.3m. The Anomaly Dis-
tance is maintained at30m and the false positive rate is set
to 5% and 10% respectively.

Figure 7 presents the detection rates of all three
schemes versus the standard deviation. We observed that
overall the detection rates are decreasing when the local-
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Figure 7: Impact of Localization Error of Sensor Nodes.

ization error is increasing for all three schemes. And the
detection rates of NL and NV schemes can approach 100%
no matter the FPR is 5% or 10% when the mean localiza-
tion error is around1.3m with a corresponding standard
deviation of1m. Interestingly, we found that NE scheme is
not as sensitive as NV and NL schemes to the localization
error. Specifically, the decreasing of the detection rate of
NE schemes is about 1%, whereas it is 4% for NL scheme
and 8.5% for NV scheme when the mean localization er-
ror ranges from1.3m to 6.3m. This is because NE scheme
does not use the positions of sensor nodes (i.e. neighboring
nodes) directly, and thus the performance of NE scheme
is more stable under various localization errors than other
schemes that rely on the positions of sensor nodes.

6 CONCLUSION

In this work, we proposed a Neighbor ObseRvation
Mechanism (NORM) to perform position verification in
wireless sensor networks, especially for tactical environ-
ments. Three schemes, Neighbor Examination scheme,
Neighbor Verification scheme, and Neighbor Localization
scheme, are developed in NORM to detect abnormal lo-
cations caused by both naive as well as sophisticated ad-
versaries. NORM conducts position verification in a fully
distributed way depending on the spatial consistency re-
lationship inherited between a sensor node and its neigh-
bors. The main advantage of NORM is that it does not
require special hardware, network deployment knowledge,
or a central verification server. Simulation results demon-
strated that NORM is effective in detecting abnormal loca-
tions and is robust when a high percentage of sensor nodes
are compromised. Further, we found that our three posi-
tion verification schemes can be applied to different net-
work scenarios based on application requirements.

6



REFERENCES

Bahl, P. and Padmanabhan, V. N. 2000. RADAR: An in-building
RF-based user location and tracking system. InProceedings of the
IEEE International Conference on Computer Communications (IN-
FOCOM). 775–784.

Capkun, S. and Hubaux, J. 2006. Securing localization with hidden
and mobile base stations. InProceedings of the IEEE International
Conference on Computer Communications (INFOCOM).

Capkun, S. and Hubaux, J. P. 2005. Secure positioning of wireless
devices with application to sensor networks. InProceedings of the
IEEE International Conference on Computer Communications (IN-
FOCOM). 1917–1928.

Chen, S., Zhang, Y., and Trappe, W. 2006. Inverting sensor networks
and actuating the environment for spatio-temporal access control.
In Proceedings of the Forth ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN). 1–12.

Chen, Y., Kleisouris, K., Li, X., Trappe, W., and Martin, R. P.
2006. The robustness of localization algorithms to signal strength
attacks: a comparative study. InProceedings of the International
Conference on Distributed Computing in Sensor Systems (DCOSS).
546–563.

Du, W., Fang, L., and Ning, P. 2005. Lad: Localization anomaly
detection for wireless sensor networks. InProceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS 05).

Elnahrawy, E., Li, X., and Martin, R. P. 2004. The limits of local-
ization using signal strength: A comparative study. InProceedings
of the First IEEE International Conference on Sensor and Ad hoc
Communcations and Networks (SECON 2004). 406–414.

He, T., Huang, C., Blum, B., Stankovic, J. A., and Abdelzaher,
T. 2003. Range-free localization schemes in large scale sensor net-
works. InProceedings of the Ninth Annual ACM International Con-
ference on Mobile Computing and Networking (MobiCom’03).

Kleisouris, K., Chen, Y., Yang, J., and Martin, R. P. 2008. The impact
of using multiple antennas on wireless localization. InProceedings
of the Fifth Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON.

Langendoen, K. and Reijers, N. 2003. Distributed localization in
wireless sensor networks: a quantitative comparison.Comput. Net-
works 43, 4, 499–518.

Lazos, L. and Poovendran, R. 2004. SeRLoc: Secure range-
independent localization for wireless sensor networks. InProceed-
ings of the 2004 ACM Workshop on Wireless Security. 21–30.

Lazos, L., Poovendran, R., and Capkun, S. 2005. Rope: robust po-
sition estimation in wireless sensor networks. InProceedings of the
Fourth International Symposium on Information Processing in Sen-
sor Networks (IPSN 2005). 324–331.

Li, Z., Trappe, W., Zhang, Y., and Nath, B. 2005. Robust Statistical
Methods for Securing Wireless Localization in Sensor Networks. In
The Fourth International Conference on Information Processing in
Sensor Networks (IPSN). 91–98.

Liu, D., Ning, P., and Du, W. 2005. Attack-resistant location estima-
tion in sensor networks. InProceedings of the Fourth International
Symposium on Information Processing in Sensor Networks (IPSN
2005). 99–106.

Niculescu, D. and Nath, B. 2001. Ad hoc positioning system (APS). In
Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM). 2926–2931.

Sastry, N., Shankar, U., and Wagner, D. 2003. Secure verification of
location claims. InProceedings of the ACM workshop on wireless
security. 1–10.

Y. Wei and Z. Yu and Y. Guan. 2007. Location verification algorithms
for wireless sensor networls. InProceedings of the 27th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS).

7


