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Abstract—New mobile phones equipped with multiple
sensors provide users with the ability to sense the world
at a microscopic level. The collected mobile sensing data
can be comprehensive enough to be mined not only for the
understanding of human behaviors but also for supporting
multiple applications ranging from monitoring/tracking,
to medical, emergency and military applications. In this
work, we investigate the feasibility and effectiveness of
using human contact traces collected from mobile phones to
derive social community information to control the disease
propagation rate in the healthcare domain. Specifically,
we design a community-based framework that extracts
the dynamic social community information from human
contact based traces to make decisions on who will receive
disease alert messages and take vaccination. We have
experimentally evaluated our framework via a trace-driven
approach by using data sets collected from mobile phones.
The results confirmed that our approach of utilizing mobile
phone enabled dynamic community information is more
effective than existing methods, without utilizing social
community information or merely using static commu-
nity information, at reducing the propagation rate of an
infectious disease. This strongly indicates the feasibility
of exploiting the social community information derived
from mobile sensing data for supporting healthcare related
applications.

I. INTRODUCTION

The recent years have witnessed an explosion of the
usage of mobile wireless devices in our daily lives.
In particular, with the rapid deployment of sensing
technology in mobile phones, the collected sensing data
can be comprehensive enough to be mined not only for
the understanding of human behaviors but also for sup-
porting a broad range of applications. For instance, most
of the mobile phones support the Bluetooth technology,
and the Bluetooth device-discovery software running in
a mobile phone allows it to collect information from
other nearby Bluetooth devices. It is thus convenient
to exploit the mobile phones equipped with Bluetooth
technology to discover the encounter events between
people such that their social relationships can be derived
and analyzed. More importantly, the discovered social
relationships can be used to extract social communi-
ties [1], [2], which reflect close relationships or similar
behavior patterns among people, to assist in the develop-
ment of applications in various domains, ranging from

monitoring/tracking applications, to medical, emergency
and military applications.

Group discovery and community detection have been
an active research area. In [3], the Kernighan-Lin algo-
rithm was introduced to improve the initial division of a
network by optimizing the number of graph edges within
and between the partitions using the greedy algorithm.
[1] proposed a hierarchical clustering algorithm where
communities are merged based on a similarity measure.

The social community structures have been used ac-
tively in many areas including online social networks,
e.g., community detection in multi-dimensional networks
based on online social media [4], and wireless networks,
e.g., coping with the propagation of malware on smart
phones [5], and facilitating the packet forwarding in
Delay Tolerant Networks (DTNs) [6]. However, few
studies have been done in exploiting social commu-
nity structures extracted from mobile phones to control
the propagation of infectious diseases in the healthcare
domain. [7] studied the relationships between the vol-
untary vaccination and the transmission of a vaccine-
preventable infection. It pointed out that the propagation
of the disease is related with the neighborhood size. Be-
sides the traditional random vaccination strategy, recent
work used bridge users identified in the human contact
networks as distribution points of vaccination [8]. We
are not aware of any prior work that exploits social re-
lationships systematically for effective vaccination such
that the propagation rate of an infectious disease can be
reduced.

Our work is novel in that we extracted dynamic social
community information by leveraging the contact traces
derived from mobile phones and proposed a community
based framework for control of disease propagation.

We experimentally evaluated our framework through
a trace-driven approach by using the MIT reality mining
trace [9]. The results showed that our strategy is highly
effective in reducing the disease propagation rate when
compared to methods that do not use social relationships.

The rest of the paper is organized as follows. We
present our mobile phone enabled social community
based framework in Section II. It describes the system
model in our framework and the disease infection model
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Fig. 1. Epidemic infection model used in our framework.

used in this work. We next present our dynamic social
community based scheme in Section III. In Section IV,
we validate the feasibility of our framework by using
datasets collected from mobile phones and compare with
existing methods. Finally, we conclude our work in
Section V.

II. FRAMEWORK OVERVIEW

In this section, we first provide the system model for
our mobile phone enabled disease control framework,
and present descriptions of the architecture in our frame-
work. We envision this framework can be implemented
by any State Department of Health through the coordi-
nation of the Centers for Disease Control and Prevention
(CDC). For example, during the 2009 spreading period
of the pandemic influenza A (H1N1) virus, every state in
US is required to report the number of infected patients
to the CDC. The available vaccines are then allocated
appropriately by the CDC to the different states [10].

We then present the infection model used in our work
and provide an analysis on the state transitions in our
model. Without loss of generality, we do not consider
the differences between users and assume that all the
users follow the same infection model.

A. System Model

1) Uncovering Human Social Relationships from
Contact Traces via Mobile Phones: Instead of random
vaccine distribution, targeting vaccination to a group
of people with higher risk of infection can provide
more effective control of an infectious disease propa-
gation. Traditionally, scientists and doctors have to rely
on social relationships derived via manually recorded
daily activities from human subjects [9]. However, this
approach is tedious, error-prone as the human subjects
may forget to perform recording from time to time, and
can be out of date. In this work, we consider extracting
social community information from human contact traces
collected by mobile phones.

The Bluetooth enabled device-discovery process is
simple and automatic, and thus is suitable for recording
encounter events between people for social relationship
analysis. Our framework will utilize the existing in-
frastructure in cellular networks. We assume the users
are subscribed to the cellular data plan and recorded
encounter events (which include discovered device IDs
and timestamps) will be periodically sent back to a

Notation Description
𝑝𝑖𝑛 Disease infection probability
𝑝𝑖𝑛 × 𝑝𝑎𝑙 Disease infection probability

with alert messages
𝑝𝑟𝑒 Recovery probability

after the recovery cycle
𝑝𝑟𝑒 × 𝑝𝑖𝑚 Probability of recovery with immunization

after the recovery cycle
𝑝𝑟𝑒 × (1− 𝑝𝑖𝑚) Probability from infective to susceptible

after the recovery cycle
𝑁𝑝 The length of the disease recovery cycle

TABLE I
NOTATIONS USED IN THE INFECTION MODEL.

back-end server authorized by the service provider. The
dynamic community extraction mechanism is run by the
server. The detailed description of our dynamic com-
munity extraction approach is presented in Section III.
Moreover, the extracted community information will be
stored at the server and updated from time to time.

2) Architecture: We design two types of messages
that a user may receive: vaccination and alert. A user
who receives a vaccination message should go to obtain
a vaccine shot, whereas a user receiving a alert message
should take precautions as directed. We assume that all
the users who have been notified will take the neces-
sary recommendated actions. In our framework, vaccine
shots of an infectious disease only have limited supplies
and are more costly comparing to alert messages. The
number of alert messages for each disease can be either
controlled or unlimited.

When actions need to be taken for an infectious
disease, the server will decide on who will receive vac-
cination messages and who will receive alert messages
respectively based on the extracted social communities
stored in its database. Then the server will send out each
message to corresponding users.

B. Infection Model

In our framework, we extend the standard epidemic
SIR model [11] to four states: susceptible without alert,
susceptible with alert, infective and immunized. Suscep-
tible means that a user can be infected by the disease.
When a user is susceptible, he can be at either susceptible
without alert or susceptible with alert. When a user is
infected, he goes to the infective state and he can infect
other people that he encounters. A user may go to the
immunized state only when he is either vaccinated or has
recovered from the disease with immunity.

The notations used in the infection model and across
the paper are summarized in Table I. Figure 1 shows the
state transition diagram. The probability of transmission
from the Susceptible without alert message state to the
Infectious state is defined as 𝑝𝑖𝑛, whereas it is 𝑝𝑖𝑛 ×
𝑝𝑎𝑙 from Susceptible with alert message to Infectious.
Further, we define the probability of recovery from the
disease as 𝑝𝑟𝑒 after every recovery cycle. We note that
the Infectious state can transit to either the Immunized
state with probability 𝑝𝑟𝑒 × 𝑝𝑖𝑚 or Susceptible without
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Fig. 2. Flow overview: components to extract community information.

alert message with probability 𝑝𝑟𝑒× (1− 𝑝𝑖𝑚) after the
person recovered from the disease.

III. DYNAMIC EXTRACTION OF COMMUNITY

INFORMATION

For the community information, we define two types
of social clusters to represent different levels of social
relationships: one is refereed to as community and the
other is referred to as kernel structure. The people within
the same community meet frequently with one another,
while the kernel structure aims to capture a subset of
people on top of the community structures that have
even higher encounter frequency. Instead of using static
community information derived from the whole trace,
we propose an approach called dividing and merging,
where dynamic community information is utilized since
people may belong to different social communities at
various times, and communities may appear or disappear
in different time periods.

Flow Overview. Our dynamic community and kernel
extraction approach is illustrated in Figure 2. First,
mobile phones with Bluetooth capability record user
encounter events. The recorded human encounter events
are divided into multiple trace files based on each time
window. We note that the length of the time window is
adjustable (e.g., the length of the time window can be
one day).

From each contact trace file, two contact graphs are
constructed by the centralized server. One will be used
for extracting community and the other for extracting
kernel structure. Hierarchical clustering method can be
one of the options to extract both community and kernel
structures. The extracted community and kernel struc-
tures learnt for the current time period are then merged
with the existing community and kernel structures that
our system maintains. The combined community and
kernel structures will be used to make decisions on
who to send the vaccination and alert messages in our
framework.

In the following subsections, we first describe how we
construct contact graphs and our dividing strategy for the
construction of community and kernel structures. Then,

we describe how we merge the newly learnt community
and kernel structures from different trace files with the
existing community information.

A. Interval-Based Contact Graph Construction

The whole contact trace is divided into multiple trace
files which cover different non-overlapping time inter-
vals. We assume that each trace file consists of recorded
encounter events that happened during a time period
[𝑇𝑖, 𝑇𝑖+1]. Each entry in such a trace is a record of one
encounter event between two mobile phones: including
the starting and ending time of the contact as well as
unique IDs of the mobile phones. We also assume that
the same person carries the mobile phone for the duration
of the trace. Based on this information, a contact graph
𝐺 = (𝑉,𝐸) can be derived, which consists of a vertex
set 𝑉 and an edge set 𝐸. Each vertex 𝑢 ∈ 𝑉 denotes
a person, while each edge 𝑒(𝑢, 𝑣) denotes that person
𝑢 has contacted person 𝑣 for at least 𝑊 times. The
weight 𝑡(𝑢, 𝑣) denotes how frequent the two persons 𝑢
and 𝑣 meet during [𝑇𝑖, 𝑇𝑖+1]. We use the number of times
that the two persons have encountered with each other
as the weight because the people who encounter with
each other frequently tend to have closer relationships
or similar social behaviors (e.g. riding on the same train
to go to work each morning).

B. Community & Kernel Structures Extraction From
Contact Graphs

For each trace file, we construct two contact graphs:
one with 𝑊 = 𝑤1 and the other with 𝑊 = 𝑤2 where
𝑤2 > 𝑤1. Clusters extracted using the first contact
graph are referred to as communities, whereas clusters
extracted from the second one are referred to as kernel
structures.

For scalability, it is important that an efficient algo-
rithm is used to partition the contact graph 𝐺 = (𝑉,𝐸)
into separate clusters. In this paper, we use a simple, yet
effective partition algorithm called hierarchical cluster-
ing [12]. Further, to verify whether a particular division
is meaningful or not, we use the modularity metric,
𝑄 [12]. This metric has often been used by researchers
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in previous studies to measure how good a partition is.
A larger 𝑄 value indicates a better partition of the users.

C. Merging Community Information Extracted over Dif-
ferent Time Periods

Recall that the social community information may
change with time: some communities may merge, some
may disappear, and others may be divided into smaller
ones. We next describe our community merging tech-
nique. We note that the same technique is applied to
merge kernel structures.

We assume that we have D time windows. We have
constructed one contact graph from each time period
and we assume these are non-overlapping time periods:
[𝑇0, 𝑇1], [𝑇1, 𝑇2],..., [𝑇𝐷−1, 𝑇𝐷] with 𝐺1 = (𝑉1, 𝐸1),
𝐺2 = (𝑉2, 𝐸2),..., 𝐺𝐷 = (𝑉𝐷, 𝐸𝐷). The communities
are extracted from each contact graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖)
by using the hierarchical clustering algorithm and the
modularity Q. Let 𝑆𝑖 represents the set of communities
found for time window 𝑖. Thus, we have 𝑆1, 𝑆2, ..., 𝑆𝐷.
Each 𝑆𝑖 contains a set of vertices 𝐴𝑖. Each 𝐴𝑖 has been
divided into 𝑘𝑖 communities, which are represented as
follows:

𝐴𝑖 = 𝐴1
𝑖 ∪𝐴2

𝑖 ∪ ... ∪𝐴𝑘𝑖
𝑖 (1)

We compare each community in 𝑆𝑖 with all the
communities discovered in 𝑆𝑖+1 to see if a community
in 𝑆𝑖 satisfies one of the following conditions:
∙ It is part of a bigger community in 𝑆𝑖+1 and hence

can be removed.
∙ It can be merged with one community in 𝑆𝑖+1 using

the community merge operation for two communi-
ties 𝐴𝑗

𝑖 and 𝐴𝑙
𝑖+1 under an adjustable threshold 𝜏 :

∣𝐴𝑗
𝑖 ∩𝐴𝑙

𝑖+1∣
𝑀𝑎𝑥(∣𝐴𝑗

𝑖 ∣, ∣𝐴𝑙
𝑖+1∣)

> 𝜏 (2)

∙ It is a superset of a community 𝐴𝑗
𝑖+1 in 𝑆𝑖+1, then

𝐴𝑗
𝑖+1 is removed from set 𝑆𝑖+1 .

At the end of this operation, the two sets 𝑆𝑖 and 𝑆𝑖+1

are unioned to form a new 𝑆
′
𝑖+2, which will merged

with 𝑆𝑖+2 in the next round of comparison. The merging
process iterates through D time windows.

We have applied our community extraction approach
using RFID traces that we collected in real-world en-
vironments. Our preliminary results indicate that our
approach produces good detection rate. We are in the
process of building our prototype using smartphones.

D. Using Extracted Community Information in Disease
Propagation Control

Based on our community information extraction strat-
egy, people that belong to the same kernel structures have
a higher encounter frequency. Thus, an infectious disease
has a higher probability to spread among these group
of people if one person is infected already. Similarly,
those in the same community as a sick person are

also more susceptible to be infected by the disease.
However, the probability for the disease to spread across
two disjoint communities is low because people in such
communities contact less frequently. We note that one
person can belong to multiple communities or kernels.
Let 𝑉𝑠 represent the set of sick persons for a particular
infectious disease. We define the susceptible persons
who are in the same kernels as the sick people as 𝑉𝑘,
while those susceptible persons who are in the same
communities but are not in the same kernels as those
sick people as 𝑉𝑐.

Because of the limited supply and relatively high cost
of vaccines, an appropriate decision on efficient vacci-
nation is that the vaccine shots and the alert messages
should be given to those people who have higher risk
of being infected by the disease. Thus, by utilizing the
community information, the people in 𝑉𝑘 should have
higher priority to receive vaccination or alert messages
than those in 𝑉𝑐. We further define the importance of a
person by the weight when there are total 𝑀 number of
extracted communities (or kernel structures):

Definition 1. The weight 𝑊 (𝑣, 𝑆) of a person 𝑣 in the
community (or kernel structure) set 𝑆 = 𝑉1, 𝑉2, ..., 𝑉𝑀

is defined as the total number of people in the community
(or kernel structure) that 𝑣 belongs to: 𝑊 (𝑣, 𝑆) =∑

(∣𝑉𝑗 ∣ − 1) for all 𝑉𝑗 which satisfies 𝑣 ∈ 𝑉𝑗 .
We further return the top 𝐾 user list based on the

following function:
Definition 2. The 𝑇𝑂𝑃 (𝑉,𝐾) is defined as the func-

tion which can return a Top-K ranked list of the persons
in 𝑉 based on their weights 𝑊 .

Our goal is to find two optimum sets of people, one
for receiving vaccination messages for vaccine shots, and
the other for receiving alert messages, such that we can
keep the infection rate low and effectively control the
propagation of the disease. We next describe how these
two sets of users are selected in our community-based
framework.

Community Based Algorithm. As described in Sec-
tion II, the server will decide who should receive vac-
cination or alert messages. The flow of the community
based algorithm is as follows:

∙ The kernel structures 𝑉𝑘 are considered first and the
weight of each person in 𝑉𝑘 reflects the priority.
The function 𝑇𝑂𝑃 (𝑉𝑘,𝐾) is called to produce the
top 𝐾 user list 𝐿𝑘, where 𝐾 is determined by the
number of available vaccination or alert messages.

∙ If there are remaining vaccination and alert mes-
sages after considering all the people in 𝑉𝑘, then
the community structures 𝑉𝑐 are considered and the
weight of each person in 𝑉𝑐 reflects the priority. The
𝑇𝑂𝑃 (𝑉𝑐,𝐾) function is called to return the top 𝐾
user list 𝐿𝑐, where 𝐾 will be set to the remaining
value of vaccination or alert messages.

∙ In the case that the number of these messages is
larger than the number of total susceptible persons
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(a) Scenario 1: Initial sick ratio: 0.03 (b) Scenario 2: Initial sick ratio: 0.15 (c)Scenario 3: Initial sick ratio: 0.3

Fig. 3. MIT traces: Performance comparison under different recovery cycle 𝑁𝑝 when there are 15 vaccines and 30 alert messages with
𝑝𝑖𝑛 = 0.5, 𝑝𝑎𝑙 = 0.7, 𝑝𝑟𝑒 = 0.1, 𝑝𝑖𝑚 = 0.2, 𝑝𝑣𝑎 = 0.3.

in 𝑉𝑐

∪
𝑉𝑘, the remainder messages are held till the

next update of the community information as new
persons may appear.

We note that for every round of calculation, choosing
the candidates to send out the vaccination messages will
take higher priority than alert messages.

IV. PERFORMANCE EVALUATION

In this section, we first describe our simulation
methodology and present three existing methods for vac-
cination distribution. We then present the performance of
our social community based methods by comparing to
the existing techniques.

A. Simulation Methodology

We implemented our framework in a home-grown
trace-driven simulator. We used a human contact-based
trace, namely the MIT reality [9] trace which was
collected using smart phones equipped with bluetooth
devices. Each trace contains information about the IDs of
the Bluetooth devices which are within the transmission
range of each other, and the starting and ending times
of their encounter. The MIT traces were collected from
smart phones carried by 97 participants in an university
environment. We used the first 20 days of the MIT
traces which contains encounter events from 71 people.
In particular, we used the first half of the trace (i.e.,
10 days) as training data to extract the communities and
kernel structures, and the second half trace as the testing
data to evaluate our approach. We conducted extensive
experiments on MIT trace by varying different param-
eters in our epidemiology infection model, including
varying parameters of 𝑝𝑖𝑛, 𝑝𝑎𝑙, 𝑝𝑟𝑒, 𝑝𝑖𝑚, 𝑝𝑣𝑎 and 𝑁𝑝

from the infection model described in Section II. Due to
the space limit, we only present a subset of the results
in the following subsections.

B. Existing Methods

We compare our social-community based approach to
the following three existing methods for efficient vac-
cine distribution to achieve effective disease propagation
control.

Random Distribution Method. This is the most
straight forward method. In this method, the server will

randomly choose the users to receive the vaccination and
alert messages.

Encounter-based Method. This method involves
message distribution based on the encounter of mobile
phones. We apply the scheme in [13] and let the sick user
to send out messages when it encounters a susceptible
person. In our simulation, once the sick person encoun-
ters with a susceptible person, the vaccination message
is sent with the probability 𝑝𝑣𝑎, while the alert message
is sent with the probability 1− 𝑝𝑣𝑎.

C. Effectiveness of Disease Propagation Control

In the first set of experiments, we evaluate the ef-
fectiveness of our social community based methods
in terms of the final ratio of infected persons at the
end of our test by comparing to existing methods of
Random Distribution and Encounter-based. We use the
MIT traces and vary both the recovery cycle 𝑁𝑝 and
the initial sick ratio. Figure 3 presents the final ratio of
the infected persons versus the recovery cycle. The No
vaccine is plotted as a baseline case.

The key observation is that our proposed community
based method achieves a lower infection ratio than Ran-
dom Distribution and Encounter-based methods for each
initial sick ratio and each recovery cycle. This is very
encouraging since the persons chosen by our community-
based methods to have vaccination or alert messages
interact more frequently with each other. Consequently,
the proposed community based methods can control the
disease propagation more effectively than other methods.
We also found that the final infection ratio increases
when the initial infection ratio or recover cycle increases
for all the methods.

D. Impact of the Number of vaccination and alert Mes-
sages

Next, we change the available number of the vacci-
nation and alert messages under different initial ratios
of infected persons. The results from MIT traces are
presented. Figure 4(a) and (b) depicted the results of 30
alert messages and unlimited alert messages respectively,
when the available number of vaccines is 15, which
is about 20% of the total number of people in the
experiment. While Figure 4(c) and (d) presented the
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(c) vaccine: 35; alert: 30 (d) vaccine: 35; alert: unlimited

Fig. 4. MIT traces: Performance comparison under different number
of vaccination and alert messages with 𝑝𝑖𝑛 = 0.5, 𝑝𝑎𝑙 = 0.7, 𝑝𝑟𝑒 =
0.1, 𝑝𝑖𝑚 = 0.2, 𝑝𝑣𝑎 = 0.3, 𝑁𝑝 = 4 days.

results of 30 alert messages and unlimited alert messages
respectively, when the available number of vaccines is
35, which is about 50% of the total number of people in
the experiment. Again, we observed that our proposed
community based method can achieve a much lower
final infection ratio than the Random Distribution and
Encounter-based methods under different number of
vaccination and alert messages.

Furthermore, we found that there is an increasing trend
of the infection ratio as we increase the initial ratio of
sick persons. However, the final infection ratio decreases
as the number of alert messages increases from 30
to unlimited. This is consistent with our expectation:
more alert messages allow more people to take the
necessary precautions, which reduce their chances of
being infected, and hence reducing the number of total
infected people.

In addition, comparing the results in Figure 4 un-
der different vaccine numbers, we found that the per-
formance difference between our proposed community
based methods and other methods is smaller when in-
creasing the vaccine number from 15 to 35. This further
indicates that our proposed approach is more effective
when the supply of vaccine is limited.

V. CONCLUSION

In this paper, we proposed a mobile phone enabled
community based disease control framework, which uti-
lizes human social relationship information to reduce
the rate at which an infectious disease spreads in the
healthcare domain. The extracted social community in-
formation is used for efficient vaccine distribution as
opposed to the traditional random vaccine distribution.
Our framework first partitions the set of encountered
people into multiple communities and kernel structures

based on their social relationships, where the people
encountering information can be derived from traces
collected by mobile phones. We believe people who are
in the same kernel structure and community as a sick
person have higher risks of being infected since they
frequently interact with each other. Hence, these people
will be chosen by our framework to receive vaccination
or alert messages. We further developed a merging
technique that helps to capture the dynamic community
information so as to control the disease propagation more
effectively. We compared our community based disease
control method with existing techniques such as Random
Distribution and Encounter-based methods using real
contact-based traces such as the MIT reality trace. Our
results showed that the propagation rate of an infectious
disease can be significantly reduced by utilizing the
social community information. Our study demonstrated
more opportunities for utilizing social relationships in-
formation to support healthcare related applications.
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