
Metadata-guided evaluation of resource-constrained queries
in content caching based wireless networks

Ruilin Liu • Xiuyuan Zheng • Hongbo Liu •

Hui Wang • Yingying Chen

Published online: 28 August 2011

� Springer Science+Business Media, LLC 2011

Abstract Recent years have witnessed the emergence of

data-centric storage that provides energy-efficient data

dissemination and organization in mobile wireless envi-

ronments. However, limited resources of wireless devices

bring unique challenges to data access and information

sharing. To address these challenges, we introduce the

concept of content caching networks, in which the col-

lected data will be stored by its contents in a distributed

manner, while the data in the network is cached for a

certain period of time before it is sent to a centralized

storage space for backup. Furthermore, we propose a

metadata-guided query evaluation approach to achieve

query efficiency in content caching networks. By this

approach, each cache node will maintain the metadata that

summarizes the data content on itself. Queries will be

evaluated first on the metadata before on the cached data.

By ensuring that queries will only be evaluated on relevant

nodes, the metadata-guided query evaluation approach can

dramatically improve the performance of query evaluation.

We design efficient algorithms to construct metadata for

both numerical and categorical data types. Our theoretical

and empirical results both show that our metadata-guided

approach can accelerate query evaluation significantly,

while achieving the memory requirements on wireless

devices.

Keywords Resource-constrained queries � Content

caching networks � Wireless networks � Metadata �
Efficient query evaluation

1 Introduction

With the advancement of wireless technologies, wireless

devices are blended into our daily life and spend much time

with us when we are working, attending meetings, partic-

ipating in classes, or socializing. We anticipate that these

advances will continue, leading to a world where contin-

uous wireless connectivity will support the collection,

storage and sharing of information—thereby driving per-

vasive computing applications. Further, the increasing

sensing capability on wireless devices (e.g., smart phones

and bluetooth devices) supports the data-centric nature of

the collected information. In data-centric storage, the col-

lected data is stored by attributes or types (e.g., geographic

location and event type) at nodes within the network [1–3].

Queries for data with a particular attribute will be sent

directly to the relevant node(s) instead of performing

flooding throughout the network, therefore, data-centric

approach enables efficient data dissemination/access.

However, comparing to centralized servers, wireless

devices have limited storage and are energy-constrained.

To ensure efficient data access and information sharing, we

introduce the concept of content caching networks, where

the collected data will be stored by its content in a

R. Liu � H. Wang (&)

Department of Computer Science, Stevens Institute

of Technology, Hoboken, NJ 07030, USA

e-mail: hui.wang@stevens.edu

R. Liu

e-mail: rliu3@stevens.edu

X. Zheng � H. Liu � Y. Chen

Department of Electrical and Computer Engineering,

Stevens Institute of Technology, Hoboken, NJ 07030, USA

e-mail: xzheng1@stevens.edu

H. Liu

e-mail: hliu3@stevens.edu

Y. Chen

e-mail: yingying.chen@stevens.edu

123

Wireless Netw (2011) 17:1833–1850

DOI 10.1007/s11276-011-0382-3

distributed manner, while the data in the network is cached,

i.e., the data will be stored on each node of the network for

a certain period of time before it is sent to a centralized

storage space for backup. The advantage of using content

caching networks is three-fold. First, storing the data by

content enables efficient evaluation of queries commonly

raised on the data content, for example, the queries for

specific participants, events, and locations. Second, cach-

ing enables real-time query evaluation and eliminates the

existence of centralized storage that may become a bot-

tleneck for query evaluation or a single target for attacks.

Third, by uploading data in a lazy fashion (i.e., once in a

while), it avoids frequent data transfer from the wireless

devices to the centralized storage, and consequently redu-

ces massive battery power consumption and the commu-

nication overhead of the network.

A content caching network may consist of a large

number of nodes, moving in and out of the area of interest.

To support such large-scale and dynamic content caching

networks, it is essential to achieve efficient query evalua-

tion. Although there has been research in wireless sensor

networks that are related to data-centric storage [1, 2, 4, 5],

most of the work focus on stable network topology,

assuming data dissemination in a predefined manner, thus

are not applicable to mobile wireless environments. In this

work, we propose to use metadata to guide query evalua-

tion so that only the nodes whose data may contribute to

query answers will evaluate the queries. Although it is

popularly studied in the scope of statistical network (e.g.,

P2P network) [6], content caching in mobile network with

metadata is novel. To the best of our knowledge, how to

design the metadata from the collected content with respect

to the resource limitation (e.g., memory space) is not

studied by any existing content caching work.

Our approach of metadata-guided query evaluation can:

(1) support efficient query evaluation by only returning

relevant nodes containing requested data, and (2) provide

rich expressiveness to describe various types of data in

content caching networks. On the other hand, the intro-

duction of metadata will add additional overhead on the

already memory-limited wireless devices. To address this

issue, we propose efficient data clustering and compression

algorithms for metadata construction. In particular, to

meet the memory requirement, we developed Clustering,

Balancing, and Compression (CBC) algorithm for numer-

ical data, and Clustering, Expanding, and Compression

(CEC) algorithm for categorical data. The design of our

algorithms aim to minimize the information loss incurred

by data compression.

To evaluate the effectiveness and efficiency of our

approach, we conduct simulation using trajectory data

generated from a mobile wireless network deployed

in a city environment in Germany. By examining three

representative networks (10-node, 50-node, and 500-node),

our results show that our metadata-guided query evaluation

approach can dramatically improve query evaluation per-

formance with low false positive rate and high precision of

query answers.

Our previous work [7] initialized the research on

metadata-guide query evaluation in content caching net-

works that contain numerical data only. In this paper, we

extend it significantly by the following:

• We extend the metadata construction techniques to cover

categorical data (Sect. 3.5). In particular, we design an

algorithm called Clustering, Expanding, and Compress

(CEC) to construct metadata for categorical data. For the

clustering step, we propose three clustering approaches,

Top-Down (TD), Bottom-Up (BU), and Hybrid (HB).

For the expanding step, we propose two expanding

approaches, namely GreedyMax and GreedyMin.

• By exploring the property that the updates in content

caching based wireless networks are insertion-only, we

design an efficient algorithm to deal with updates on

the cached data for both numerical and categorical

data types (Sect. 4). Our update algorithm suppports

efficient updates on the metadata with minimal main-

tenance cost.

• We conduct an extensive set of experiments to evaluate

the performance of our metadata construction approach

for categorical data (Sect. 6.3). Our results prove the

efficiency and effectiveness of the approach.

• Besides two networks with 10-node and 50-node, we

setup a new network of 500 nodes, and evaluate the

query performance on it (Sect. 6). Our results show that

our metadata-guided query evaluation approach is

scalable; the performance of our meta-data guided

query evaluation is fast with large network sizes.

• We add a detailed discussion of the related work (Sect. 7).

The rest of the paper is organized as follows. In Sect.

3.1, we provide the background of XML. In Sect. 3, we

present metadata design principle in content caching net-

works and develop our metadata construction algorithms

for both numerical and categorical data. In Sect. 4, we

discuss how to deal with metadata with presence of update

on the collected data. We next provide an analysis of

metadata-guided query evaluation in Sect. 5. We present

the simulation evaluation of our approach in Sect. 6.

In Sect. 7, we discuss recent work related to this paper.

We conclude our work in Sect. 8.

2 Preliminaries

XML is an HTML-like language with an arbitrary number

of user-defined tags [8]. An XML dataset is a collection of

1834 Wireless Netw (2011) 17:1833–1850

123

data values marked with self-defined tags, which are used

to describe the semantics of the data values. The flexibility

of tag definition in XML makes it possible to built different

semantic layers on top of data. Therefore, XML can be

tailored to various categories of applications. Further,

XML has been widely accepted and used as the standard

for information integration and exchange on the Web.

These advantages encourage us to use XML as the repre-

sentation of the metadata in content caching networks.

Figure 1 illustrates an example of XML metadata. It

describes the spatial and temporal information of the tra-

jectory data that the sensor node stores. In particular, the

spatial information is described by the lx; ux; ly and uy

elements, while the temporal information is described by

the lt and ut elements. We note that the flexibility of XML

makes it easy to extend to support various data types. We

only use trajectory database as a running example in this

paper to explain the basic idea of our approach. Our

approach can be applied to other types of data, e.g., user

information data.

Answers of XML queries are formalized by using

matchings. Informally, a matching of a query to the XML

metadata is a mapping between the query and the XML

data such that both the structural constraints and the value-

based constraints in the queries are preserved in XML data.

For instance, an XML query ‘‘//Region[lx()=x1]’’ consists

of the structural constraint ‘‘//Region[lx]’’, which specifies

the child element lx under the element Region, and the

value-based constraint ‘‘lx()=x1’’, which specifies the value

of the element lx. By evaluating this query on the XML

data in Fig. 1, it returns the first Region element.

In this study, we consider XPath [9], a node-selecting

query language central to most core XML-related tech-

nologies. Recent work has shown that XPath queries can be

evaluated in polynomial time [10]. In particular, XPath

queries in general are evaluated with time complexity

O(|D|4|Q|2) and space complexity O(|D|2|Q|2) [11]. For the

core of XPath queries, which includes the logical and path

processing features of XPath but excludes arithmetics and

string operations, the time complexity is O(|D||Q|) [12],

i.e. linear in the size of the query and of the data.

3 Metadata construction algorithms

We assume that the schema of the metadata is pre-defined

based on the prior knowledge of the data that is collected in

the network. For instance, for the network that collects the

trajectories of the mobile devices, assuming in the col-

lected data each trajectory is of the format (x, y, t), where x

and y denote the x- and y-coordinates at time point t. Then

the collected data on the nodes is a set of trajectories T ¼
fTijTi ¼ ððxi1 ; yi1 ; ti1Þ; . . .; ðxim ; yim ; timÞÞg: Given such set of

trajectories, an example of its metadata is shown in Fig. 1.

Each Region element specifies the region, represented with

the leftmost and the rightmost x-coordinates (the values x1

and x2) as well as the bottom and the top y-coordinates (the

values y1 and y2), that covers all the trajectories, as well as

the range of the timestamps in T (the values t1 and t2).

Figure 2 illustrates the relationship between the region in

metadata and the trajectories in the data.

Our metadata also supports several types of aggregate

operators such as min, max, sum, and average on numerical

data. Figure 3 shows an example of the metadata with

aggregate operators on one node. In this figure, the Region

Fig. 1 An example of XML metadata to represent trajectory data

Fig. 2 Illustration of region in metadata versus trajectories in data

Region Region Region ...

...

Data

ltemp utemp ltime utime

sum(temp) max(temp)

min(temp)avg(temp)

55 4:00am 11:00pm79

65 1240 80 53

Aggregate

Fig. 3 Metadata with aggregate operators

Wireless Netw (2011) 17:1833–1850 1835

123

element is a summary node that holds the information of each

region, including the lowerbound of temperature (stored in

the ‘‘ltemp’’ sub-element) and the upperbound of timestamp

(stored in the ‘‘utime’’ sub-element). There may have several

Region elements in a metadata. Beside storing Region ele-

ments which contain temperature and time information, the

metadata contains aggregate value of the data on the local

node. For example, the maximum value of temperature 80�F

of the local node is stored in the ‘‘max(temp)’’ sub-element.

In this section, first, we introduce the principle of

designing metadata (Sect. 3.1). Second, we discuss the

requirements (Sect. 3.2) and memory constraints (Sect. 3.3)

of metadata construction. Third, we discuss the details of

how to construct the metadata for both numerical data

(Sect. 3.4) and categorical data (Sect. 3.5).

3.1 Metadata design principle

Sensors and their respective networks are becoming an

essential source of information for planning, risk manage-

ment and other scientific applications. These networks are

composed of a large number of nodes, densely deployed

within or very close to a phenomenon of interest. With aid of

small, lightweight, and energy-efficient sensors, the network

can be deployed with a spatial distribution that best fit the

scientific requirements for gathering various kinds of data.

To evaluate queries on such network, a naive way is to

flood queries over the network. However, since it is possible

that only a small portion of sensor nodes that contain the

answers, evaluating queries on all sensors may incur large

amounts of unnecessary query evaluation overhead. Then

how to efficiently evaluate queries on large scale sensor

networks (with regard to both number of nodes and the

amount of data) becomes a challenge. In this paper, we

propose to use metadata to guide query evaluation so that

only the sensors whose data may contribute to query answers

will evaluate the queries on their data.

To efficiently evaluate queries in large-scale and

dynamic content caching networks, the metadata should

have the following properties to support the data-centric

approach:

• Rich expressiveness: Due to the diversity of data on

content caching networks, the metadata should be able

to describe data of various types.

• Interoperability: To integrate the data from heteroge-

neous content caching networks, the metadata should

enable exchange of data among distributed heteroge-

neous wireless devices and with other kinds of infor-

mation systems.

• Efficient processing: To help discover the wireless

devices that have the required data, the metadata should

support efficient query evaluation.

Unfortunately, most of the existing index mechanisms

(e.g., ring-based index [4] and GHT [5]) cannot satisfy all

the above requirements. Specifically speaking, both ring-

based index and GHT do not satisfy either the rich

expressiveness or the interoperability requirement. Thus,

instead of the index technique, we propose to use metadata.

In this study, we choose extensible markup language

(XML) as the representation of metadata, due to its

advantages of flexibility, self-description and support for

information integration.

3.2 Requirements of metadata construction

In general, the XML metadata acts as the succinct and

complete ‘‘summary’’ of the data. Given a dataset D and

the metadata M of D, we say M conforms D if for every

query Q, if D(Q) (i.e., the answers of evaluating Q on D) is

not empty, then M(Q)(i.e., the answers of evaluating Q on

M) is not empty either. We say D is relevant to Q if M(Q)

returns non-empty answer. In other words, if there is no

answer in M(Q), then D definitely does not satisfy Q. Thus

whether there is any answer in M(Q) is the necessary

condition of whether D has answers to Q. However, it is

not the sufficient condition; the fact that M(Q) returns non-

empty answer does not imply that D must have the answer

to Q too. When M(Q) is non-empty but D(Q) is empty, it

incurs false positive. Thus given the data D, our goal of

XML metadata design is two-fold:

• Requirement 1: the size of the metadata plus the size of

D cannot exceed the available space on sensors, and

• Requirement 2: the metadata must conform to D with

minimized possibility of false positives.

There exists trade-off between these two requirements; the

metadata that is compressed too much (for example,

describing all temperatures as a range [-100, 100]) will

produce many false positives, while the metadata that is too

detailed may be too large and exceed the available memory

on wireless devices.

3.3 Memory constraints

Given the data D on a wireless device S, both the size of D

and the total space N on S are fixed. Thus there exists an

upper bound U = N - |D| for the size of the metadata.

Then Requirement 1 can be formalized as the following:

given the data D and an upper bound U, how to construct

the metadata M whose size is no larger than U?

To address this, we quantify the number of elements in

the XML metadata. Let e be the average size of the ele-

ments in the XML metadata. Then the total size of the

metadata is e�k: Our goal is to make e�k�U: Due to the

fact that e is fixed, we can always fix the value

1836 Wireless Netw (2011) 17:1833–1850

123

k ¼ U=e; ð1Þ

i.e., we can meet Requirement 1 by controlling the value of

k, the number of XML elements in the metadata.

3.4 Constructing metadata for numerical data

We developed the CBC algorithm for metadata construc-

tion, which consists of three steps: Clustering, Balancing,

and Compression. First, the data is clustered to k groups.

Second, the data in each cluster is balanced by transferring.

Third, each group is compressed to a single element in the

XML metadata. For instance, all three trajectories in Fig. 2

are compressed to a single element as shown in Fig. 1. The

detailed algorithm is presented below.

Step 1. Clustering: To address Requirement 2, we cluster

the similar data together in the same group, so that the

compressed metadata is as close to the original data D as

possible, and the amount of false positives can be

minimized. To cluster the data into k groups based

on their similarity on trajectory, we use the k-means

clustering analysis [13]. The k-means analysis takes the

input parameter k, and partitions a set of n objects into k

clusters so that the resulting intra-cluster similarity is high

but the inter-cluster similarity is low. Using the trajectory

data as an example, we define the distance between two

trajectories T1ððx1; y1; t1Þ; . . .; ðxn; yn; tnÞÞ and T2ððx01; y01;
t1; . . .; ðx0n; y0n; tnÞÞ as the Euclidean distance:

DistðT1; T2Þ ¼
Xn

i¼1

ffi
ðxi � x0iÞ

2 þ ðyi � y0iÞ
2

q
: ð2Þ

The k-means approach clusters the trajectories based on

their distances. After clustering, we have k clusters, each

containing trajectories that are close to each other. We

must note that the distance function in the CBC algo-

rithm can be replaced with other appropriate ones for

various types of input data.

Step 2. Balancing: The resulting size of each cluster can

be highly unbalanced. For example, some clusters may

contain much more trajectories than others. To achieve a

balanced compression of metadata, we compare the size

of each cluster to the averaged size. If the number of

elements in a cluster is smaller than the averaged

number, ignore it; whereas if the number of elements is

larger than the averaged number, we transfer the

excessive number of elements to one or more other

clusters by searching for the clusters that are of the least

cluster distance to it and with the number of elements

smaller than the averaged number. From Xiuyuan: After

the clustering is done, since the trajectories in different

clusters are highly unbalanced now, thus we need to

balance every cluster to make it suitable for the metadata

compression. What I do is to go over every cluster, if the

number of trajectories are smaller than averaged number,

ignore it; if number of trajectories are larger than

averaged number, search for the cluster which has least

cluster distance of it, and check if it is smaller or larger

than average. If smaller, transfer some certain number of

trajectories until make it up to the average. Do it

recursively and finally we will obtain a balanced

clustered trajectories within a node.

Step 3. Compression: In this step, each cluster is

compressed into an element in the metadata. In particular,

for each dimension (i.e., attribute) of the data in the

cluster, let its data be D ¼ fd1; . . .; dng: Then D is

compressed as a range [dmin, dmax], where dmin and dmax

are the minimum and maximum value of D. For example,

as shown in Fig. 1, the leftmost and rightmost x-coordi-

nates are collected as the minimum and maximum value

on the x-dimension of the trajectory data. Given the fact

that all data values within the same cluster are similar,

their generalized ranges must be close to the real values.

Thus the possibility of false positive is minimized.

By the data-centric property of the network, all data of

the same types/contents are collected on the same device.

This enables that the updates on the data still fits the

metadata, and thus will not cause much updates on the

metadata.

3.5 Constructing metadata for categorical data

Categorical data is a common data type in the content

caching networks. We assume that there exists a taxonomy

tree that describes the semantics of categorical data. Typ-

ically the taxonomy tree is organized by supertype-subtype

relationships. In such an inheritance relationship, the sub-

type presents the specialized data values that have the same

properties, behaviors, and constraints as the generalized

supertypes. Figure 4 shows an example of taxonomy tree

for location data. Due to its tree structure, the taxonomy

tree can be used to cluster the collected categorical data

and construct the XML metadata.

China SingaporeJapan Iraq Iran Canada USA Brazil Turkey Romania Norway France Italy Germany

East South West North CentralEastSouthNorth

EuropeAmericaAsia

*

14 nodes
Level 3:
8 nodes

3 nodes
Level 2:

Level 1:
1 node
Level 0 (root):

Fig. 4 An illustration of a taxonomy tree storing region and country information

Wireless Netw (2011) 17:1833–1850 1837

123

We propose Clustering, Expanding, and Compression

(CEC) algorithm to construct the metadata for categorical

data. The CEC algorithm consists of three steps: Cluster-

ing, Expanding, and Compression. The basic idea is that,

first, the cache data is clustered into n B k clusters by

following the taxonomy tree, where k is the maximum

number of clusters allowed by the available memory val-

ued by Equation 1 (Sect. 3.3). However, the number of the

created clusters may be much less than k. Thus second, the

n clusters are expanded to n0[n clusters if it is necessary,

with n0 much closer to but still less than k. Third, the XML

metadata is constructed by compressing each cluster to a

single element in the metadata.

Before go to the details of the algorithm, we explain two

basic operations, namely node expansion and node merge,

that are used in the algorithm. The node expansion oper-

ation unfolds a parent node in the metadata tree to its

children. The node merge operation is opposite; the

children nodes are compressed to their parent node

(Algorithm 1).

3.5.1 Step 1: Clustering

In this step, the categorical cache data will be clustered

according to the given taxonomy tree. We propose three

approaches, namely top-down (TD), bottom-up (BU), and

hybrid (HB) approaches, to cluster the categorical data. In

particular, given k the maximum number of clusters

allowed by the available memory valued by Eq. 1 (Sect.

3.3), both TD and BU approaches find a proper level of the

taxonomy tree at which there are n nodes, where n is the

maximum such number that is less than k, while the HB

approach finds the nodes in the taxonomy tree that scat-

tered at multiple levels of the taxonomy tree, so that the

total number of nodes is the maximum such number that is

less than k. To illustrate these three approaches, we use the

taxonomy tree in Fig. 4. We only consider the categorical

data on a single attribute. But our methods can be easily

extended to multiple attributes.

Top-down (TD) Approach: Starting from the root of the

taxonomy tree, the TD approach traverses the taxonomy

tree in the breadth-first style, until it reaches a level h at

which the total number of nodes at this level is greater than

k. The level h - 1, i.e., the one 1 level higher at which

locates the maximum number of nodes that is less than k, is

returned as the result. For example, given the taxonomy

tree in Fig. 4 and k = 5, the clustering result by the TD

approach is shown in Fig. 5(a).

Bottom-up (BU) approach: opposite to the TD approach,

the BU approach starts from the leaves of the taxonomy

tree and traverses the taxonomy tree in a bottom-up fash-

ion, until it reaches the level h at which the total number of

nodes is less than k. The h is returned as the result. Using

the taxonomy tree in Fig. 4 and k = 5 as an example again,

the clustering result by the BU approach is shown in

Fig. 5(b). Note that both TD and BU approaches produce

the same result for expansion; however, they may incur

different time overhead. In particular, when the located

level is closer to the root of the taxonomy tree, the TD

approach will be faster than the BU approach, and vice

versa when the located level is closer to the bottom of the

taxonomy tree. We have more empirical comparison

details of these two approaches in Sect. 6.

Hybrid (HB) approach: Unlike the TD and BU

approaches that traverse the taxonomy tree by levels, the

HB approach traverses the tree by following the nodes that

have the maximum number of children. In particular,

starting from treating all leaves of the taxonomy tree as the

candidates, the HB approach repeatedly picks the parent

node N of the candidates from the taxonomy tree that has

the maximum number of children, updates the candidate

set by inserting node N and removing all children of

N, until the size of candidate set is less than k. The nodes in

the candidate sets are returned as the clustering result.

Algorithm 1 Metadata construction: CBC algorithm

Require: Clustered data piece;

Ensure: XML metadata;

1: metadata fg;
2: i 0;

3: for all i \ the size of cluster do

4: new metanode;

5: j 0;

6: for all j \ the size of clusteri.attr do

7: k 0

8: metadataj:max clusteri:attrj:k;

9: metadataj:min clusteri:attrj:k;

10: k??;

11: for all k \ the size of clusteri.attrj do

12: if attrj.k [metadataj.max then

13: metadataj:max clusteri:attrj:k;

14: else if attrj.k \ metadataj.min then

15: metadataj:min clusteri:attrj:k;

16: end if

17: end for

18: end for

19: metadata metadata [metanode;

20: end for

21: i 0;

22: create XML root;

23: for all i \ the size of metadata do

24: create XML metanode of metadatai;

25: append XML metanode to XML root;

26: end for

27: Return XML metadata.

1838 Wireless Netw (2011) 17:1833–1850

123

Clearly, it is possible that the returned nodes are at dif-

ferent levels of the taxonomy tree. During the traversal, if

there are more than one node that satisfy the maximum-

children condition, we randomly pick one to break the

tie. The pseudo code of the HB approach is shown in

Algorithm 2.

Using the taxonomy tree in Fig. 4 and k = 5 as an

example again, initially the candidate set contains all

leaves of the taxonomy tree. In the first round, the Central

node (of three children) is picked. The candidate set is

updated as the Central node being inserted and its three

children leave nodes being removed. The procedure repeats

until the size of the candidate set shrinks to be no larger

than k. The clustering result by the HB approach is shown

in Fig. 5(c). The squared nodes (e.g., Norway and East) are

the ones appear in the metadata.

3.5.2 Step 2: Expanding

It is possible that the total number of clustered nodes by

Step 1 can be much less than the required k (i.e., the

maximum number of clusters allowed by the available

memory), especially for the TD and BU approaches. This

will lead to high inaccuracy for later query evaluation by

using the metadata. Therefore, we take Step 2 to further

expand the clusters by Step 1, so that the total number of

clusters will be much closer to k. To achieve this goal, we

propose two approaches, namely GreedyMin and Greedy-

Max, to expand the clusters. Intuitively, the GreedyMin

approach always picks the nodes of the minimum number

of children to expand, while the GreedyMax approach

always chooses the nodes of the maximum number of

children for expansion.

GreedyMin expanding: Given the cluster nodes created

by Step 1 as the initial candidates, the GreedyMin approach

repeatedly picks the node of the minimum number of

children from the candidates to expand. If there are more

than one such node, we randomly pick one to break the tie.

The expanded cluster node will be replaced with its chil-

dren nodes in the candidate set. The procedure repeats until

the total number of cluster nodes is greater than k. The

clusters of the previous step before termination will be

returned as the result.

We use the clustered nodes by the TD approach (shown

in Fig. 5(a)) to illustrate the GreedyMin approach. The

initial candidates for expansion include the Asia, America,

and the Europe nodes. Then the America node is chosen to

be expanded to North and South, as it has the minimum

number of children. We repeat the procedure until the

number of total cluster nodes reaches the required con-

straint k = 5. The result of expansion is shown in Fig. 6(a).

GreedyMax expanding: the GreedyMax approach is

similar to the GreedyMin approach. The only difference is

that the GreedyMax approach picks the node of the mini-

mum number of children every time for expansion. Using

the cluster nodes of the TD approach (shown in Fig. 5a)

again, the result of the GreedyMax expansion approach is

shown in Fig. 6(b).

3.5.3 Step 3: Compression

After Step 1 & 2, we obtain the cluster nodes whose total

number is very close to k. At last, in Step 3, we construct

the XML metadata from these cluster nodes. In particular,

similar to the CBC algorithm for the numerical data, each

cluster node is compressed into an element of the XML

America EuropeAsia America EuropeAsia

America EuropeAsia

East

Norway

CentralNorth

(a) (b) (c)

Fig. 5 EC algorithm: results of step 1 clustering (k = 5)

Algorithm 2 CEC algorithm: the HB clustering

Require: Taxonomy Tree T, The expected number of clusters k;

Ensure: The clustered nodes;

1: CS all leaves of T;

2: repeat

3: N the parent node of nodes in CS with the maximum

number of children;

4: CS CS -{all children nodes of N};

5: CS/ CS [{N};

6: until |CS| \ = k

7: Return CS.

America

North South

Canada BrazilUSA

EuropeAsia

America Europe

East South

Asia

West

(a) (b)

Fig. 6 CEC algorithm: results of step 2 expansion (expanding from

the clusters in Fig. 5a); the squared nodes are the ones appeared in the

metadata)

Wireless Netw (2011) 17:1833–1850 1839

123

metadata. By such procedure, each piece of cache data can

match one element in the metadata. The details of how to

use the constructed metadata for query evaluation will be

explained in Sect. 5.

4 Efficient metadata updates

In content caching networks, updates of the cached data are

common. As the sensors keep collecting new data and

storing them in the cache all the time, the only update

operation on the cached data on each sensor is insertion.

Clearly, insertion of new data into cache will lead to the

updates on the metadata. The naive approach that con-

structs the metadata from scratch for the updated data will

incur unnecessary overhead. Thus our goal is to design

efficient and light-weight mechanism that maintain the

metadata with the presence of data updates. Next, we dis-

cuss the details of such maintenance mechanism for both

numerical and categorical data.

4.1 Update on numerical data

Intuitively, inserting new data values into metadata will

incur the change of the ranges that the metadata nodes

represent. For instance, merging an integer 100 into the

range [70, 99] will change the range to be [70, 100]. First,

we formally define the change on the range.

Definition 1 Given a node N in the numerical metadata M

and a new numerical data value v, let [l, u] be the range

that N originally represents, and ½l0; u0� be the range that N

represents after merging with v. Then the change c on the

range on N by merging v equals

c ¼ ðu0 � l0Þ � ðu� lÞ: ð3Þ

Our update approach works as following. For each

newly inserted data value v, first, we look for the node N in

the metadata M that v falls into the range N representing. If

there exists such a node, there is no update on M; v is

merged into the node N. Otherwise, we pick the node N 0 on

which the merge of v will incur the minimal change on the

range that N 0 represents.

4.2 Update on categorical data

Similar to the updates on numerical data, for the newly

inserted categorical data value v, we first look for the node

N in the metadata M that v matches the category N repre-

senting. If there exists such a node, v is merged into N, and

there is no update on M. However, if there is no such node,

we look for the node N 0 in M that is of the closest super-

type to v, and merge v into N 0: For example, given the

metadata in Fig. 6(a) and the new data value Mexico that

will be inserted into the metadata, Mexico will be merged

with the North node under the America node. If there is no

such node N 0 existing in M, we insert a new node for v into

M. In the worst case, the insertion may lead to a metadata

whose size exceeds the limitation of memory. To address

this, we will pick a set of nodes in the metadata who have

the same parent in the taxonomy tree, and replace them

with their parent node. To minimize the updates on the

metadata, we pick the nodes whose common parent has the

smallest number of children.

For example, consider the metadata shown in Fig. 7(a),

assume k = 5. We also assume that in its corresponding

taxonomy tree, there is an ‘‘Africa’’ element at the same

level of ‘‘Asia’’, ‘‘America’’ and ‘‘Europe’’. If a new data

value ‘‘Africa’’ is inserted into the data, a new node

‘‘Africa’’ will be inserted into metadata. Consequently

there will be six nodes, which violates the memory con-

straint as k = 5. Therefore, we replace ‘‘Canada’’ and

‘‘USA’’ with their parent node ‘‘North’’, and have five

nodes (i.e.,‘‘Asia’’, ‘‘North’’, ‘‘Brazil’’, ‘‘Europe’’, and

‘‘Africa’’) in the metadata. The metadata after the update is

shown in Fig. 7(b). The total update cost is 4, including

deletion of ‘‘Canada’’ and ‘‘USA’’ nodes, and insertion of

‘‘North’’ and ‘‘Africa’’.

4.3 Discussion of update cost

We have the following theorem regarding the update cost

for both types of data.

Theorem 1 Given the metadata M,

• if M is of numerical type, any inserted data value v

leads to at most one node in M to be updated;

• if M is of categorical type, any inserted data value v

leads to at most m ? 2 nodes in M to be updated,

where m is the number of children of the node who

has the smallest number of children.

Proof For the newly inserted value v, there are two cases:

(1) v can be fit into an existing node in the metadata, and

(2) v does not match any node in the metadata. For Case

(1), it is straightforward that there is no change on the

metadata. For Case (2), we discuss how the metadata will

America

North South

Canada BrazilUSA

EuropeAsia America

North South

Brazil

Europe acirfAaisA

(a) (b)

Fig. 7 Updates of metadata: only squared nodes appear in the

metadata

1840 Wireless Netw (2011) 17:1833–1850

123

be updated for two types of data values. If v is of numerical

type, v will be merged with an existing node n in the

metadata whose range is the closest to v. Accordingly, the

range of the node n will be changed after the merge of n. If

v is of categorical type, the update of the metadata will be

more complicated than the numerical case, since in the

worst case, inserting a new node for value v may lead to a

metadata whose size exceeds the limitation of memory.

Then, we pick a node such that: (1) it is not a cluster node

while all its children nodes are, and (2) the number of its

children is miminum among all nodes which satisfy (1).

We replace all its children node with this node. Therefore,

we insert 2 nodes and removed m nodes, where m is the

number of leave nodes whose parent has the smallest

(leave) children. The update cost m ? 2 then follows. h

Our merge approach ensures the minimal update on the

metadata.

5 Query evaluation analysis

In this section, we explain the query evaluation procedure

by using metadata, and theoretically analyze the effec-

tiveness of the metadata.

5.1 Query types

In this paper, we focus on three types of queries:

• Point-based query. This type of queries asks for data

that contains a specific value. E.g., a query returns all

locations that have data at 4:00pm.

• Range-based query. This type of queries asks for data

whose value meets a given range. E.g, a query returns

all nodes whose observed temperature is between 60

and 65�F.

• Aggregate query. This type of queries asks for aggre-

gate results. We support four kinds of aggregate

operators: min, max, sum, and average. E.g, a query

returns the average temperature of the day.

5.2 Metadata-guided query evaluation

For point-based queries and range-based queries, the pur-

pose of using metadata is to discover the nodes S that

contain the data relevant to queries in content caching

networks, so that the queries will not be evaluated on all

devices, but only on S. To reach this goal, our query

evaluation procedure consists of two steps.

Step 1: Relevance check on metadata. By this step, the

input query Q is translated to the query QM on XML

metadata. The translation is straightforward; the condi-

tions are defined as the value-based constraints in the

queries, with the corresponding structural constraints

from the schema. For example, for Q that looks for the

trajectories containing the coordinates (x, y), it is trans-

lated as QM: //Region[lx() B x AND ux() C x AND

ly() B y AND uy() C y, which looks for the region that

(x, y) falls into. Then we evaluate the query QM on the

metadata M.

Step 2: Query evaluation on data. For those nodes whose

metadata returns non-empty answer to QM, the input

keyword query Q is evaluated on their data D. Since the

metadata is only a synopsis, it is possible that the

returned answers contain false positives. However, since

we respect the similarity of data when we construct the

metadata, our approach minimizes the possibility of false

positives.

The evaluation of aggregate queries also follows the

2-step procedure described above. First, the value-based

constraints of the aggregation in the queries will be eval-

uated against the aggregate operators in the metadata. Only

the nodes whose metadata matches the aggregate con-

straints in the queries will be considered as relevant for

further query evaluation. For example, for a query that asks

for all nodes whose average temperature is greater than

70�F, the node whose metadata is shown in Fig. 3 will be

considered as not relevant since its average temperature is

only 65�F; it will not be eligible for further query

evaluation.

5.3 Analysis of efficiency

To analyze the effectiveness of using metadata for query

evaluation, we consider two scenarios, no metadata is

present and the metadata is available, and compare the

query evaluation performance in these two scenarios.

When there is no metadata, the query Q will be propa-

gated to the whole network for evaluation. Let n be the

total number of sensors in the network, Di (1 B i B n) be

the size of the data on the i-th sensor node and t(Di) be the

time that Q is evaluated on Di. The total time of evaluating

Q without any metadata is T1 =
P

i=1
n t(Di).

When there is metadata, the query Q will be first

translated to QM. Then QM will be propagated to the whole

network for evaluation. Only the sensors whose metadata

satisfies QM will evaluate Q on their data to return the final

answers. Let m be the number of sensors whose metadata

return non-empty answer for QM, Mi (1 B i B n) be

the size of the metadata on the i-th sensor node, and

t(Mi) be the time that QM is evaluated on Mi. The total

time of evaluating Q with the presence of metadata is

T2 =
P

i=1
n t(Mi) ?

P
i=1
m t(Di).

Wireless Netw (2011) 17:1833–1850 1841

123

It is straightforward that Q always can be evaluated by

scanning Di once. As shown in Fig. 8, our experiments

confirm that t(Mi) is always dominated by t(Di). Therefore,

we approximate t(Mi) as a portion of t(Di), i.e., tðMiÞ ¼
ki�tðDiÞðki\1Þ: We assume the network is of balanced

load so that the data on different sensor nodes is of roughly

the same size. As the result, all kis (1 B i B n) are of

similar value. This also applies to t(Di). Thus we can

approximate the ratio of T2 over T1 as:

T2=T1 ¼ k þ m=n: ð4Þ
This result applies to both aggregate and un-aggregate

queries. For the worst case that m & n, T2/T1 is always

greater than 1. In other words, for those queries whose

answers locate on a significant portion of sensor nodes in

the networks, evaluating them directly on the data is more

efficient than using metadata. However, in practice, most of

query answers are stored on only a small number of sensor

nodes, i.e., m/n is negligible. Therefore, T2/T1 & k, which

is always less than 1. Therefore, in theory, we show that

using metadata can achieve more efficient query evaluation

than without using metadata.

6 Experimental evaluation

In this section, we first describe our metrics, and then

present experimental methodology followed by the results

that evaluate the effectiveness of our approach.

6.1 Metrics

We utilize the following metrics to evaluate the perfor-

mance of our metadata-guided approach.

False positive rate and precision. For each query, we

define the false positive as when the XML metadata on a

node returns true, but the subsequent search on the data

stored on this node returns zero tuples. Correspondingly,

the true positive is defined as when the XML metadata on a

node returns true, the subsequent data search returns at

least one tuple that match the query.

We present false positive in two ways. First is the false

positive rate, which is the percentage of nodes that results

in false positive among those nodes return zero tuples in

the network in a batch test. Second, we measure preci-

sion, the percentage of nodes return true positive out of

those nodes, which return true from metadata in a batch

test. In our study, false positive rate is an important

measure of the information loss due to the data com-

pression of the metadata construction (from Xiuyuan). In

our experiment, we measure false positive in two ways.

First, we show the rate of false positive as the percentage

of nodes are false positives. Second, we measure the

precision as the percentage of returned relevant by

metadata are true positives.

Compression ratio. Since each node is memory-

constrained, the size of the XML metadata comparing to

the size of the original data stored on the node is an

important factor to evaluate our approach. For numerical

data, we define the Compression Ratio (CR) as

CR ¼ 1� Smetadata

Sdata
: ð5Þ

This formula computes the percentage of the data that has

been compressed to the XML metadata.

Resource satisfaction factor. When constructing meta-

data of categorical data, it is not easy to create exactly k

clusters, where k is calculated from the memory require-

ment. Indeed, our algorithm produces the metadata that

consists of n clusters, where n is the closest number to k

that is allowed by the taxonomy tree. Thus, to measure how

well the available memory has been used for the con-

structed XML metadata, we define the Resource Satisfac-

tion Factor (RSF) as following:

RSF ¼ 1� n

k
: ð6Þ

where k is the expected number of clusters calculated from

the memory requirement (Formula 1 in Sect. 3.3), and n is

the number of clusters constructed by our algorithm. Ide-

ally, the closer RSF is to 0, the better that the memory has

been used.

Query time. We measure the efficiency of query evalu-

ation by time. When without metadata, the data stored on

all nodes must be accessed. Thus, the query time is

equivalent to the total time of evaluating a query on the

data of each node in the network. When under the scenario

with XML metadata, the query time consists of two parts:

the time of evaluating a query on the metadata of each node

in the network and the time of evaluating the query on data

stored in relevant nodes.

97 97.5 98 98.5 99 99.5 100
0

20

40

60

80

100

120

140

Data Compression Ratio(%)

 T
im

e(
m

s)

Query Time with data
Query Time with Metadata

Fig. 8 Comparison of query time on metadata and data itself

1842 Wireless Netw (2011) 17:1833–1850

123

6.2 Evaluating effectiveness for numerical data

6.2.1 Methodology

Data generation. We evaluate the feasibility of our

approach using the trajectory data in mobile wireless net-

works. We note that our approach is generic and can be

applied to other types of data as well. We conducted

experiments based on mobile nodes generated from a city

environment and its vicinity in Germany [14, 15] as shown

in Fig. 9. The size of the area is 25,000 m 9 25,000 m and

the mobile nodes are moving along the roads in the city

randomly at the walking speed (3 feet/s).

Each node collected its own trajectory data locally while

it is moving. We investigated three networks of 10 nodes,

50 nodes, and 500 nodes. To simulate a typical memory-

constrained wireless node, we assume the memory on each

mobile node is 500KB, similar to a sensor node [16]. In

practice, the memory on a mobile node can be larger. Thus,

each node stores around Sdata = 500 KB trajectory data,

which includes 330 trajectories on average. In our study,

each trajectory lasts for 50 time points.

Metadata construction. We apply the CBC algorithm

to construct metadata using various k values (k 2 f5; 10;

50; 100g) during k-means clustering. The smaller the k, the

more the data is compressed to metadata. The resulting

metadata size is Smetadata 2 f1; 2; 7; 14gKB: Our data com-

pression is based on the data containment relationship for each

level of k as shown in Fig. 10.

Query evaluation. We perform query evaluation under

the scenarios with or without XML metadata on a PC with a

2 GHz Intel Core 2 CPU and 2 GB RAM. When with XML

metadata, our evaluation program accesses the XML meta-

data first. If the metadata returns true, which means there

exists a possible answer in the current node, we then read the

data stored in this node and search for the query result. Under

the scenario without XML metadata, the evaluation program

just simply scans all the data stored in every node in the

network to answer the query. We run batches of queries with

each batch involving different number of nodes. We call the

involved nodes in each query hit node. Our results are the

average of 20 times for each batch test.

6.2.2 Results

False positive rate and precision. Figure 11 presents the

false positive rate and precision of metadata-guided queries

under various compression ratio for the networks of 10, 50,

and 500 nodes, respectively. The key observation is that the

false positive rate is low and stable, below 6%, under high

compression ratio, above 97%. Further, the false positive

rate only increases slightly from 4 to 6% when the com-

pression ratio increases from 97 to 99.8%. This is very

encouraging as the low false positive rate indicates that the

information loss due to the metadata construction is small.

On the other hand, we observed high precision, above 90%,

under high compression ratios. This indicates that the

introduction of metadata only has small impact on the

precision when querying data, which may be ignored.

Further, we observed similar trends in all the simulated

networks, including 10, 50, and 500 nodes, indicating that

our approach is not sensitive to the network size. Due to the

space limitation, we will only present the results from the

10-node network in the rest of the paper.

Query efficiency. Figure 12 shows the comparison of

query time without metadata to that with metadata guid-

ance under various data compression ratios in the 10-node

network. The metadata-guided query time is presented with

different percentage of hit nodes in the network. We

observed that queries without metadata guidance always

takes more time than those with metadata guidance. Fur-

ther, we found that the higher compression ratio corre-

sponds to the less query evaluation time, i.e., there is a

slight decreasing trend of the query time when the

Fig. 9 The experimental data sets are generated based on the city and

its vicinity in Germany

Fig. 10 CBC algorithm: k-means clustering is performed based on

the data containment relationship

Wireless Netw (2011) 17:1833–1850 1843

123

compression ratio increases. This is because higher com-

pression ratio results in smaller size of the metadata, which

needs less time for query evaluation.

Moreover, when using metadata guidance the less per-

centage of hit nodes, the more efficient our approach is.

This observation is further confirmed in Fig. 13, which

presents the query evaluation time versus the percentage of

hit nodes in the network with and without metadata guid-

ance. The query evaluation time without metadata guid-

ance is almost a constant, above 900ms. Under metadata

guidance, when the percentage of hit nodes is 10%, the

query time is less than 200 ms, only 22% of that without

metadata guidance. The query time increases as the

increasing percentage of hit nodes. This is because in

the metadata-guided approach, only those nodes contain

the relevant data will be searched for query results,

whereas without metadata guidance, the data on all nodes

in the network will be evaluated.

Additionally, we observed that when the percentage

of hit nodes reaches 100%, the metadata-guided query

evaluation time exceeds that without metadata guidance by

about 30 ms. This is the overhead introduced by the

metadata-guided approach, which is only about 3.3% of the

query evaluation time on data. Thus, our metadata-guided

approach is highly efficient during query evaluation. We

believe that with the large-scale data, the performance

optimization by our approach metadata will be more

significant.

6.3 Evaluating effectiveness for categorical data

6.3.1 Methodology

Data generation. To evaluate the effectiveness of our CEC

algorithm, we use a synthetic temperature range dataset.

The ranges are stored as strings. We then generate a tax-

onomy tree to represent the hierarchical relationships

between the ranges. The tree has six levels and the number

of nodes on level 1 to level 6 are 1, 3, 8, 35, 97, 329. We

use the taxonomy tree to guide the clustering of categorical

data.

We investigated three networks in different sizes as we

did on numerical data (10-, 50-, and 500-node). To simu-

late a typical memory-constrained wireless node, we

assume the memory on each mobile node is 500 KB,

similar to a sensor node [16].

Metadata construction. We construct the metadata of

the categorical data by using various k values (k 2 f5; 10;

50; 100g). Similar to the result on numerical data, the

smaller the k is, the more the data is compressed to

metadata. The resulting metadata size is Smetadata 2
f1; 1; 3; 6gKB:

Query evaluation. We evaluated queries under the sce-

narios with and without XML metadata on a PC with a

2.4 GHz Intel Core 2 CPU and 4 GB RAM. When we

evaluating queries with XML metadata, the query evalua-

tion program will access the XML metadata first. Similar to

the query evaluation on metadata for numerical data, a

97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Compression Ratio(%)

R
at

e(
%

)

False Positive Rate
Precision

97 97.5 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Compression Ratio(%)

R
at

e(
%

)

False Positive Rate
Precision

97 975 98 98.5 99 99.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Compression Ratio(%)

R
at

e(
%

)

False Positive Rate
Precision

(c)(b)(a)

Fig. 11 False positive rate and precision under metadata-guided query

97 97.5 98 98.5 99 99.5 100
0

200

400

600

800

1000

Data Compression Ratio (%)

T
im

e
(m

s)

Query Time without Metadata
Query Time On 10% of Hit Nodes with Metadata
Query Time On 50% of Hit Nodes with Metadata
Query Time On 90% of Hit Nodes with Metadata

Fig. 12 Query time comparison under various compression ratio of

metadata (10-node network)

1844 Wireless Netw (2011) 17:1833–1850

123

query evaluation will be only performed on the database on

the ‘‘hit nodes’’. When without XML metadata, the process

is simply performing query evaluation on every node in the

network. Our experiment results are the average of 20

times running the test.

6.3.2 Results

Resource satisfaction factor. To evaluate the effectiveness

of various clustering approaches, we compare the resource

satisfaction factor (RSF) of our top-down (TD), bottom-up

(BU), and hybrid (HB) approaches. The results are shown

in Fig. 14. First, we observe that larger k (i.e., the

Fig. 14 Resource satisfaction factor (RSF) comparison of three approaches (50-node network)

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Percentage of Hit Nodes (%)

 T
im

e
(m

s)
Query Time with Metadata
Query Time without Metadata

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Percentage of Hit Nodes (%)

 T
im

e
(m

s)

Query Time with Metadata
Query Time without Metadata

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Percentage of Hit Nodes (%)

 T
im

e
(m

s)

Query Time with Metadata
Query Time without Metadata

(c)(b)(a)

Fig. 13 Query time comparison under different percentage of hit nodes (10-node network)

Fig. 15 Resource satisfaction factor (RSF) comparison of expanding methods (50-node network)

Fig. 16 Metadata construction time comparison (50-node network)

Wireless Netw (2011) 17:1833–1850 1845

123

maximum number of clusters allowed by the memory

constraints) results in smaller RSF. This is because with

larger k, the number n of generated clusters by our clus-

tering approaches has higher probability to get closer to

k. Second, we observe that the hybrid approach always

produces the best RSF, since its expansion allows clustered

nodes locating at different levels of the taxonomy tree,

which may achieve larger number of clusters than that of

TD and BU approaches. Third, TD and BU always achieve

the same RSF, as they always produce the same clustering

result. Finally, Fig. 14(b), (c) show that our two expanding

methods can improve the RSF.

We also compare RSFs of our two expanding methods.

Figure 15 shows that both GreedyMin and GreedyMax

expanding methods improve RSFs; the improvement of

RSFs is more significant for larger k value. However, there

is no absolute winner out of these two approaches

regarding RSFs.

Performance. Next, we evaluated the performance of

our CEC algorithm by measuring the construction time of

metadata. Since the expanding time is negligible, here we

only show the time performance of the three clustering

approaches in Fig. 16. The results show that, first, although

the TD and BU approaches produce the same metadata,

their time performance vary. When k, the upperbound of

the number of clusters, is less than 100, TD is the fastest

out of the three approaches. This is because for small

k values, the TD approach traverses the fewest levels of the

taxonomy tree by starting from the root of the tree. When

k is larger, the performance of TD increases dramatically,

while both BU and hybrid approaches spend much less

time since they can terminate in traversing fewer tree

levels. When k is larger than 120, TD is the slowest out of

the three approaches, since the total number of nodes that it

traversed exceeds that of BU. Furthermore, albeit the

hybrid approach traverses similar number of nodes as that

by BU, it iterates more times, thus its time performance is

slightly worse than that of the BU approach.

False positive rate and precision. We use false positive

rate and precision to demonstrate the effectiveness of XML

metadata on categorical data on 10-, 50- and 500-node

network as we did for numerical data.

First, we measure the false positive rate and precision on

our three clustering methods. The results are shown in

Fig. 17. First, the false positive rate of the three methods is

always less than 9%, which proves the effectiveness of our

clustering methods. Second, the false positive rate and the

precision of both the TD and BU approaches are the same,

as they produce the same clusters. Meanwhile, the hybrid

approach always achieves the best false positive rate and

precision. This proves that the more clusters that are

constructed, the smaller false positive rate is. Third,

Fig. 17(a)–(c) show that the false positive decreases with

larger k. Similarly, from Fig. 17(d)–(f) , we observe that

the precision is increasing with k. This is because larger

k results in larger n, the number of produced clusters,

which can increase the precision.

We also investigated the improvement of false positive

rate and precision by applying our two expanding methods.

Figure 18 shows that both GreedyMax and GreedyMin

approaches can improve the false positive rate and preci-

sion. However, whether the GreedyMax method or the

Fig. 17 False positive ratio and precision comparison of three approaches

1846 Wireless Netw (2011) 17:1833–1850

123

GreedyMin method wins regarding the precision depends

on the value of k and the dataset. For example,

Fig. 18(d) shows that GreedyMax wins when k is equal to

10, while loses when k is equal to 50.

Query efficiency. Figure 19 shows the comparison of

query time without metadata to that with metadata guid-

ance under various data compression ratios on categorical

data. The query evaluation time without metadata guidance

is almost a constant, which is around 909ms. The query

evaluation time with assistance of metadata is increasing

alone with the increasing of percentage of hit nodes. From

this figure, we can observe similar phenomenon that the

metadata-guided query time is always faster than the

approach that without help of metadata while not every

node has answer. Furthermore, we found that the higher

compression ratio results in less query evaluation time,

because higher compression ratio on metadata results in

smaller size of the XML metadata, which needs less time

for query evaluation. The optimization by our method is

more significant for smaller hit rate. On the other hand, our

approach still can reach at least 10% saving even when the

hit percentage reaches as large as 90%. That proves the

effectiveness of our method.

7 Related work

7.1 Metadata in networks

With the rapid development of the Internet, metadata ini-

tially proposed to solve the problems of managing,

searching, accessing, retrieving, sharing, and tracking

complex resources in various formats. However, metadata

has some disadvantages includes maintainence cost, unre-

liability, lack of authentication, and lack of interoperability

with respect to syntax. In recent years, few work has been

done on metadata research to overcome these disadvan-

tages and extend its application. Extensible Markup Lan-

guage (XML) and its associated technologies [8, 17] make

it possible to exchange data in a standard structured format.

[18] provides a powerful query language for XML docu-

ments. The Open Archives Initiative (OAI) [19] provides a

Fig. 18 False positive ratio and precision with expanding

Fig. 19 Query time comparison under different percentage of hit nodes (10-node network)

Wireless Netw (2011) 17:1833–1850 1847

123

protocol to build a framework for archives that using

metadata to provide ‘‘value-added services’’. Our work is

an attempt of innovative use of metadata for optimizing

query evaluation in wireless networks.

7.2 XML-based data dissemination in wireless

networks

There has been some recent work on applying XML

technique in wireless networks. SensorML [20] was pro-

posed to handle data disseminate for satellite and other

sensor networks. [21] uses an XML-based markup lan-

guage to describe the data from various types of sensor in

order to make sensor networks more accessible to non-

professional user and make inter-network communication

more easier. However, none of these consider use XML

techniques to create matadata for accelerating query eval-

uation performance.

7.3 Resource-constrained query processing in networks

There has been some recent work on query processing in

sensor networks with focus on the dissemination of selec-

tion and aggregation queries in the network to reduce

power consumption [22–24]. They assume that data is

named using attribute-value pairs, which does not stand in

our project. [5] proposes a data-centric data dissemination

scheme, in which data dissemination is handled in a pre-

defined manner regardless of queries. Hence, it may

introduce many unnecessary data transfers when the que-

rying rate is low. [4] proposes an index-based data dis-

semination scheme, based on the idea that data are

collected and stored at the nodes close to the detecting

nodes. The location information of these storing nodes is

recorded on some index nodes. However, we consider a

fully distributed framework that does not include such

index nodes. [25] presents the Tiny AGgregation (TAG)

service for aggregation in low-power, distributed, wireless

environments. [24] proposes an Acquisitional query pro-

cessing (ACQP) which provides a framework for address-

ing issues of when, where, and how often data is sampled

and which data is delivered in distributed, embedded

sensing environments. [26] introduce aggregation query

into wireless network to build energy-efficient aggregate

query evaluation algorithm based on the node caoability.

Diffusion [27] is the first description of the software

architecture that supports named data and in-network pro-

cessing in an operational, multi-application sensor-net-

work. When combined with dense deployment of nodes,

this kind of named data enables in-network processing for

data aggregation, collaborative signal processing, and

similar problems. These approaches are essential for

emerging applications such as sensor networks where

resources such as bandwidth and energy are limited. [28]

presents a system called DIMENSIONS that constructs

multi-resolution summaries and progressively ages them to

lower the communication overhead and provide long-per-

iod storage capability. [29] presents a sensor network query

processing architecture that can lower the in-network pro-

cessing costs and optimize query evaluation. However, all

of them only consider aggregate queries which only return

a ‘‘summary’’ the data. Our algorithm can support all kinds

of queries.

7.4 Distributed data storage

Data centric storage (DCS). Several work [30–32] have

been done on data centric storage. Data-centric storage was

first explicitly proposed in [30]. The data-centric storage

based on the GPSR routing algorithm and an efficient peer-

to-peer lookup system. [31] makes data-centric storage

more practical by removing the need for point-to-point

routing. [32] uses a Geographic Hash Table (GHT) system

for DCS on sensor-nets. Our work is built on DCS model.

Other systems. On the other hand, with high-speed

networks and powerful computer nodes, distributed data

storage can provide high availability, capability to

extending, efficiency. [33] presents a prototype of a highly

available scalable and distributed data storage structures in

high-speed networks that connect powerful computers.

Bigtable [34] is a distributed storage system for managing

structured data that is designed to scale to a very large size:

petabytes of data across thousands of commodity servers.

Cougar [35] uses database technology to control and access

mobile devices in large scale network. They proposed a

concept of a device database system where individual

devices are modeled as database objects, which allows to

access collections of devices with declarative queries.

8 Conclusion

In this work, we introduced content caching networks to

support data-centric storage for pervasive computing

applications in mobile wireless environments. The content

caching networks use the metadata-guided query evaluation

approach to achieve efficient data dissemination/access.

The metadata-guided approach has the characteristic of rich

expressiveness that can describe various types of data and

capture the diversity of data from heterogeneous wireless

devices. Therefore, using metadata in content caching net-

works can integrate the data from heterogeneous nodes and

enable exchange of data among distributed heterogeneous

wireless devices. We studied how to construct metadata for

two types of data, numerical data and categorical data. For

numerical data, we developed the CBC algorithm, which is

1848 Wireless Netw (2011) 17:1833–1850

123

based on data clustering and compression during metadata

construction. For categorical data, we developed the CEC

algorithm which consists of three interchangeable cluster-

ing approaches (top-down, bottom-up, and hybrid) and two

expanding approaches (GreedyMax and GreedyMin) to

construct metadata. Both CBC algorithm and CEC algo-

rithm can minimize the possible information loss due to

data compression, while meeting the memory requirements

on wireless devices. Both of our theoretical analysis and

empirical results using data generated from a city envi-

ronment show that the metadata-guided approach is effec-

tive in achieving efficient data query and only incurs small

overhead, thereby providing strong evidence of the feasi-

bility of content caching networks. Additional, we studied

how to efficiently update XML metadata after data has been

updated. All the effort built a complete framework to

accelerate query evaluation in content caching networks

using XML metadata.

For the future work, we will consider other types of

resource constraints, e.g., energy consumption. We will

investigate how to design metadata to meet these resource

constraints. We will also extend our metadata design

mechanism to include the semantics of the cached data.

References

1. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D.

(2003). Data-centric storage in sensornets. ACM SIGCOMM
Computer Communication Review archive, 33.

2. Ghose, A., Grossklags, J., & Chuang, J. (2003). Resilient data-

centric storage in wireless ad-hoc sensor networks. In Proceed-
ings of the 4th international conference on mobile data
management, pp. 45–62.

3. Shao, M., Zhu, S., Zhang, W., & Cao, G. (2007). pDCS: Security

and privacy support for data-centric sensor networks. In Pro-
ceedings of the IEEE international conference on computer
communications (INFOCOM).

4. Zhang, W., Cao, G., & Porta, T. L. (2003). Data dissemination

with ring-base index for wireless sensor networks. In IEEE
international conference on network protocols (ICNP).

5. RatNasamy, S., karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.

& Shenker, S. (2002). GHT: A geographic hash table for data-

centric storage. In ACM international workshop on wireless
sensor networks and applications.

6. Li, J., Chou, P., & Zhang, C. (2004). Mutualcast: An efficient
mechanism for content distribution in a peer-to-peer (p2p) net-
work. Microsoft Research TechReport (MSR-TR-2004-100), 100.

7. Wang, H., Liu, R., Zheng, X., Chen, Y., & Liu, H. (2009). To do

or not to do: metadata-guided query evaluation in content caching

networks. In Proceedings of the 28th IEEE conference on global
telecommunications, pp. 4524–4529.

8. W3C, Extensihle markup language (xml). http://www.w3.org/

XM.

9. W3C, Xpath 2.0, http://www.w3.org/TR/xpat.

10. Gottlob, G., Koch, C., & Pichler, R. (2003). The complexity of

xpath query evaluation. In Proceedings of the ACM international

conference on principles of database systems (PODS),
pp. 179–190.

11. Gottlob, G., Koch, C., & Pichler, R. (2003). Xpath query eval-

uation: Improving time and space efficiency. In Proceedings of
the 19th IEEE international conference on data engineering
(ICDE), pp. 379–390.

12. Gottlob, G., Koch, C., & Pichler, R. (2002). Efficient algorithms

for processing xpath queries. In Proceedings of the 28th inter-
national conference on very large data bases (VLDB).

13. Lloyd, S. (1982). Least squares quantization in pcm. In IEEE
transactions on information theory, pp. 128–137.

14. Brinkhoff, T. (2000). Generating network-based moving objects.

In Proceedings of the 12th international conference on scientific
and statistical database management.

15. Brinkhoff, T. (2002). A framework for generating network-based

moving objects. GeoInformatica, 6(2), 153–180.

16. Crossbow Technology Inc. White paper available at http://www.

xbow.co.

17. W3C, Xml schema language, http://www.w3.org/XML/Schem.

18. W3C, Xml query language, http://www.w3.org/XML/Quer.

19. The open archives initiative protocol for metadata harvesting 2.0,

http://www.openarchives.org/OAI/openarchivesprotocol.htm.

20. Sensor model language, http://vast.nsstc.uah.edu/SensorM.

21. Tinyml: Meta-data for wireless networks, http://www.cs.berkeley.

edu/culler/cs294-f03/finalpapers/tinyml.pd.

22. Johannes, P. B., Gehrke, J., & Seshadri, P. (2001). Towards

sensor database systems. In Proceedings of the second interna-
tional conference on mobile data management, pp. 3–14.

23. Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network

query processing in sensor networks. SIGMOD Record 31, 2002.

24. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W.

(2003). The design of an acquisitional query processor for sensor

networks. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on management of data, pp. 491–502.

25. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W.

(2002). Tag: a tiny aggregation service for ad-hoc sensor net-

works. SIGOPS Oper. Syst. Rev. 36, 131–146.

26. Tu Z., & Liang, W. (2005). Energy-efficient aggregate query
evaluation in sensor networks, p. 3794.

27. Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R.,

Estrin, D., & Ganesan, D. (2001). Building efficient wireless

sensor networks with low-level naming. SIGOPS Oper. Syst.
Rev., 35, 146–159.

28. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D. &

Heidemann, J. (2003). An evaluation of multi-resolution search

and storage in resource-constrained sensor networks. In Pro-
ceedings of the ACM sensys.

29. Galpin, I., Brenninkmeijer, C. Y., Jabeen, F., Fernandes, A. A., &

Paton, N. W. (2009). Comprehensive optimization of declarative

sensor network queries. In Proceedings of the 21st international
conference on scientific and statistical database management,
pp. 339–360.

30. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D.

(2003). Data-centric storage in sensornets. SIGCOMM Comput.
Commun. Rev. 3, 137–142.

31. Ee, C. T., & Ratnasamy, S. (2006). Practical data-centric storage.

In USENIX symposium on networked systems design and
implementation.

32. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R.,

Yin, L., & Yu, F. (2003). Data-centric storage in sensornets with

ght, a geographic hash table. Mob. Netw. Appl. 8, 427–442.

33. Litwin, W., Moussa, R., & Schwarz, T. J. E. (2004). Lh*rs: A

highly available distributed data storage system. In Proceedings
of the 30th international conference on very large data bases
(VLDB), pp. 1289–1292.

Wireless Netw (2011) 17:1833–1850 1849

123

http://www.w3.org/XM
http://www.w3.org/XM
http://www.w3.org/TR/xpat
http://www.xbow.co
http://www.xbow.co
http://www.w3.org/XML/Schem
http://www.w3.org/XML/Quer
http://www.openarchives.org/OAI/openarchivesprotocol.htm
http://vast.nsstc.uah.edu/SensorM
http://www.cs.berkeley.edu/culler/cs294-f03/finalpapers/tinyml.pd
http://www.cs.berkeley.edu/culler/cs294-f03/finalpapers/tinyml.pd

34. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., Chandra, T., Fikes, A., & Gruber, R. E. (2006).

Bigtable: A distributed storage system for structured data. In

Proceedings of the 7th USENIX symposium on operating systems
design and implementation, pp. 15–15.

35. Johannesgehrke, P. B., & Mayr, T. (1999). Query processing in a
device database system. Cornell University, Technical Report.

Author Biographies

Ruilin Liu is a Ph.D. student in

Department of Computer Sci-

ence at Stevens Institute of

Technology. His research inter-

est includes privacy-preserving

data publishing, XML database,

network access control and

social network.

Xiuyuan Zheng is currently a

Ph.D. student of the Electrical

and Computer Engineering

Department at Stevens Institute

of Technology. His research

interests include information

security & privacy, wireless

localization and location based

services (LBS), wireless and

sensor networks. He is currently

working in the Data Analysis

and Information SecuritY

(DAISY) Lab with Prof.

Yingying Chen. He was in the

Master program in the Electrical

and Computer Engineering Department at Stevens Institute of Tech-

nology from 2007 to 2009. He received his Bachelor’s degree from

Department of Telecommunication Engineering at Nanjing University

of Posts and Communications, China, in 2007.

Hongbo Liu is a Ph.D. candi-

date of the Electrical and Com-

puter Engineering Department

at Stevens Institute of Technol-

ogy. His research interests

include information security &

privacy, wireless localization

and location based services

(LBS), wireless and sensor net-

works. He is currently working

in the Data Analysis and Infor-

mation SecuritY (DAISY) Lab

with Prof. Yingying Chen. He

got his Master degree in com-

munication engineering from

Department of Communication and Information Engineering of

University of Electronic Science and Technology of China in 2008.

He received his Bachelor’s degree from Department of Communi-

cation and Information Engineering of University of Electronic

Science and Technology of China, China, in 2005.

Hui Wang received her Ph.D.

degree in Computer Science

from University of British

Columbia, Vancouver, Canada.

She has been an assistant pro-

fessor in the Computer Science

Department, Stevens Institute of

Technology, since 2008. Her

research interests include data

management, database security,

data privacy, and semi-struc-

tured databases.

Yingying Chen received her

Ph.D. degree in Computer Sci-

ence from Rutgers University.

She is currently an assistant

professor in the Department of

Electrical and Computer Engi-

neering at Stevens Institute of

Technology. Her research

interests include wireless and

system security and privacy,

wireless networking, and dis-

tributed systems. She has coau-

thored the book Securing

Emerging Wireless Systems and

published extensively in journal

and conference papers. Prior to joining Stevens Institute of Tech-

nology, she was with Bell Laboratories and the Optical Networking

Group, Lucent Technologies. She received the IEEE Outstanding

Contribution Award from IEEE New Jersey Coast Section each year

2005-2009. She is the recipient of the NSF CAREER award. She is

also the recipient of the Best Technological Innovation Award from

the International TinyOS Technology Exchange in 2006, as well as

the Best Paper Award from the International Conference on Wireless

On-demand Network Systems and Services (WONS) in 2009.

1850 Wireless Netw (2011) 17:1833–1850

123

	Metadata-guided evaluation of resource-constrained queries in content caching based wireless networks
	Abstract
	Introduction
	Preliminaries
	Metadata construction algorithms
	Metadata design principle
	Requirements of metadata construction
	Memory constraints
	Constructing metadata for numerical data
	Constructing metadata for categorical data
	Step 1: Clustering
	Step 2: Expanding
	Step 3: Compression

	Efficient metadata updates
	Update on numerical data
	Update on categorical data
	Discussion of update cost

	Query evaluation analysis
	Query types
	Metadata-guided query evaluation
	Analysis of efficiency

	Experimental evaluation
	Metrics
	Evaluating effectiveness for numerical data
	Methodology
	Results

	Evaluating effectiveness for categorical data
	Methodology
	Results

	Related work
	Metadata in networks
	XML-based data dissemination in wireless networks
	Resource-constrained query processing in networks
	Distributed data storage

	Conclusion
	References

