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K
ernel-based learning (KBL) methods have recently 
become prevalent in many engineering applica-
tions, notably in signal processing and communica-
tions. The increased interest is mainly driven by the 
practical need of being able to develop efficient 

nonlinear algorithms, which can obtain significant performance 
improvements over their linear counterparts at the price of gen-
erally higher computational complexity. In this article, an over-
view of applying various KBL methods to statistical signal 
processing-related open issues in cognitive radio networks 
(CRNs) is presented. It is demonstrated that KBL methods 
provide a powerful set of tools for CRNs and enable rigorous for-
mulation and effective solutions to both long-standing and 
emerging design problems.

IntroductIon and MotIvatIon
In the past decade, we have witnessed a dramatic growth in 
wireless communications due to the popularity of smart-
phones, mobile TVs, and many other wireless devices. The ever-
increasing demand for high data rates in the face of limited 

spectral resources has motivated the introduction of cognitive 
radio (CR) [1]. The key idea behind CR is to allow secondary 
users (SUs) to exploit the spectral resources that have been 
licensed to primary users (PUs), but are underutilized, in a 
dynamic, opportunistic, and adaptive manner. An SU utilizes 
sensing and learning machines to be aware of his or her sur-
rounding environment and adapts his or her internal states to 
statistical variations of the environment [2]. Although world-
wide active efforts have been made for enabling CRNs in the 
past few years [3], many technical challenges still remain 
unsolved. A few related to statistical signal processing [4] 
include spectrum sensing, information fusion, irregular cover-
age boundary detection, robust signal classification, and spec-
trum occupancy online prediction.

KBL [5] exhibits the potential to provide effective solutions 
to many of these technical challenges. It has a number of 
attractive merits for statistical signal processing, e.g., nonlin-
ear system designs, high-dimensional data processing, and 
superior computation efficiency [6]–[10]. Furthermore, there 
is a recent trend of applying machine learning to CRNs 
[11]–[14], especially an increasing interest in tailoring KBL 
methods to statistical signal processing-related issues in CRNs 
(e.g., [15] and [16]).
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In light of these benefits, this article pro-
vides an overview of applying KBL methods 
to statistical signal processing in CRNs, 
which covers a wide range of topics related 
to both long-standing and recent-emerging 
design problems. The goal of this article 
is twofold. The first is to present theoretical 
foundations and main techniques in 
KBL, suitable for signal processing and 
communications communities. Special 
emphasis is placed on the nonlinear and 
high-dimensional signal processing capabil-
ity of KBL methods. The second is to present 
approaches on how to apply the powerful set 
of KBL tools to resolve several challenging 
issues in CRNs. The focus is on the kernel 
part of various applications and, more 
importantly, we compare with the use of 
nonkernel methods to demonstrate both the 
advantages and the disadvantages of using 
KBL. We hope that this article with interdis-
ciplinary perspectives will stimulate more interests in KBL theory 
and its applications in the signal processing and communica- 
tions communities.

NotatioN
Lowercase and uppercase boldface letters stand for column 
vectors and matrices, respectively. ( ) T$  and ( ) 1$ -  denote the 
transposition and inverse of a matrix, respectively. Diag
( , , )x xN1 f  represents an N N#  diagonal matrix with diagonal 
entries , , .x xN1 f  0N )(1N  denotes an N 1#  vector of all zeros 
(ones) and IN denotes an N N#  identity matrix. x 2 denotes 
the two-norm of a vector ,x  X F denotes the Frobenius norm 
of matrix X, and ,x y  represents the inner product of x and .y

Kernel-based learnIng:  
basIc concePts, tools, and Methods
In this section, we provide a brief review of KBL theory, showing 
its relevance in signal processing and communications applica-
tions. The basic concepts, tools, and kernel methods discussed in 
this section will be applied to research issues in CRNs as pre-
sented in the sections “Applications of Kernel-Based Learning in 
CRNs” and “Additional Applications and Future Directions.”

CoNCepts
There is a long history of constructing machines capable of 
learning from data within the statistical framework. Johann Carl 
Friedrich Gauss proposed the idea of least squares regression in 
the 18th century, while Ronald Aylmer Fisher’s approach to clas-
sification in the 1930s provides the starting point for most analy-
ses and methods [17]. Using hypotheses that form linear 
combinations of the input variables, linear learning machines 
for classification and regression problems dominated the 
research until the 1960s, when the limited computational power 
of them in dealing with many complex real-world problems was 

highlighted [18]. KBL, which has gained considerable popularity 
during the last 15 years, has offered a promising solution to 
increase the computational capability based on a breakthrough 
in the design of efficient nonlinear learning algorithms.

Specifically, in KBL theory, data x in the input space X  is 
projected onto a potentially much higher dimensional feature 
space F  via a nonlinear mapping U as follows:

 : , ( ).x xX F" 7U U  (1)

For a given learning problem, one now works with the 
mapped data ( )x F!U  instead of x X!  (see Figure 1 as an 
example). The data in the input space can be projected onto 
different feature spaces with different mappings. The diversity 
of feature spaces gives us more choices to gain better perfor-
mance, while in practice the choice itself of a proper mapping 
for any given real-world problem may generally be nontrivial.

Fortunately, originally proposed in [18], the kernel trick 
provides an elegant mathematical means to construct power-
ful nonlinear variants of most well-known statistical linear 
techniques, without knowing the mapping U explicitly. 
Indeed, one only needs to replace the inner product operator 
of a linear technique with an appropriate kernel k (i.e., a posi-
tive semidefinite symmetric function), which arises as a simi-
larity measure that can be thought of as an inner product 
between pairs of data in the feature space 

 k( , ) : ( ), ( ) , , .x x x x x x XFi j i j i j6 !U U=  (2)

Table 1 lists the most widely used kernels, which can be 
divided into two categories: projective kernels (functions of inner 
product) and radial kernels (functions of distance). These kernels 
implicitly map the data onto high-dimensional spaces, even 
infinite-dimensional spaces.

x2

U(·)

U : X = R2 " F = R3

    (x1, x2) 7 (z1, z2, z3) := (x1
2, :2x1x2, x2

2)

x1

z2

z3
F

z1

(a) (b)

X

[fIg1] an introductory binary classification example [7]. by mapping data x ( , )x x1 2=  
in (a) two-dimensional (2-d) input space X R2=  via nonlinear mapping ( )$U  onto a 
(b) three-dimensional feature space ,F R3=  the data become linearly separable. 
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tools
The introduction of kernels greatly increases the computational 
capability by constructing nonlinear learning machines for data in 
the input space, while retaining the underlying linearity in the fea-
ture space that will ensure that learning remains tractable. The 
increased computational capability, however, leads to new techni-
cal challenges, such as numerical instabilities and inferior general-
ization performance. The literature provides a few powerful 
mathematical tools (e.g., regularization, generalization, and opti-
mization) to tackle these challenges, and we refer interested read-
ers to [5]–[7] as entry points, and [8]–[10] for more advanced 
results.

Briefly, the regularization theory serves as a tool to control the 
complexity of the model used for explaining the training data, by 
mainly utilizing objective functions that involve both an empiri-
cal loss term and a regularization term [10]. The generalization 
theory provides theoretical insights on learning machines from a 
statistical point of view by introducing several complexity mea-
sures, such as the Vapnik–Chervonenkis (VC) dimension, and 
illustrating how to derive bounds on the generalization error [6]. 
The optimization theory, notably the convex optimization theory, 
can be seen as a mathematical tool concerned with characterizing 
practical solutions of various KBL problems and developing effec-
tive algorithms for finding the solutions [7].

KerNel Methods
Kernel methods are counterparts of linear methods that are 
implemented in feature spaces. Pioneered by support vector 
machines (SVMs) [6], kernel methods have recently gained wide 
popularity, mainly due to the theoretical guarantees regarding 
performance and powerful nonlinear algorithms. Besides SVMs, 
the most well-known kernel methods include kernel Fisher dis-
criminant analysis (FDA) [19], kernel K-means clustering [20], 

kernel principal component analysis (PCA) [5], and kernel online 
learning [9]. These methods have shown practical relevance for 
many signal processing-related engineering applications. We will 
discuss some of these KBL methods along with presentations of 
example applications in statistical signal processing-related open 
issues in CRNs.

aPPlIcatIons of Kernel-based learnIng In crns

appliCatioN 1: KerNel ClusteriNg for attaCKer 
deteCtioN iN Collaborative speCtruM seNsiNg
Spectrum sensing is a fundamental issue in CRNs, which 
detects the presence H1^ h or absence H0^ h  of a licensed/
primary user signal over a radio frequency band [21]. To com-
bat the impacts of multipath fading, shadowing, and receiver 
uncertainty, collaborative spectrum sensing (CSS) among mul-
tiple spectrum sensors has been proposed as an effective method 
by exploiting spatial diversity [22], [23]. However, due to the 
openness of low-layer protocol stacks in CR devices, many secu-
rity threats in CSS have been raised (see, e.g., [24]–[26] and the 
recent reviews [27] and [28]). As a case study, we propose to 
apply robust clustering algorithms to distinguish spectrum 
attackers from honest sensors in CSS and show the advantages 
and the disadvantages of a kernel clustering algorithm over its 
nonkernel counterpart.

PRObLEM StAtEMENt
As shown in Figure 2, we consider a CRN with N  spectrum 
sensors and one fusion center (FC) collaboratively detecting the 
presence of a primary signal over a given channel, which is mod-
eled as an ON/OFF renewal process. An ON period represents a 
time duration in which the primary signal is present and an OFF 
period is a time duration in which the primary signal is absent and 
the CRN is allowed to utilize the channel for its data transmission. 
Each spectrum sensor captures the signal periodically, and reports 
its “original” (from an honest sensor) or “false” (from a spectrum 
attacker) observation to the FC. The FC fuses the collected sensing 
reports and makes a decision on the presence H1^ h or absence 
H0^ h of the primary signal. The goal of a spectrum attacker, which 

injects attack data into its original observation, is to mislead the 
FC to make a wrong decision.

Specifically, if an energy detector is used, the sensing report of 
spectrum sensor n in the tth sensing period can be given as [29] 

, , , , ; , , , ,1x P N E o n N t p1 2 1 2{ }

energy detector output ( )

Hnt nt nt

T

nt0

nt

1$ f f= + + + = =
1 2 344444 44444

(3)

[table 1] coMMonly used Kernels wIth ParaMeters , ,c p0 N2 ! +  and .02v

Kernels (ProjectIve) exPressIons Kernels (radIal) exPressIons
MonoMial ,x xi j

d^ h Gaussian /x xexp 2i j 2
2 2v- -^ h

PolynoMial ,x x ci j
d+^ h laPlacian /x xexp 2i j 2

2v- -^ h
ExPonEnTial , /x xexp 2i j

2v^ h MulTiquadraTic x x ci j 2
2- +

siGMoid (PErcEPTron) , /x xtanh ci j v+^ h invErsE MulTiquadraTic / x x c1 i j 2
2- +

[fIg2] an illustrative example of css in the presence of 
spectrum attackers.
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where 1{ }$  is an indicator function, Tnt is the output of the energy 
detector including the received primary signal power ,Pnt  the noise 
power N0, and the Gaussian measurement error Ent with zero 
mean and variance ( ) / .1P N N{ }HE nt sam0

2
nt
2

1$v = +  Nsam is the 
number of samples in each sensing period. Notably, ont represents 
the attack data, which is zero if spectrum sensor n is a honest sen-
sor and nonzero if it is a spectrum attacker. There are two types of 
harmful attacks: 

1) In Type-1, an attacker injects positive attack data ( ),o 0nt 2  
which aims to increase the false-positive rate (classifying the 
absence of a primary signal as present). 
2) In Type-2, an attacker injects negative attack data ( ),o 0nt 1  
which aims to increase the false-negative rate (classifying the 
presence of a primary signal as absent). 

Generally, a Type-1 attack results in lower spectrum utilization for 
SUs, and a Type-2 attack results in more interference to the PU. 
Therefore, to mitigate wrong decisions, the FC must be able to 
correctly identify any spectrum attackers before fusing the sensing 
reports to make a final decision.

Comprehensive reviews of related studies on this topic have 
been recently given in [27] and [28]. Different from the existing 
studies, two powerful clustering algorithms in the field of data 
mining will be applied at the FC to detect multiple attackers 
simultaneously, without a priori information about the attackers’ 
strategy. The basic idea is as follows: After collecting the sensing 
reports from all spectrum sensors in p successive sensing periods, 
the FC seeks a partition of a set of p-dimensional vectors 

: { , , , }x x xX N1 2 f=  with the aid of analyzing the similarity 
among the vectors, such that the honest sensors and the spectrum 
attackers are grouped into different clusters. Note that 
x : ( , , , )x x xn n n np

T
1 2 f=  is a sensing report vector of sensor n in 

p successive sensing periods.

SPECtRuM AttACkER DEtECtION  
uSING k-MEANS CLuStERING 
Among the algorithms that cluster data represented by vectors, 
K-means clustering (KMC) is one of the most popular schemes 
with well-documented merits [30], [31]. Under the framework of 
KMC, the data model in (3) can be rewritten in a vector form as

 , , , .., ,x m v o n N1 2n c n n= + + =  (4)

where mc denotes the cluster centroid of the honest sensors, 
: ( , , , )v v v vn n n np

T
1 2 f=  is a Gaussian vector capturing the devia-

tion of xn  from the p 1#  centroid vector ,mc  and 
: ( , , , )o o o on n n np

T
1 2 f=  denotes the attack data vector. One prac-

tical and common assumption in the literature is that the pres-
ence of spectrum attackers is sparse [28] and most of the ons in (4) 
are zero. Consequently, the unknowns { , }m oc n  can now be esti-
mated using the least squares (LS) approach, which can be formu-
lated as 

 minimize , subject to ,x m o 1 M
{ , }m o

On c n
n

N

n

N

2
2

1
0

1c n
n 2 #- - 2

= =

" ,/ /
(5)

where the constraint in (5) means that the number of 
attackers is no larger than .M  This optimization problem is 
well known as NP-hard [30]. To efficiently resolve the 
problem, a suboptimal yet practical algorithm along the 
lines of [20] will be developed. Consider first the Lagrangian 
form of (5)

 minimize ,x m o o
{ , }m o

n c n
n

N

n
n

N

2
2

1
2

1c n
m- - +

= =

/ /  (6)

where m is an attacker-controlling parameter with respect to .M  
The pseudo-l0-norm :o 1 on

N
0 01 n 2= 2

= " ,/  in (5) was surro-
gated by its convex l1-norm :o onn

N
1 21
=

=
/  in (6), follow-

ing the successful compressive sensing paradigm [32]. Now the 
problem in (6) is convex in both { }mc  and { },on  but jointly non-
convex. The per-variable convexity motivates a KMC solver as 
shown next in Algorithm 1:

Algorithm 1: Attacker Detection Using KMC
1) I n i t i a l i z a t i o n :  I n p u t  s e n s i n g  d a t a  m a t r i x 

: [ ],X x x xN1 2f=  select m using a grid search technique as 
described in [33] to satisfy ,M1

n

N
01 o( )

n
t

2 #2
=

" ,/  and set 
: [ ]O o o o( ) ( ) ( ) ( )

N
0

1
0

2
0 0
f=  to zero.

2) for , ,t 1 2 f=  do
3) Update the p 1#  centroid matrix ( ) /M X O 1( ) ( )t t

N
1= - -  

.N m( )
c
t=

4) Update the p N#  attack data matrix O( )t  via o( )
n
t = 

{ [ ( / )], },max 1 2 rr 0( ) ( )
n
t

n
t

p2m-  where : , nr x m( ) ( )
n
t

n c
t 6= - = 

, , .N1 2 f
5) end for

The for-loop is terminated when the tth iteration satisfies 
/ ,M M M( ) ( ) ( )t t

F
t

F s
1 # e- -  where se  is a small positive 

threshold (e.g., 10 6- ).

SPECtRuM AttACkER DEtECtION uSING kERNEL kMC 
As shown in (5) and (6), with the Euclidean distance as a simi-
larity measure, the KMC algorithm favors clustering the 
underlying data vectors that are of spherical shape and linearly 
separable. However, in the considered problem, the set 
of p-dimensional sensing report vectors X : { , , , }x x xN1 2 f=  is 
neither of standard spherical shape nor linearly separable, 
since the data distributions for the presence H1^ h and absence 
H0^ h of the primary signal are heterogeneous as shown in (3). 

To bypass this hurdle, an effective approach is to design a ker-
nelized version of the KMC algorithm, where the sensing 
report vector x Rn

p!  is mapped to a higher (even infinite) 
dimensional feature space F  via a nonlinear function 

: .FR p
7U  Thus, linearly separable partition in feature space 

F  enables nonlinearly separable partition in the original data 
space .R p

Following the kernel method in [18], the KMC algorithm 
can be kernelized without knowing the mapping U explicitly. 
The key idea is to replace the inner product operations, on the 
input sensing report vectors, with an appropriate kernel func-
tion (see Table 1). Suppose that there exists an N N#  matrix A 
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such that the p N#  attack data matrix satisfies ,O XA=  
:X x x xN1 2f=6 @ is the p N#  sensing data matrix. Then, we can 

rewrite the p 1#  centroid matrix as ( ) / ,M X O 1 XBNN= - =  
where the N N#  matrix : ( ) / .B I A 1 NN N= -  Neglecting the 
mathematical derivations, the kernel KMC solver is summa-
rized next in Algorithm 2: 

Algorithm 2: Attacker Detection Using Kernel KMC
1) Initialization: Input sensing data matrix ,X x x xN1 2f=6 @  
select m using a grid search technique as described in [33] to 
satisfy M1

n

N
01 o( )

n
t

2 #2
=

" ,/  and calculate the N N#  kernel 
matrix K with entries : ( , ).kK x x,i j i j=  Initialize A( )0  to zero.
2) for , ,t 1 2 f=  do
3) Update ( ) / .NB I A 1( ) ( )t

N
t

N
1= - -

4) Update ( ) ,I B 1( ) ( )t
N

t
N

TD = -  where the nth column of ( )tD  
is denoted as .( )

n
tC

5) Update ,A( )t  where the nth column of A( )t  is given by 
{ [ ( / )], } .max 1 2 0a( ) ( ) ( )

n
t

n
t

n
t

pKm CC= -

6) end for
7) Calculate .M XB( ) ( )t t=

8) Calculate .O XA( ) ( )t t=

Note that the key kernel operation 
of the kernel KMC solver lies in the 
fifth line, i.e., : .K( ) ( ) ( )

Kn
t

n
t T

n
tC CC = ^ h  

Furthermore, to enable a fair compari-
son of the attacker detection perfor-
mance, the convergence condition of 
the kernel KMC iterations is set to be 
the same as the KMC algorithm.

MAIN RESuLtS AND INSIGhtS 
1) Kernel parameter selection: The 
selection of the optimal kernel parame-
ters is very important in KBL methods, 
which is often stated as an open prob-
lem [5]–[7]. In this article, we focus on 
the scenario that the CRN environ-
ment is stationary or quasistationary, 
which is a case commonly considered 
in the CRN research community. For 
this case, kernel parameters are deter-
mined by exhaustive search or cross-
validation in the training period. 
Specifically, in this application, the 
Gaussian kernel is used and the kernel 
parameter 2v  is set as the variance esti-
mate of the entire data set X  as 
described in [34].
2) Detection performance compari-
son: In this application, both KMC 
and kernel KMC are, in essence, batch 
or offline algorithms. The algorithms 
are implemented after p successive 
sensing periods. It is observed in 
Figure 3 that, for both clustering 

algorithms, an increasing dimensionality p of the sensing 
report vectors generally yields better detection 
performance; and the kernel KMC algorithm yields better 
detection performance than the KMC algorithm, which 
mainly benefits from its capability of identifying nonlin-
early separable clusters.
3) Computational complexity analysis: After careful evalua-
tion, it is found that 

•	 For the KMC algorithm, it performs ( )O Np  scalar oper-
ations per iteration and requires storing ( )O Np  scalar 
variables. 
•	 For the kernel KMC algorithm, it is noted that the 
p N#  sensing data matrix X is used when calculating 
the kernel matrix ,K  the final centroid matrix M, and the 
final attack data matrix ,O  which are all performed 
outside the for-loop. Thus, it requires ( )O N3  operations 
per-iteration and ( )O N2  spaces. Consequently, in the 
high-dimensional data regime (e.g., p N300 102 22= =  
in Figure 3), kernel KMC not only improves the attacker 
detection performance, but also offers processing and 
memory savings.

[fIg3] attacker detection performance of KMc and kernel KMc algorithms under 
different attack strengths. In this simulation, N 10=  and .M 2=  the probability Pmd 
characterizes the cases that an attacker is incorrectly classified as an honest sensor and 
the Pfa measures the cases that an honest sensor is incorrectly classified as an attacker.
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appliCatioN 2: KerNel fisher disCriMiNaNt 
aNalysis for raNdoM pu NetworK deteCtioN
In general, Fisher discriminant analysis (FDA) addresses the fol-
lowing question: Given a data set, say, with two classes, which is 
the best feature or feature set to discriminate the two classes 
[17]? We show its application in the multiuser information 
fusion problem. We will first discuss the use of the well-known 
linear FDA in the issue of random primary user network detec-
tion in CRNs, and then show the performance improvement from 
using the kernel FDA.

PRObLEM StAtEMENt 
The problem of random PU network detection was first 
addressed in [35]. As shown in Figure 4, the primary transmit-
ters (PTxs) are randomly distributed in a 2-D space, following a 
Poisson point process. Each primary receiver (PRx) is uniformly 
distributed around its PTx in a small disc area. An SU located at 
the origin tries to detect the presence of any PRx within a given 
disc detection area ,A  with the help of Nsc secondary coopera-
tors (SCs). If there is no PRx within ,A  the SU can transmit its 
signal safely. However, if there is at least one PRx, the SU must 
cease its transmission to avoid inflicting interference to the pri-
mary reception. Let Y  be a random variable that indicates 
whether there is any PU receiver within A. The goal is to cor-
rectly distinguish the PRx-present case ( )Y 1=  from the PRx-
absent case ( ) .Y 0=

Due to the lack of cooperation from the PU network, the 
SU has no prior knowledge of the location information of 
the PRxs. Therefore, the SU has to determine Y  by 
analyzing the sensing results of itself and its SCs, i.e., the 
vector : ( , , , ) ,x x x xN

T
0 1 scf=  where the entry x0  and 

, , , ,x i N1 2i scf=  denote the total energy received by the SU and 
the ith SCs, respectively. The problem is in essence a multiuser 
information fusion problem—that is, how do you efficiently fuse 
the sensing results from multiple users to detect the presence of 
any PRx within a given detection area as accurately as possible?

LIkELIhOOD-RAtIO tESt DEtECtOR
The likelihood-ratio test (LRT) has been shown to be the optimal 
fusion rule according to the Neyman–Pearson criterion, which is 
obtained by performing the following likelihood ratio testing:

 ( )
( )

,x
x

f
f

T
|

|

Y

Y Y

Y
lrt

0

1 1

0x

x
W

=

=
=

=
 (7)

where ( )f f| |Y Y1 0x x= =  is the probability distribution function (pdf) 
of x given that ( ),Y Y1 0= =  Tlrt is the decision threshold. For 
the LRT detector, we require the calculation of the pdf of x, 
given that Y 1=  and ,Y 0=  which is mathematically intractable. 
Therefore, the design of a detector with low complexity and 
good performance is needed in practice.

LINEAR FuSION-bASED  
COOPERAtIvE DEtECtION uSING LINEAR FDA
To design a simple and efficient detector, a linear fusion rule is 
usually adopted, which can be given as

 ,w xD w x TT
n n

Y

Yn

N 1

00
linear

sc

W= =
=

==

/  (8)

where : ( , , , )w w w wN
T

1 2 scf=  is the vector of the linear coeffi-
cients. Now, the problem is how to determine the value of the 
linear coefficient vector .w  The optimal w is the one that maxi-
mizes the detection probability { | },w xPr T Y 1linear

T $ =  while 
minimizing the false alarm probability { | } .w xPr T Y 0linear

T $ =  
However, considering the randomness in the PU network 
model, a closed-form expression of the optimal linear 
coefficients is not easy to obtain. To circumvent this problem, 
[35] uses the linear FDA to determine a set of suboptimal linear 
coefficients.

The linear FDA finds a linear coefficient vector wL FDA-  that 
most clearly separates the different cases by assigning a higher 
linear coefficient to a more significant sensing result. 
Specifically, linear FDA maximizes the so-called Rayleigh 
coefficient [17]

 ( )w
w S w
w S wJ T

W

T
B=  (9)

with respect to w to obtain ,wL FDA-  i.e., wL FDA =-  ( ),warg max Jw

where ( ) ( )S m m m mB
T

1 0 1 0= - -  and S
, J

W xY 0 1 Y
=

!=
//  

( ) ( )x m x mY Y
T- -  are the between- and within-class scatter 

matrices respectively, ( )m m1 0  and ( )J J1 0  denote the mean and 
the sensing result set given that ( ) .Y Y1 0= =  According to [17], 
the optimal linear FDA coefficient vector can be derived as

 ( ) .w S m mL FDA
W

1
1 0= -- -  (10)

NONLINEAR FuSION-bASED  
COOPERAtIvE DEtECtION uSING kERNEL FDA
Linear FDA is a linear technique in nature, and it is often limited 
and inadequate to derive more efficient and general information 
fusion algorithms. To better express the discriminant and thus 
improve the detection performance, we introduce a kernelized 
version of linear FDA to reformulate the above problem.

PRx-Present Case (Y = 1) PRx-Absent Case (Y = 0)

Primary Transmitter (PTx)
Secondary User (SU)

Primary Receiver (PRx)
Secondary Cooperator (SC)

Detection Area A

[fIg4] an illustration of random primary user network 
detection. the Ptxs are randomly distributed in a 2-d space. 
each Prx is uniformly distributed around its Ptx in a small disc 
area. an su located at the origin tries to detect the presence of 
any Prx within a given disc detection area ,A  with the help of 
several scs.
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The key idea of kernel FDA is to solve a linear fusion prob-
lem in a kernel feature space ,F  thereby yielding a nonlinear 
fusion rule in the original input space. Let U be the nonlinear 
mapping as defined in (1), the discriminant coefficient in the 
feature space F  can be obtained by maximizing

 ( )
( )
( ) ,w
w S w
w S w

J T
W

T
B

=U
U U U

U U U

 (11)

w h e r e  , ( ) ( )w S m m m mF B
T

1 0 1 0! = - -U U U U U U  a n d  SW =
U  

( ( ) ) ( ( ) ) .x m x m
, x J Y Y

T
Y 0 1 Y

U U- -
!

U U
=
//  Note that ( )m m1 0

U U  is 
the mean vector of the sensing results in feature space given 
that ( ) .Y Y1 0= =

To build the kernel FDA [19] in the feature space ,F  we first 
need to reformulate (11) in terms of inner products of input data, 
which can then be replaced by kernels. From [19], we know that 
any solution wU must lie in the span of all training samples 
{ ( ), ( ), , ( )}x x xL1 2 fU U U  in .F  Therefore, we express wU as

 ( ),w xvi i
i

L

1
U=U

=

/  (12)

and we further have

 

( ) ( ), ( )

( , ) , { , },

w m x x

k x x v k
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L v Y
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Y

Y
j j i

Y

i

L

j

L

Y
j j i
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Y

i

L

j

L

11

11

Y

Y
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U U=

= =

U U

==

==

//

//
 

(13)

where xi
Y  denotes the ith training sample vector of sensing 

results in the original data space given that { , },Y 0 1!  
: ( , , , ) ,v v v vL

T
1 2 f=  and ( ) : ( / ) k( , ).k x xL1Y j Y j i

Y
i
L

1
Y=
=
/

Substituting (12) and (13) into (11), the optimization problem 
can be rewritten as

 ( ) : ,v v
v S v
v S varg max J

v
K FDA

T
W

T
B= =-

u

u
 (14)

where ( ) ( )S k k k kB
T

1 0 1 0= - -u  and (S K I
,W Y LY 0 1 Y= -

=
u /

/ ) .1 1 KLL L
T

Y Y
T

Y Y  KY  is an L LY#  kernel matrix with ( ) :KY nm =

k( , ).x xn m
Y

To maximize ( )vJ  with respect to ,v  one could obtain vK FDA-  
by finding the leading eigenvector of S SW B

1-u u  [19]. Although 
there exist many efficient eigenvalue problem solvers, one 
problem remains: for a large training sample size ,L  the matri-
ces SB
u  and SW

u  become large and the solutions vK FDA-  are non-
sparse. One way of dealing with this problem is to reformulate 
kernel FDA as a convex quadratic programming problem (refer 
to [7] for details).

Finally, for the problem of random PU network detection, a 
nonlinear fusion-based detector, using kernel FDA, can be 
expressed as

 , ( ) k(x , ) ,w x v Txi
K FDA

i

Y

Y
kfda

i

L 1

01
WU =U -
=

==

/  (15)

where Tkfda is an adjustable sensing threshold.

MAIN RESuLtS AND INSIGhtS
1) Detection performance comparison: It is shown in Figure 5 
that 

•	 The detection performance of the proposed nonlin-
ear kernel FDA detector generally increases with the 
training sample size L and, as described in [35], linear 
equal coefficient combining (ECC) and linear FDA are 
not affected by L because no training period is 
needed. 
•	 For a large L, the proposed kernel FDA detector yields 
much better detection performance than the linear FDA 
developed in [35] and the commonly used linear ECC 
algorithm. 
•	 The optimal LRT detector will certainly yield better 
performance than the proposed kernel FDA. However, 
considering that the optimal detector is infeasible to be 
practically implemented, the proposed kernel FDA algo-
rithm can be a good alternative.

2) Computational complexity analysis: 
•	 From (8) and (10), it is known that the time-complexity 
of linear FDA is ( )O Nsc

3 , and the memory requirements are 
( ),O Nsc

2  where Nsc is the number of SCs. 
•	 From (14) and (15), it is seen that the time-complexity 
of kernel FDA is ( )O L3 , and the memory requirements 
are .O L2^ h  In practice, to obtain superior detection 
performance, the number of training samples should 
satisfy L Nsc&  in the proposed kernel FDA algorithm. In 
summary, compared to linear FDA, nonlinear kernel FDA 
can obtain significant detection performance improve-
ment at the expense of a much higher computational 
complexity.

[fIg5] the receiver operating characteristic (roc) curves for 
the linear ecc [29], the linear fda [35], and the proposed 
kernel fda-based cooperative detection algorithms. the 
gaussian kernel is used and the kernel parameter 2v  is set as 
the variance estimate of the training sample data set 
[x x x ]L1 2f  as described in [34]. the radius of the su detection 
area is 300 m, and the transmission range of the Ptx is 150 m. 
the su network consists of one su at the origin and N 4sc =  
scs located 100 m, 200 m, 300 m, and 400 m away from the 
origin, respectively. the other experiment configurations are 
the same as in [35].
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appliCatioN 3: NoNliNear svM 
for Coverage bouNdary deteCtioN
In CRNs, besides the information about the presence of PRxs 
at individual locations, we are also particularly interested in which 
areas are covered by PTxs and which are not. The information on 
the coverage boundary of PTxs is crucial for spatial spectrum 
reuse between the primary network and the secondary network. 
In this case study, the adaptivity and effectiveness of SVM for the 
problem of coverage boundary detection will be demonstrated.

PRObLEM StAtEMENt
Figure 6 presents an illustrative example of the problem. In this 
example, there is a PTx and a ground-truth coverage boundary 
between its covered and uncovered areas. Here we generalize the 
problem proposed in [15] by considering a practical irregular 
radio coverage model. The irregular shape of the ground-truth 
boundary results from signal attenuation due to obstructions 
such as buildings. Suppose that N  spectrum sensors are uni-
formly distributed in a 2-D area .A R21u  Equipped with an 
energy detector, each spectrum sensor at location 

: ( , ) , { , , , }Al x y i N1 2i i i f! != u  makes a binary declaration 
( ) { , }h l 1 1i ! -  on whether the location li is covered (say 
( )h l 1i =- ) by the PTx or not (say ( )h l 1i = ). Due to the hardware 

constraints of the spectrum sensors and radio channel random-
ness, the declarations are generally not error free. We, however, 
have no knowledge which declarations are correct. Based on the 
declarations with potential errors, the objective is to find a 
boundary function f  with the minimal detection errors, i.e.,

 minimize ( ) ( ),h l h l
Af

f i ili
5

!
r

u/  (16)

where ( ) { , }h l 1 1f i ! -r  denotes the coverage state at location li 
determined by the boundary function (i.e., if ( ) , ( ) ;f l h l1 1i f i$ =r  
else if ( ) , ( )f l h l1 1i f i#- =-r ) and 5 is a binary operator defined 
as if ( ) ( ),h l h lf i i=r  then ( ) ( ) ;h l h l 0f i i5 =r  else if ( ) ( ),h l h lf i i!r  
then ( ) ( ) .h l h l 1f i i5 =r

SVMs serve as a promising theoretical tool to provide an effi-
cient solution to (16). We start with the formulation of the prob-
lem using simple linear SVMs, and then extend to the design of 
nonlinear classifiers by effectively kernelizing the linear SVMs. The 
performance comparison between linear SVMs and kernel SVMs 
will be provided later.

LINEAR SvM FORMuLAtION 
Linear SVMs work for data that are linearly separable and hence, 
may not work well for the problem considered here. Nonetheless, 
it is the easiest algorithm to understand, and it serves as a perfor-
mance benchmark and forms the main building block for the 
more complex SVMs. It exhibits the key features that characterize 
this kind of learning machine, and its description is therefore cru-
cial for understanding the more advanced systems introduced later.

Linear SVMs attempt to find a separating hyperplane (cor-
responding to a linear coverage boundary in this problem) 

, , Al b l0w !+ = u  with the largest margin satisfying 
constraints 

 , , for ( ) ; , , for ( ) .w wl b h l l b h l1 1 1 1i i i i$ #+ = + - =-

(17)

The optimal separating hyperplane can be derived by solving 
the following optimization problem [6]:

 minimize , subject to ( ) , , .Ah l l b l
2
1 1w w

,w b
i i i

2 $ !+ u^ h
(18)

However, considering the erroneous input (declarations), an 
appropriate regularization parameter C should be introduced 
to consider the tradeoff between the maximization 
of margin width and the penalty to the erroneous declara-
tions [7] 

 
minimize

subject to ( ) , , , ,

w

w A

C

h l l b l

2
1

1 0

, ,w b
i

i

N

i i i i i

2

1

$ $ !

p

p p

+

+ -

p
=

u^ h

/
 

(19)

where ip  is a slack variable to consider the possibility of erroneous 
declarations.

By introducing Lagrange multipliers , { , , },,i N0 1 2i f$ !a  
the dual form of the optimization problem in (19) can be 
expressed as

 

maximize ( ) ( ) ,

subject to and ( ) , { , , , } .

h l h l l l

C h l i N
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0 0 1 2

i i j i j i j
j
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i
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i i i
i

N
111

1

Ri
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6 f# # !
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a a

-

=

!a ===

=

///

/
(20)

Ground-Truth
Coverage Boundary

Primary
Transmitter

(PTx)

Spectrum Sensor at
Location lj := (xj, yj)

Makes a Declaration
“Uncovered” h(lj) = 1

Spectrum Sensor at
Location li := (xi, yi)

Makes a Declaration
“Covered” h(li) = –1

Primary Receiver (PRx)

Covered Area

Uncovered Area

[fIg6] a generalized illustrative example of the problem of 
coverage boundary detection proposed in [15]. the Prxs can be 
located anywhere inside the Ptx’s coverage area. the solid dots 
represent that the sensors make a declaration as “covered,” and 
circle dots represent those making a declaration as “uncovered” 
by the Ptx. circles inside the ground-truth coverage and solids 
outside the ground-truth coverage are erroneous declarations. 
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The optimal solution , { , , , }i N1 2i f!a*  to (20) can be found 
by a quadratic programming (QP) slover [7] and for any location 

,Al ! u  the decision function for the linear boundary can be 
expressed as 

 ( ) sign ( ) , ,f l h l l l bi i i
i

N

1
a= +* *

=

e o/  (21)

where the threshold b* can be obtained by averaging 
( ) ( ) ,b h l h l l lj j i i j ii

N

1
a= -

=
u /  over all points with 0 j1 1a  

, { , , , } .C j N1 2 f!

NONLINEAR SvM FORMuLAtION
In practice, the ground-truth coverage boundary of the PTx is 
nonlinear, and it can be in arbitrary irregular shape due to wireless 
shadowing fading [37]. To effectively improve the results obtained 
in the last subsection, a nonlinear function U is first used to map 
the original data in the input space X R2=  onto a higher-
dimensional feature space ,F RK=  i.e.,

: ( , ) ( ) ( ( ), ( ), , ( )) .l x y l l l lR RK
K2

1 28 f! !U U U U U= =

(22)

Specifically, in [15], the nonlinear coverage boundary in area 
Au  is simplified as a circular arc, which is written as

 : ( ) ( ) ,f x x y y Rth0
2

0
2 2- + - =  (23)

where ( , )x y0 0  is the location of the PTx, ( , )x y  represents any 
location lying on the coverage boundary, and Rth is the 

coverage radius. The key issue in boundary detection then 
becomes to find ( , )x y0 0  and Rth of minimal detection errors. 
The simplified boundary function in (23) can be rewritten, 
in the form of the separating hyperplane in the feature 
space, as [15]

 : , ( ) ,wf l b 0U + =  (24)

where ( , , ), ,w x y b x y R1 2 2 th0 0 0
2

0
2 2= - - = + +  and a nonlinear 

function is explicitly given as ( ) ( , , ),l x y x y2 2U = +  which is used 
to map the data from the 2-D input space into a three-dimensional 
feature space.

Thanks to the kernel trick, we can derive a more general non-
linear and irregular boundary function without knowing 
the nonlinear mapping ( )lU  explicitly. From a practical point of 
view, to perform nonlinear SVM for coverage boundary detection, 
the key idea is to replace the inner product operator in the linear 
SVM with proper kernels

 , ( , ) : ( ), ( ) , , .Al l k l l l l l li j i j i j i j8 6 !U U= u  (25)

Consequently, the linear decision boundary function in (21) 
can be extended to a more general nonlinear boundary function as 

 ( ) sign ( ) ( , ) ,f l h l l l bki i i
i

N

1
a= +* *

=

e o/  (26)

where ia
* and b* can be obtained in a way similar as that intro-

duced in the last subsection.

MAIN RESuLtS AND INSIGhtS:
Figure 7 illustrates the simulation scenario for coverage 
boundary detection using linear SVM, nonlinear SVM with 
quadratic kernel [15], and nonlinear SVM with polynomial 
kernel ( ),d 5=  respectively. All algorithms are implemented on 
the basis of a powerful SVM MATLAB toolbox [36], where the 
functions of kernel parameter selection are well integrated. It 
appears that the boundary obtained from nonlinear SVM with 
polynomial kernel performs the best in matching to the 
ground-truth boundary, while the boundary obtained from lin-
ear SVM performs the worst.

1) Detection performance comparison: Figure 8 plots the 
mean and standard deviation of error probabilities of 
boundary detection for various SVM algorithms. It is 
shown that, for different sensor densities, i) nonlinear 
SVMs outperform linear SVM (in terms of lower average 
error probabilities), and ii) the proposed nonlinear SVM 
algorithm with polynomial kernel performs much better 
than the nonlinear SVM with quadratic kernel developed 
in [15], which has been designed for circular coverage 
boundary.
2) Computational complexity analysis: The core of an SVM 
is a quadratic programming (QP) problem as shown in 
(20). The computational complexity of QP solvers is data-
set dependent, scaling between O N 2^ h and O N 3^ h [38], 
where N  denotes the number of training samples.

[fIg7] an implementation instance for coverage boundary 
detection. the Ptx is located at (20,150). the received signal 
strength at the ground-truth boundary is assumed to be -70 db. 
the solid dots represent the sensors making a declaration as 
“covered” by the Ptx, and the circle dots represent those making 
a declaration as “uncovered.”
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addItIonal aPPlIcatIons and future dIrectIons
In this article, we have provided an overview of the state-of-the 
art methods and recent advances in applications of kernel-based 
learning for statistical signal processing in CRNs. We have cov-
ered a set of representative works to present in this article. The 
following topics under active research are also worth 
mentioning.

 ■ Kernel supervised/unsupervised learning for robust sig-
nal classification is a major research field. In our recent 
work [16], the most common kernel supervised learning 
method, SVMs, with nonlinear radial basis function (RBF) 
kernel is used to identify legacy radios in a CRN by exploit-
ing multidimensional radio frequency fingerprinting. 
Interestingly, in [39] unsupervised learning methods (both 
KMC and self-organizing maps) are used to distinguish the 
primary signal from the secondary signal in the absence of 
training data, with one basic assumption that the signal 
statistics used for classification are linearly separable. 
Based on the recent theoretical advances in the kernel 
KMC [20] and kernel self-organizing maps [40], this 
assumption can be removed and improved classification 
performance can be expected.

 ■ Kernel online learning for spectrum occupancy prediction 
is an interesting and important application. Spectrum mea-
surement studies (e.g., [41]) have shown that there exist signif-
icant correlations of spectrum occupancies in time, frequency, 
and space, which facilitate the exploitation of benefits from 
spectrum occupancy prediction [42]. Different from most 
existing spectrum prediction algorithms (see the introduction 
of [41]), “online learning with kernels” (e.g., [9] and [43]–[45]) 
provides sound theoretical tools for nonlinear, nonstationary, 
high-dimensional, online time-series prediction.
Finally, we envision that the topic of this article is a fruitful 

research direction, and we hope that this article, with interdisci-
plinary perspectives, will stimulate more interests in KBL theory 
and its applications in the signal processing and communications 
communities.
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