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Abstract—Wireless sensor networks are typically deployed to monitor phenomena that vary over the spatial region the sensor network

covers. The sensor readings may also be dual-used for additional purposes. In this paper, we propose to use the inherent spatial

variability in physical phenomena, such as temperature or ambient acoustic energy, to support localization and position verification. We

first present the problem of localization using general spatial information fields, and then, propose a theory for exploiting this spatial

variability for localization. Our Spatial Correlation Weighting Mechanism (SCWM) uses spatial correlation across different phenomena

to isolate an appropriate subset of environmental parameters for better location accuracy. We then develop an array of algorithms

employing environmental parameters using a two-level approach: first, we develop the strategies on how the subset of parameters

should be chosen, and second, we derive mapping functions for position estimation. Our algorithms support our theoretical model for

performing localization utilizing environmental properties. Finally, we provide an experimental evaluation of our approach by using a

collection of physical phenomena measured across 100 locations inside a building. Our results provide strong evidence of the viability

of using general sensor readings for location-aware applications.

Index Terms—Localization, sensor networks, wireless networks.

Ç

1 INTRODUCTION

ALTHOUGH the data associated with sensor readings in
sensor networks might be intended to drive specific

applications, e.g., the remote monitoring of temperature,
this wealth of data may also be dual-used for additional
purposes. In particular, since the purpose of a sensor
network is to provide sampling of a physical phenomena
across a wide geographic/spatial distance, the close link
between sensor data and location may be used to assist in
applications involving localization and position verification.

In this paper, we propose the use of spatially varying
environmental properties to support localization, without
requiring the deployment of a localization infrastructure and
additional access points (i.e., landmarks, with known loca-
tions). We present the problem of localization using general
spatial information fields. We examine the use of physical
properties, such as temperature and ambient acoustic/RF
energy, and explore whether the inherent spatial variability
may be used to localize the position of a mobile entity.

Each physical parameter has its unique spatial character-
istics relative to the environment. For computational savings,
it is desirable to use the most efficient subset of environ-
mental properties that captures spatial variability. We
propose a scheme, Spatial Correlation Weighting Mechan-
ism (SCWM), which can guide in parameter selection by
determining the parameter combination with the strongest
discriminative characteristics needed for localization.

In our localization model, an array of sensors has been
initially deployed for environmental monitoring. These
sensors are stationary and the deployment information, such
as locations of the sensors, is known to the system. The data
collected are used as a baseline database, and a user reports
the physical readings at its location. We further developed a
set of algorithms, employing environmental properties, to
determine a user’s position. A two-level approach is taken:
first, we perform parameter selection, and then, we take
measurements to localize. More specifically, 1) from the
perspective of how the subset of parameters should be
chosen, we present the Flexibly choosing Environmental
Parameters (Flex-EP) algorithm that tries to find a globally-
optimal parameter subset; further, the Progressive Flexibly
choosing Environmental Parameters (Prog-Flex-EP) algorithm is
presented, which is a sequential algorithm that locally
customizes the best set of parameters for each user and
2) we implemented different schemes in mapping the
selected set of parameters to a physical location.

To validate our approach, we collected an array of
environmental parameters at 100 locations in a real building
environment. Using these data for our experiments, we
found that SCWM is highly effective in evaluating and
selecting the parameter subset with the highest discrimina-
tive power. Further, we observed that environmental
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parameters have localizing capability. By using environ-
mental readings plus the Received Signal Strength (RSS)
from one access point, we can achieve qualitatively the
same performance as traditional localization schemes
employing RSS with at least four access points [1]. More-
over, under the assistance of additional environmental
parameters, the localization performance can be refined and
improved over traditional approaches.

In summary, our contributions in this work include:

. A localizing mechanism that uses existing sensor
network readings and does not need additional
localization infrastructure.

. An environmental parameter selection method that
optimizes the subset of parameters for localization.

. An approach that uses these environmental readings
to refine conventional localization results.

The remainder of this paper is organized as follows: In
Section 2, we provide an overview of our problem. We then
formulate the theoretical model of exploiting environmental
properties for localization and propose SCWM in Section 3.
Next, in Section 4, we present a spectrum of algorithms that
we developed. Section 5 shows our experimental metho-
dology and our evaluation results. In Section 6, we discuss
in depth about two issues, given the result of our
experiments. We then place our work in the context of the
broader localization literature in Section 7. Finally, we
conclude in Section 8.

2 PROBLEM OVERVIEW

Wireless sensor networks typically record environmental
readings corresponding to underlying physical information
fields for high-level applications to utilize. For instance,
temperature, humidity, and ambient acoustic energy are
common environmental parameters under constant mon-
itoring. The fact that these data are measurements of the
environment in a specific area and at a specific time interval
suggests that they can be used for spatial localization, as
well as their original purpose.

Our proposed model for utilizing the environmental
readings for localization and position verification is built
upon existing wireless sensor networks, as presented in Fig. 1.
In the area of interest, there are sensors deployed to perform
environmental monitoring. Sensors periodically report en-
vironmental readings back to Base Stations. The sensors are
stationary and their locations are known to the Base Station.
The reported environmental information is stored in a
database, associated to the sensors’ location information, in

real time for retrieval by the upper level applications. A
management entity containing data processing and analysis
capabilities, the AnalysisManagerðAMÞ, calculates a user’s
location. The AM can be combined with the base station or
operate alone in a centralized manner or run with multiple
distributed instances. If theAM is operating by itself, theAM
should be able to access the environmental readings stored in
the database shown in Fig. 1.

A user, when it wants to get its position, first sends a
request message to AM. After receiving the request, the
AM asks the user to provide environmental readings
observed at that time by the user. By running localization
algorithms utilizing environmental properties, AM then
compares the user’s readings to the environmental data
(provided by sensors) stored in the database and
estimates the user’s location.

The traditional approach for localization is to deploy
enough landmarks, which measure the received signal
strength, with known positions in an area of interest to
assist in localization. There maybe cases, however, where
there are not enough landmarks in the area of interest (e.g.,
due to cost limitations), to actually localize. Further, it is not
always possible to deploy more landmarks due to environ-
mental constraints. In addition, for certain applications,
such as position verification in Spatial Access Control [2],
[3], very high location accuracy results are not needed, so
additional landmarks would be wasteful. Thus, it is
advantageous to use environmental properties from sensor
networks to help determine and verify positions without
requiring the infrastructure of additional landmarks.

3 THEORETICAL APPROACH

In this section, we present the theoretical underpinnings
behind using environmental properties for localization. We
first propose a generalized measurement model, and then,
provide rules to evaluate each parameter’s localizing
capability. Finally, we present mechanisms for parameter
selection to assist in localization and position verification.

3.1 A Generalized Measurement Model

Let E ¼ ðe1; e2; . . . ; enÞ denote the vector of environmental
properties that are monitored by the sensors, where ei is the
value of the ith environmental parameter. These parameters
have the property that they are recorded in the spatiotem-
poral domain, which means that they may vary with
location and time. Thus, the value of the parameter vector at
position p and time t can be expressed as

Ep;t ¼ e1ðp; tÞ; e2ðp; tÞ; . . . ; enðp; tÞ½ �: ð1Þ

Here, p is a spatial position, which can be one-, two-, or
three-dimensional. In this study, we focus on p in a two-
dimensional space. More generally speaking, p can
represent a point ðx; yÞ or a region. Let � ¼ P � T be
the spatiotemporal region [2] that we are interested in,
and E be the domain of environmental parameter values,
then there exists a mapping f : � �! E that takes the
physical position p and maps it to an environmental
parameter reading Ep;t, as presented in Fig. 2. fðp; tÞ ¼ Ep;t

represents the environmental readings recorded at the
spatiotemporal location ðp; tÞ. The inverse mapping from
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Fig. 1. Using environmental properties for spatial determination.



E to � enables localization and position verification from
environmental properties.

At a fixed time t, the function ftðx; yÞ ¼ fðx; y; tÞ induces a
probability density function � on E. We further define the
function �ðE; �Þ to be the probability of having value ftðx; yÞ 2
ðE; �Þ as presented in Fig. 3, when a position ðx; yÞ is chosen
randomly from an uniform distribution from X � Y . Here,
ðE; �Þ denotes the �-ball around E. Note that �ðE; �Þ is the
integral of the probability density function over the region
ðE; �Þ. Given an environment measurement reading E, in
order to find the corresponding physical position, we want to
find the regionp � � such that ðE; �Þ � E is mapped back top.
In other words, we want to find the inverse mapping
p ¼ f�1

t ðE; �Þ ¼ fðx; yÞ : fðx; yÞ 2 ðE; �Þg. Usually, � has fi-
nite area, and we can normalize it to have Areað�Þ ¼4 1. It is
clear that AreaðpÞ ¼ �ðE; �Þ, as shown in [4].

We also note that in order to localize a user in a two-
dimensional space, simply using a single environmental
parameter is generally not sufficient. Thus, multiple envir-
onmental parameters are desirable for localization and
position verification. However, using all the available
environmental parameters for localization may result in
high computational complexity and cost. We would like to
choose subsets of parameters that consist of enough para-
meters to provide reasonable localization accuracy. Next, we
provide an analysis to evaluate environmental parameters
and derive methods for effective parameter selection.

3.2 Parameter Evaluation

Different parameters have different characteristics in terms
of value changes across various physical locations and time.
For certain parameters, the values may vary largely across

different locations. The physical phenomena reported by
these kind of parameters can be utilized to distinguish
between locations. We define such parameters as having
large discriminative power. On the other hand, the values of
some parameters may vary little within the area of interest.
Fig. 4 is an illustration of a parameter H belonging to this
category. It has the same value h0 throughout the physical
region, thus in the parameter space E, �ðh0Þ ¼ 1. Such a
parameter does not have the ability to distinguish between
physical locations, and thus, has poor localization accuracy.

It is important to choose a parameter subset so that the

combination of the parameters in the subset has enough

discriminative power to support localization. Carelessly

choosing a parameter subset may even result in localization

errors, as shown in Fig. 3, where two far-away regions p2

and p3 in the physical space have the same environmental

readings ðE2; �Þ. The inverse mapping would result in

f�1
t ðE2; �Þ ¼ p2

S
p3. This indicates that the subset of

parameters in this case is not sufficient for localization.
To summarize, in order for an environmental parameter

or a subset of environmental parameters to contribute in

localization and position verification, they should have the

following characteristics:

1. The subset of parameters should have large dis-
criminative power. We found that a parameter that
contributes largely to location accuracy must have
large variance across the environment. On the other
hand, a parameter with large variance may not
necessarily help to improve its localization capabil-
ity. Contrary to intuition, the correlation between
parameters was not an important factor in location
accuracy.

2. The parameter readings with similar values should
map to sensors positioned close to each other. This
will eliminate large localization errors.

3. There must exist a spatial correlation for the
parameter readings so that similar values for
parameter readings will result in locations close in
the physical domain.

3.3 Parameter Selection

Next, we develop a series of approaches to help select

environmental parameters that when combined have great-

er capability for localization and position verification.
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Fig. 2. Theoretical model: physical domain versus environmental
properties domain.

Fig. 3. Function f induces a probability density function � in
measurement domain E.

Fig. 4. An illustration of a “bad” environmental parameter that does not
contribute to localization.



3.3.1 Parameter Dispersion

Conceptually, for an environmental parameter ei, the more
disperse the values are, the better the discriminative power
is for this parameter. In statistics, there are several ways to
measure dispersion of a parameter, such as range, variance,
standard deviation, and average absolute deviation.

However, none of these measurements are complete,
since they only look at the data itself and neglect the spatial
relationships between the data and the physical environ-
ment. For example, if the data readings from two different
environmental parameters have the same distribution, their
dispersions are about the same. However, they may result in
very different accuracy if used for localization. Suppose both
of them have a subset of readings with the same value, but
for one parameter, the same-value readings are clustered,
while for the other parameter, the same-value readings are
scattered among the region. The latter parameter will
generate larger errors when applied in localization.

Further, we found that the cross-parameter relationship,
covariance, does not heavily contribute to localizing
capability. Instead, the spatial relationship dominates
localization accuracy. This leads us to look for metrics that
take into consideration of the spatial correlation when
evaluating an environmental parameter, in addition to the
parameter dispersion.

3.3.2 Data Normalization

Different from the traditional localization methods [1], [5],
the data sources in our problem are from different kinds of
environmental parameters, such as temperature, humidity,
ambient acoustic energy, etc. Different environmental
parameters have different units and different ranges of
values. For example, in our experiments, the temperature
readings range from 65.2F to 77.3F, whereas Received
Signal Strength values range from �59:8 to �99dBm. In
order to choose a subset of environmental parameters
working together for localization purpose, we need to
compare and calculate the contribution of each parameter
directly. We normalize the data using the classical statistical
approach: enormi ¼ ei��i

�i
, where �i and �i are the mean and

standard deviation of the parameter ei. We then work with
the normalized data enormi for the rest of our study.

3.3.3 Spatial Correlation Weighting Mechanism

A natural approach for selecting parameters is to slice the
domain of the environmental parameters E into equal-sized
bins. Then, for parameter readings falling within the same
bin, we calculate their corresponding distances in the
physical space for every pair of sensors. Based on our criteria
for parameter evaluation (items 2 and 3 in Section 3.2),
among all the possible combinations of fixed-size parameter
subsets, a parameter subset that results in the smallest
averaged physical distance per bin is the optimal parameter
subset with the highest combined discriminative power for
that size of parameter subsets.

The size of the bin and the number of bins are the two
critical factors. We found that different parameter subsets
behave differently on different bin sizes. In order to give a
thorough evaluation of parameters, we need to vary the bin
size and come up with a way to combine the results from
different bin sizes to make a fair judgment. In addition, the

disadvantage of this approach is that the number of bins
(and hence, computational complexity) needed to increase
exponentially with the number of environmental para-
meters in a parameter subset. Thus, the computational
complexity increases exponentially with the size of the
parameter subset. It is not desirable to use a metric that has
potentially high computational complexity. To solve these
problems, we have developed a method whose complexity
does not change much with the size of parameter subset
and inherently solves the different bin-size problem. We
now present this method, the SCWM.

The important factor to take into consideration when
performing parameter selection is to analyze how far away
two positions can be in the physical domain P, given a
distance in the environmental parameter domain E. The
SCWM calculates a sum WðKÞ of pairwise weighted
distances in P, which gives larger weight to similar
parameter readings in E and smaller weight to more
different parameter readings. If we define K to represent a
set of parameter indices chosen to form the parameter
subset, WðKÞ is defined as follows:

WðKÞ ¼
X

pi;pj; i6¼j
wi;j � di;j

¼
X

pi;pj; i6¼j
wi;j � kpi � pjk2;

with wi;j ¼
1

1þ � � kek2KðpiÞ � ek2KðpjÞk2
;

ð2Þ

where � is a scaling factor. We call wi;j the parameter weight,
which takes values from ð0; 1�. The computational complex-
ity does not dramatically increase with the number of
parameters in a parameter subset when using SCWM for
parameter selection.

Fig. 5 illustrates how SCWM helps to choose the
parameter subset with the highest discriminative power.
We describe three typical scenarios during SCWM calcula-
tion. The first scenario is shown with position pair p2 and p3.
The two positions are close to each other and have similar
parameter readings. The contribution of the parameter
weight w2;3 is large, close to 1. But the resulting ðw2;3 � d2;3Þ is
small because d2;3 is very small. Next, position pair p1 and
p4 is farther away from each other and their parameter
readings are very different. In this case, the contribution of
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Fig. 5. Three scenarios under SCWM calculation: 1) position pair

fp2; p3g; 2) position pair fp1; p4g; and 3) position pairs fp1; p3g and

fp1; p2g. The relationship is: ðw1;3 � d1;3Þ > ðw1;2 � d1;2Þ � ðw1;4 � d1;4Þ and

ðw2;3 � d2;3Þ.



the w1;4 is very small and much less than 1. The above two
scenarios satisfy the theory requirements of better location
accuracy described in Section 3.2. Finally, we look at a poor
scenario with position pairs fp1; p3g and fp1; p2g. Their
parameter readings are the same or very similar, but they
are farther away from each other. The contribution of the
parameter weight is large, especially for w1;3 which reaches
its maximum, equaling to 1. Both ðw1;3 � d1;3Þ and ðw1;2 � d1;2Þ
are also large because the distances are farther away.

For a fixed number of parameters, SCWM calculates all
the pairwise weighted distances over all the possible
combination of parameters. The parameter subset with
most of its readings following the patterns described in the
first two scenarios will result in the final value of WðKÞ to
be small. While the parameter subset having most of
readings similar to the third scenario we presented, the
calculated value of WðKÞ will be large. The parameter
subset that results in the minimum value of W ðKÞ is the
optimal parameter combination that contains the highest
discriminative power for performing localization. SCWM
can sort all the possible combination of parameters under a
fixed-size parameter subset in the descending order from
the highest discriminative power to the lowest discrimina-
tive power for localization. In Section 5, we present
experimental results utilizing SCWM.

4 ALGORITHMS

In this section, we present our algorithms for using environ-
mental parameters, assisted by SCWM, for localization.

4.1 Overview

There are two important aspects when developing algo-
rithms using environmental parameters for localization: one
is how to choose the subset of parameters given a fixed
number of parameter set, e.g., choose all at once or choose
one at a time; and the other is to derive a mapping function
from environmental parameters to a physical location.
Taking into consideration of these two aspects, we used a
two-level approach and developed an array of algorithms
employing environmental properties.

First, we propose two basic algorithms, namely, Flex-EPs
and Prog-Flex-EPs for selecting parameters. Given a set of
parameters � that is chosen from all the available environ-
mental parameters using SCWM, Flex-EP chooses the subset
of parameters in one shot based on the results from SCWM,
while Prog-Flex-EP progressively chooses one parameter at
a time until reaching the number of parameters defined by
the parameter subset. Thus, Flex-EP tries to find a global-
optimal parameter subset, while Prog-Flex-EP locally custo-
mizes the best set of parameters for each testing point.

Next, we consider how position estimation is carried out.
We implement the basic algorithms using two types of
mapping functions, denoted by -Dist and -Prob. -Dist
utilizes nearest neighbor matching in the parameter space,
whereas -Prob employs a statistical maximum likelihood
estimation approach. We derived four algorithms to per-
form location estimation and position verification: Flex-EP-
Dist, Flex-EP-Prob, Prog-Flex-EP-Dist, and Prog-Flex-EP-Prob.

In addition, we developed variants of the above
algorithms extending from their basic ideas. -Avg is a

variant for the -Dist function, which finds the centroid of the
top k returned locations. The -CM variant is derived from
the -Prob function that returns the center of mass of the top
locations satisfying a threshold probability rule. The
summary of the algorithms and their variants is presented
in Table 1. We discuss the details of each algorithm in the
following sections, and later present experimental results.

4.2 Flex-EP

Flex-EP-Dist. Flex-EP-Dist finds the minimum distance in
the domain of environmental parameters between the
observed readings Eobs

� reported by the user and the
collection of measurements recorded by the sensor network,
which are stored in the database, as shown in Fig. 1. Flex-
EP-Dist reports the position of the closest sensor as the
location estimate of the user.

We use Flex-EP-Dist-Basic to represent the basic version of
Flex-EP-Dist. Fig. 6 presents the pseudocode that implements
Flex-EP-Dist-Basic. Further, its variant Flex-EP-Dist-Avg
chooses the top k sensors that are closest to the user’s reading
in parameter space and returns the centroid of the k locations,
with k > 1.

Flex-EP-Prob. Instead of calculating the distance in
parameter space between a user’s measurement and each
sensor’s reading as in Flex-EP-Dist, Flex-EP-Prob takes the
approach of calculating the probability that the user is at each
position and choosing the one with the maximum likelihood
as the estimation of the user’s location. In order to support a
probabilistic formulation of our localization problem, we
employ several practical assumptions. First, we assume that
the sensor network provides accurate sampling of the
environment, and specifically, a sensor at position pj will
measure the value of the ith environmental parameter as ei.
On the other hand, in order to account for measurement
errors relative to the sensor nodes, we assume that a user’s
measurements at a position pj will be distributed in a
Gaussian manner about the sensor’s measurement at that
position. That is, a user’s measurement at positionpj will have
mean �I;j ¼ eiðpj; tÞ, with a standard deviation �i. Addition-
ally, for tractability of our formulation, we assume that the
user’s environmental parameters are independent of each
other, and thus, at position pj, the vector random variable
E� ¼ ðE1; E2; . . . ; EkÞ, where k is the cardinality of the
parameter subset �, follows a multivariate Gaussian density:

fE�;pj ð~e1; . . . ; ~ekÞ ¼
Yk
i¼1

fEi;pj ð~eiÞ

¼ 1

ð2�Þk=2Qk
i¼1 �i

exp � 1

2

Xk
i¼1

ð~ei � �i;jÞ2

�i2

 !
;

ð3Þ

with ~ei being the user’s measured values. Given a user’s
observed parameter vector EObs

� ¼ ð~e1; ~e2; . . . ; ~ekÞ, we can
calculate the probability of being at position pj by using
Bayes’ rule:

P ðpj; tÞjEobs
�

� �
¼
P Eobs

� jðpj; tÞ
� �

� P ðpj; tÞ
P ðEobs

� Þ
: ð4Þ

Further, we may assume a uniform distribution over
possible user locations, i.e., P ðpj; tÞ ¼ 1

N ; 8 j, where N is the
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total number of possible locations. Also, we note that

P ðEobs
� Þ is a constant; thus, we have

P
�
ðpj; tÞjEobs

�

�
¼ c � P

�
Eobs

� jðpj; tÞ
�
: ð5Þ

Given the fact that the user must be localized to one of

the N sample locations, by using the density function from

above, we can calculate the probability of being at each

location:

P
�
ðpj; tÞjEobs

�

�
¼ c � fE�;j

�
Eobs

�

�
; ð6Þ

where c ¼ 1=
PN

j¼1 fE�;j ðEobs
� Þ. Finally, the basic version of

Flex-EP-Prob, i.e., Flex-EP-Prob-Basic, chooses the position

with the highest probability as the location estimation.

Moreover, the variant Flex-EP-Prob-CM sorts the prob-
abilities in descending order, and then, picks the top k
locations ðpi1 ; . . . pikÞ such that the sum of their probabilitiesPk

m¼1 pim 	 �, where � is an adjustable threshold. Flex-EP-
Prob-CM returns the center of mass of these locations (with
high probabilities) as the location estimation:

ðx̂; ŷÞ ¼
Xk
m¼1

pimxim ;
Xk
m¼1

pimyim

 !
: ð7Þ

4.3 Prog-Flex-EP

Prog-Flex-EP is a successive refinement localization meth-
od. Instead of choosing all the parameters of a parameter
subset at once (as described in Flex-EP algorithms), Prog-
Flex-EP sequentially chooses one parameter at a time from
the parameter subset. In each round, Prog-Flex-EP picks a
parameter Ei which is most effective, i.e., with high
discriminative power when combined with parameters
already chosen from the previous rounds based on
SCWM. Further, according to the combined parameters
E� ¼ ðE1; E2; . . . ; EiÞ, in every round, the location candi-
dates are refined by choosing a subset from the candidate
locations eP from the previous round. This procedure
repeats until it finds a solution with high confidence or
reaches the maximum number of parameters given a fixed
size of the subset of parameters.

Fig. 7 illustrates how the successive refining location
candidates is performed. Suppose at round i� 1, the
candidate location areas are �1, �2, and �3, as shown in
Fig. 7, while the true location is shown as a star residing
within �2. At round i, based on the newly combined
parameter subset, we sort the candidate locations according
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Fig. 6. The Flex-EP-Dist-Basic algorithm.

TABLE 1
Summary of the Algorithms Employing Environmental Properties



to the appropriate criteria and select the ones that are
within the threshold, as the new candidate location set. We
note that the threshold is a general concept: it could
indicate the cumulative probability confidence 	 or the
individual probability threshold � in the algorithm variants
of Prog-Flex-EP, which will be discussed shortly. As
illustrated in Fig. 7, the new candidate set excludes areas
�1 and �3 and a partial area of �2 (shown as a shaded
region) that contains the true location.

Therefore, in the approach of Flex-EP, we select the
overall best K environment properties beforehand and
always use that same set of properties for location
estimation. Whereas in Prog-Flex-EP, the next selected
parameter is subject to change based on the results from
the former rounds. In reality, it could be that at different
locations, the environmental properties that best distinguish
this location from others are different. For example, in one
location, the three best parameters are RSS, barometric
pressure, and light, while in another location, they could be
temperature, RF energy, and humidity. Thus, the approach
of Prog-Flex-EP gives the localization process a chance to
locally customize the sets of parameters used.

The key challenge for Prog-Flex-EP is how to evaluate the
candidate locations at each round and decide on the
candidates for the next round. We further developed
Prog-Flex-EP-Dist and Prog-Flex-EP-Prob with regard to
their different criteria used for ranking the candidate
locations and setting the threshold cutoff.

Prog-Flex-EP-Dist. Prog-Flex-EP-Dist ranks the candidate

locations at each round based on the euclidean distance

between the observed readings and the readings at each

location in eP in the parameter space using the current

parameter set E�. Then, it selects jPnewj ¼ d
 � j eP je as the

number of candidates for the next round. Here, 
 is an

adjustable selection ratios with 0 < 
 
 1 (e.g.,
 ¼ 0:3), and j eP j
denotes the number of locations in eP . Fig. 8 presents the

pseudocode that implements Prog-Flex-EP-Dist-Basic. We

note that different selection ratio will result in different

localization results. Smaller ratios allow us to refine our

candidate list faster, thus permitting more effective para-

meter selection. However, it could also result in eliminating

too many candidate locations, which increases the risk of

throwing out the correct candidates prematurely. Thus,

choosing an appropriate selection ratio 
 will allow Prog-

Flex-EP-Dist to be robust.
Prog-Flex-EP-Prob. Similar to Flex-EP-Prob, Prog-Flex-

EP-Prob calculates the probability that the user is at each
sample location, but based on the current progressively

obtained parameter set � instead of the whole parameter
subset. Further, we define a confidence 	 as the threshold
cutoff level. Given a confidence 	, we pick the set of most
likely locations such that the sum of their probabilities is
larger than 	.

We note that in this algorithm, 	 represents a cumulative
threshold from each round: the larger the 	, the more
candidates are chosen for the next round. Ideally, a
threshold would keep the sample locations that have
obviously high probabilities to the observed readings, and
eliminate those candidates that have much lower probabil-
ities. In some cases, a cumulative threshold may not
provide the desired effect. Fig. 9 presents three scenarios
with different probability distributions. In each scenario, the
shaded area shows the probabilities that accumulate to the
confidence 	, as an example 	 ¼ 75 percent, and the solid
blue line on the bottom shows the sample locations picked
by this cumulative threshold. � is an individual probability
value used as threshold. Using � as the cutoff, every sample
location with probability greater than � is picked to enter
the next round and the others are thrown away. The dotted
line shows the sample locations picked by using � as the
threshold. In either Fig. 9a or Fig. 9b, there is a significant
drop in each of the probability distribution. Keeping the
locations before the drop and eliminating the rest would be
desirable. But in Fig. 9a, we accumulated enough prob-
ability before the drop, so some “good” sample locations
still with high probabilities are prematurely eliminated,
whereas in Fig. 9b, many unlikely candidates are unneces-
sarily included since not enough probability is accumulated
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Fig. 7. The location estimation is refined by sequentially choosing new
parameters, leading to successfully smaller subset of locations.

Fig. 8. The Prog-Flex-EP-Dist-Basic algorithm.

Fig. 9. Prog-Flex-EP-Prob: Comparison of candidates selection when
using cumulative probability confidence 	 and individual probability
threshold � .



before the drop. These low-probability points may become
the reason to cause confusion in the next round. In these
two cases, however, an individual threshold � does a better
cutoff. The individual threshold � is related to the number
of current candidates. We define the threshold � to be

1

C � j eP j ;
where C is an adjustable constant. Fig. 9c presents that
under a normal situation, the selection results of using
confidence 	 and threshold � are the same.

Moreover, in order to compare to the Flex-EP
approaches, two variants out of the basic algorithms:
Prog-Flex-EP-Prob-Avg and Prog-Flex-EP-Prob-CM, are de-
veloped based on the current progressively obtained
parameter subsets �.

5 EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation
results.

5.1 Experimental Methodology

In order to study the effectiveness of using environmental
properties for localization and position verification, we
conducted experiments in a real office environment, the
third floor of the Computer Science building at Rutgers
University, as shown in Fig. 10. For over 100 locations on
the floor, shown as small blue dots, we collected environ-
mental readings at these locations over a one-week period
of time. This simulated the setup of a sensor network
consisting of 100 sensors.

The environmental parameters that we studied are
temperature, humidity, acoustic noise, spectrum energy,
and RSS. The RSS readings are collected from two 802.15.4
(ZigBee) networks, each with four Access Points (APs)
deployed across the floor. One network has four APs
deployed horizontally across the floor shown as triangles,
and the other has four APs distributed in a rectangular
pattern shown as squares. The access points used were
Telosb motes.

To simulate a scenario where only one base station is
available in the area of interest, we will choose only one RSS
reading (in decibel meters) when forming the parameter
subset. Further, we used a Wi-Spy spectrum analyzer [6] to
record the spectral energy at each location. It records the
signal amplitude (in decibel meters) versus the frequency
from 2.400 to 2.485 GHz. At each testing location, we picked

two frequencies (2.435 and 2.465 GHz) and calculated their
maximum and average amplitude, respectively, over the
recording period. Note that the RSS is the received signal from
a beacon packet, while the spectrum energy is the ambient RF
energy corresponding to a specific frequency range.

For acoustic noise, our intuition is that the behavior of the
parameter can vary largely during daytime and nighttime.
Thus, we collected readings of ambient noise (in decibels) for
both day and night. Moreover, we measured the humidity (in
percentage) using a digital hygrometer and temperature (in
Fahrenheit) using a thermometer, respectively, at each
location. Table 2 is a summary of the parameters and the
devices that we used to conduct experiments.

5.2 Evaluation of Individual Parameters

We first study the dispersion of individual environmental
parameters through parameter variance. Table 3 presents
the results of the variance for each individual parameter.
We found that the maximum value of the spectral energy
and the RSS have large variance across the area of interest,
while the average value of the spectrum energy, tempera-
ture, humidity, and ambient noise do not vary much across
the experimental floor. Both daytime and nighttime read-
ings of ambient noise have smaller variance compared to
other environmental parameters. For the rest of the paper,
we will use the ambient noise data collected at night. The
sample maps of spectral energy at 2.435 GHz, RSS from
AP2, and ambient noise are shown in Fig. 11. The irregular
shape of signal maps is due to the limitation of our data
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Fig. 10. Layout of the experimental floor.

TABLE 2
Summary of Environmental Parameter Measurement

TABLE 3
Results of Single-Parameter Dispersion



collection. We can see that the sample readings of ambient
noise do not change much across the whole floor, while both
the maximum values of spectrum samples at 2.435 GHz and
the RSS readings from AP2 present large variance indicating
high discriminative power to describe the uniqueness of
each location on the floor.

5.3 Effectiveness of Parameter Selection

In this section, we present the results of parameter selection
using SCWM. We then evaluate the effectiveness of SCWM
by comparing the cumulative distribution function (CDF) of
localization errors under different sizes of parameter
subsets with traditional localization methods.

Parameter selection using SCWM. Table 4 presents the
results of WðKÞ calculated from SCWM with the size of K
equal to 1, 2, 3, 4, and 5, respectively. We have shown a
representative subset of parameters in Table 4 with “good”
and “bad” indicating that the value of WðKÞ is smaller or
larger. As we described in Section 3.3, the smaller the value
of WðKÞ for a parameter subset, the higher the discrimina-
tive power the parameter subset has. From our experi-
mental results, we found that the parameter subset
containing all the RSS parameters will result in the
minimum value of W ðKÞ. This is because the parameters
of RSS readings have the largest variance, also have high
spatial correlation, and thus, can uniquely describe the
physical variability across the experimental floor. However,
since we also interested in the situations where there is no
localization infrastructure available, we may rely on the
additional environmental properties to assist in localization
and position verification. Thus, the parameter subsets
displayed in Table 4 only involved at most one RSS
parameter in the subset.

Localization using environmental parameters. Based on
the parameter selection results obtained from SCWM, we
further conducted localization with these parameter subsets
utilizing the Flex-EP-Dist-Basic and Flex-EP-Dist-Avg algo-
rithms. In order to compare the performance of our
approach, we need to compare with a performance bench-
mark in the current localization research. The traditional
RADAR algorithm [1] and its corresponding variants are
used for our comparison, which utilize the RSS readings
collected from four APs in our ZigBee network with the
horizontal AP deployment.

Fig. 12 presents the CDFs of localization errors for FLEX-

EP with the size of the parameter subset set to 2, 3, and 4,
respectively. The localization results using RADAR are
presented as a comparison. In each figure, the results from
RADAR are presented using thinner black dash-dot lines
(for regular RADAR) and black dotted lines (for RADAR-
Avg algorithm), and the results from our algorithms are
showed in thicker red lines. Figs. 12a and 12d are the results
using two parameters in the parameter subset. The localiza-
tion results when using RSS from AP4 and acoustic noise are
better than using humidity and 2.435 GHz Avg. This is
because the parameter, RSS from AP4, has large variance
and better spatial correlation across the experimental floor.
Thus, the parameter subset, {RSS from AP4, acoustic noise},
has smaller SCWM value than the set of {humidity, 2.435 GHz

Avg}. The performance of Flex�EP using two parameters
is not as good as the performance of RADAR.

Next, Figs. 12b and 12e show the error CDFs when
using three parameters in the parameter subset. We
added one more parameter with high discriminative
power, 2.465 GHz Max, into the “good” parameter set
of two parameters shown in Fig. 12a. Fig. 12b presents
the results of using {acoustic noise, 2.465 GHz Max, RSS

from AP4}. We found that when using two environmental
parameters with high discriminative power (2.465 GHz

Max and RSS from AP4) and one parameter with low
discriminative power (acoustic noise), the performance of
Flex-EP is qualitatively similar to traditional RADAR
algorithms, which uses four RSS parameters. In Fig. 12e,
each parameter in the parameter subset {temperature,
humidity, 2.465 GHz Avg} has low discriminative power
and results in a larger SCWM value, as shown in Table 4.
Hence, using these properties for localization yields
slightly worse performance than RADAR.

730 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 5, MAY 2010

Fig. 11. Sample data maps of individual environmental parameters. (a) Max 2.435 GHz Wi-Spy (in decibel meters). (b) RSS from AP2 (in decibel
meters). (c) Ambient noise (daytime) (in decibels).

TABLE 4
Evaluation of SCWM with Different Size of Parameter Subsets



Further, we examined the localization error CDFs when
using four environmental parameters in Figs. 12c and 12f. In
Fig. 12c, we still use two environmental parameters
containing high discriminative power, 2.465 GHz Max and
RSS from AP4, while acoustic noise and temperature do not
vary much across the experimental site. Again, we observed
that the performance of Flex-EP is about the same as the
RADAR and its variants. Moreover, under the assistance of
two environmental parameters with low discriminative
power, the performance is slightly improved over the three-
parameter subset case, as shown in Fig. 12b.

These results indicate that choosing two environmental
parameters containing high discriminative power is enough
to produce comparable performance to the traditional
localization approaches employing RSS with at least four
access points. On the other hand, as shown in Fig. 12f,
simply adding environmental parameters with low dis-
criminative power into a parameter subset does not
significantly improve the localization performance.

Fig. 13 shows the efficiency of SCWM in one picture.
Given a set of parameters K, the point on the curve
shows the calculated value of WðKÞ according to SCWM
and the bar below the point shows the actual average
error distances using the corresponding set K. According
to the theory of SCWM, we predict that the sets on the
blue curve with squares, which is denoted as WðKÞ (Bad
set), will perform worse than the sets on the purple curve
with triangles, which is the W ðKÞ (Good set) curve,
because they have larger values of WðKÞ. The fact that
the bars of Avg Err (Good set) are always lower than the
bars of Ave Err (Bad set), which demonstrate that our
SCWM consistently predicts the performance of para-
meter subsets for localization.

Since when using RSS for localization, the performance

across a broad spectrum of algorithms was found to be

about the same [5], we conclude that utilizing SCWM for

parameter selection and our algorithms is effective and can

achieve similar performance to a broad array of traditional

localization algorithms. The similar performance is very

encouraging as it indicates that utilizing environmental

properties can effectively determine the position of a user.

5.4 Algorithm Performance Comparison

Flex-EP and its variants. The performance results for Flex-

EP-Dist-Basic, Flex-EP-Dist-Avg, Flex-EP-Prob-Basic, and

Flex-EP-Prob-CM are presented in Fig. 14a. The selection

ratio 
 is set to 0.5 for Flex-EP-Prob algorithms. In both sets of

the experiments, we use four parameters in which only one

is RSS. We observed that Flex-EP and its variants perform

similarly. When using parameter set f1; 4; 6; 16g (see
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Fig. 13. Summary of the efficiency of SCWM across different parameter
subsets.

Fig. 12. Comparison of localization errors using CDF. (a) Two parameters (good): index 4, 12. (b) Three parameters (good): index 4, 6, 12. (c) Four
parameters (good): index 1, 4, 6, 10. (d) Two parameters (bad): index 2, 7. (e) Three parameters (bad): index 1, 2, 8. (f) Four parameters (bad):
index 1, 2, 4, 7.



Table 2), the results of Flex-EP-Prob, as shown in blue lines,
are always higher than the black lines, which are the results
of RADAR; thus, we observed Flex-EP-Prob outperforms
RADAR in this setting. The result of the Flex-EP-Prob-CM
algorithm is shown under threshold � ¼ 0:95. We also tested
on � ¼ 0:99 or 0.75, and the results are similar.

Prog-Flex-EP and its variants. The performance results
of using Prog-Flex-EP-Dist-Basic, Prog-Flex-EP-Dist-Avg,
Prog-Flex-EP-Prob-Basic, and Prog-Flex-EP-Prob-CM are pre-
sented in Fig. 14b. The results of Prog-Flex-EP-Prob algo-
rithms are obtained with cumulative probability confidence
	 set to 0.95. In each test, we allow the use of only one RSS
parameter in addition to all the other parameters. The
program will determine which parameters to use as it runs.
Fig. 14b shows that the progressive methods can achieve
localization performance equal to or better than RADAR.

Determining threshold. Fig. 15 shows the average error
distance over all the testing points when using different RSS
parameters and different settings of the selection ratio 
.

The results show that usually the best performance
happens when the selection ratio 
 is set to 0.5 or 0.3. This
trend agrees with our analysis in Section 4, which indicates
that smaller ratios are more effective in eliminating the
“noise” locations, and thus, improves the result; but with a
too small ratio (e.g., 0.2), the error distances increase
because correct locations are thrown out prematurely. We
also observed that there is no obvious advantages of using
the basic methods over the ones employing averaging.

Fig. 16 shows the average error using Prog-Flex-EP-Prob
with different settings of the cumulative probability
confidence 	 and using different RSS parameters. We
found the obvious trend that the larger the 	, the more
accurate the localization results. The average error of
using the individual probability threshold method is also
shown in Fig. 16 indicated by � . The individual
probability threshold means that the algorithm looks at
each testing point individually. If it passes the threshold,
the testing point goes to the next round. We found that,
in general, using the individual probability threshold method
achieves better performance than using the cumulative
probability confidence. We also notice that Prog-Flex-EP-
Prob-CM always performs better than Prog-Flex-EP-Prob-
Basic under the same setting. Further, under the same
input parameter sets, Table 5 shows the best average
error of Prog-Flex-EP-Dist and Prog-Flex-EP-Prob, respec-
tively, among all the threshold settings we tested on. We
observed that Prog-Flex-EP-Prob always performs better
than Prog-Flex-EP-Dist.

6 DISCUSSION

6.1 Refining Localization

In this section, we discuss how conventional localization
results can be refined using Flex-EP algorithms. In a four-
parameter subset, we further increased the number of
parameters with high discriminative power to three by
adding an additional RSS parameter into the parameter
subset. Fig. 17a presents the corresponding error CDFs. We
found that by utilizing three parameters with high
discriminative power in a four-parameter subset, the
localization performance is further refined and is almost
exactly the same as RADAR.

732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 5, MAY 2010

Fig. 16. Prog-Flex-EP-Prob: performance comparison of threshold

values when 	 is set to 0.5, 0.75, 0.9, 0.95, and 0.99, respectively, and

� ¼ 1

2jeP j . The size of the parameter subset is at most four and only one

RSS is used in each experiment.

Fig. 14. Comparison of localization performance. (a) Flex-EP-Dist and
Flex-EP-Prob using parameter set f1; 4; 6; 16g with the selection ratio

 ¼ 0:5. (b) Prog-Flex-EP-Dist and Prog-Flex-EP-Prob with the cumu-
lative probability confidence 	 ¼ 0:95, using one RSS from Rectangular
AP4.

TABLE 5
Best Average Errors for Prog-Flex-EP-Dist and

Prog-Flex-EP-Prob on Different Parameter Settings

Fig. 15. Prog-Flex-EP-Dist: performance comparison when using
different selection ratio 
. The size of the parameter subset is four
and only one RSS is used in each experiment.



Further, we explored the parameter subset with five
parameters. Figs. 17b and 17c show the localization error
CDFs utilizing five parameters. The parameter subset in
Fig. 17b still contains only two parameters with high
discriminative power (2.435 GHz Max and RSS from AP4),
the same as the four-parameter case in Fig. 12e, and three
other parameters with low discriminative power (tempera-
ture, ambient noise, and 2.465 GHz Avg). We observed that
the localization capability is about the same as in Fig. 12e for
the four-parameter case. This is in line with our previous
observation, adding more environmental parameters with
low discriminative power does not help much in improving
the localization performance.

Turning to examine Fig. 17c, which has three para-
meters (2.435 GHz Max, RSS from AP2, and RSS from AP3)
with high discriminative power in a five-parameter
subset, interestingly, the localization performance has a
10 percent increase compared to the traditional RADAR
algorithms, especially for Flex� EP �Avg, which gained
over 20 percent performance improvement. In this case,
only two RSS parameters are used, which means that
under the assistance of other environmental parameters,
only two access points are needed to achieve a better
localization performance than the traditional localization
algorithms employing RSS using at least four access
points. This provides strong evidence that utilizing
environmental properties for localization can both achieve
similar performance to the traditional approaches, as well
as refine conventional localization results.

6.2 Comparison of Flex-EP and Prog-Flex-EP

In this section, we provide a discussion about Flex-EP and
Prog-Flex-EP algorithms in terms of computational cost,
parameter selection strategy, and missing sensor readings.

Computational cost. We first look at the computational

cost of the algorithms. Flex-EP calculates the WðKÞ for

every possible parameter combination. If we have N

available parameters and want to choose a subset of K

parameters to use, the computational cost is CK
N ¼ N!

K!ðN�KÞ! .

In our case, it is C4
16. Whereas for Prog-Flex-EP, it chooses

one parameter at a time from the current available

parameters; thus, the computation cost for parameter

selection is at most C1
N � C1

ðN�1Þ . . . C1
ðN�KÞ ¼ N !

ðN�K�1Þ! . Note

that we say at most is because sometimes, the algorithm

stops before reaching the maximum K parameters if the

desired confidence is achieved. Prog-Flex-EP refines the

candidate locations and calculates W(K) based on new

parameter sets at each round. However, the Flex-EP decides

the parameter set offline and calculates the location

estimation in one round. Flex-EP runs faster than Prog-

Flex-EP in reality.
Parameter selection strategy. Examining the parameter

selection, under a given parameter size, Flex-EP finds the
overall best parameters to use for any localization tasks. On
the other hand, Prog-Flex-EP is a locally customized
method. The parameters chosen by Prog-Flex-EP vary based
on the environment surrounding each testing point (i.e.,
each user).

Table 6 presents a part of our running records using
the Prog-Flex-EP-Prob algorithm as an example. It shows
for a testing point which parameter is used in each round
and how many points are kept as candidates after each
round. We set the maximum number of rounds to 4. We
found that the parameters used for different testing points
vary largely. The first round is the same for every test
because at that time, we have no information about the
environment around the testing point. Thus, the algorithm
chooses the parameter with the strongest discriminative
power. In some cases, the algorithm stopped before the
total four rounds as it has already refined to one
candidate location, such as the testing points 46, 49, and
50. Prog-Flex-EP takes the advantage of the idea that the
optimal parameter set is location-dependent, thus giving it
the potential to outperform Flex-EP, which uses a globally
optimized parameter subset.

However, the “greedy” nature of Prog-Flex-EP drags
down its performance. A “bad” parameter may be chosen at
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Fig. 17. Using environmental properties to refine localization results. (a) Four parameters: index 1, 5, 10, 11. (b) Five parameters: index 1, 4, 5, 8, 12.
(c) Five parameters: index 1, 4, 5, 10, 11.

TABLE 6
Sample Testing Output from Prog-Flex-EP-Prob Test, Using

Parameter Set {1, 2, 3, 5, 6, 7, 8, 16}, � ¼ 0:95



an early stage, which results in excluding the “good”

location candidates prematurely and leads to a larger

localization error. Looking at testing point 49 in Table 6, it

only uses three parameters and has already achieved the

sufficient confidence; however, the error distance is as large

as 114 feet. This is an example where “good” location

candidates are eliminated too early. Our experimental

results in Fig. 18 show that Prog-Flex-EP and Flex-EP

perform quantitatively the same.
Dealing with missing environmental readings. Prog-

Flex-EP can deal with the situation when not all environ-
mental properties are available at all locations and times.
Prog-Flex-EP is a sequential localization algorithm: it does
not require to make the localization decision in one shot
with all the environmental readings being responded by the
user. Instead, it can be used in a challenge-response-based
manner for location refinement. Such an algorithm first asks
the user, “tell me the temperature at your location,” and
based on the user’s answer, the algorithm localizes the user
within some regions, and then, chooses the next parameter
to challenge the user. Based on the subsequent answers
from the user, the localization results are further refined.

By using this approach, Prog-Flex-EP is flexible, espe-

cially when dealing with the situation when some environ-

mental properties are not available at specific locations and

times. The unavailability can happen to both the sensor

network side and the user’s side: 1) On the sensor’s side, it

is possible that at a particular region, some sensor readings

are unavailable or the sparse network density in that region

cannot provide sufficient readings, e.g., RSS is too weak

when the sensor is far away from the AP. Prog-Flex-EP can

avoid using such insufficient parameters, and will instead

choose other parameters to ask the user. 2) On the user’s

side, if the user cannot provide the parameter requested, the

algorithm is flexible to accept other parameters that the user

can provide to continue the localization process.
Flex-EP can be modified to deal with the situation where

the user cannot provide all the parameters by applying

SCWM after getting the user’s vector of available para-

meters. However, in the case of the sensor’s side, it is

possible that some parameters are not available in one

region and some other parameters are not available in

another region. In this case, Flex-EP has to totally discard

the use of all these deficient parameters, which will affect

the localization performance.

7 RELATED WORK

In this section, we first discuss research efforts in using
spatiotemporal information in wireless sensor networks
(WSNs). Then, we overview the active research in
wireless localization and describe the work that is mostly
related to ours.

By utilizing the radio on sensor nodes, it is possible to
invert the role of sensor networks, and allow sensor nodes
to actuate the environment. Chen et al. [2] utilized sensor
networks in an inverted fashion to facilitate new forms of
access control that are based on whether a user is located at
the right place at the right time. Moreover, Vuran et al. [7]
pointed out that sensor observations are highly correlated
in the spatial domain. They proposed a theoretical frame-
work to capture the spatial and temporal correlations in
WSN and enable the development of efficient communica-
tion protocols in WSN utilizing these information. In this
work, we explore the possibility of utilizing the physical
phenomena monitored by WSN to assist in wireless
localization and position verification.

Localization of nodes in WSN has become increasingly
important. Localization techniques can be categorized along
several dimensions. Want et al. [8] used infrared methods,
and the authors in [9], [10] employed ultrasound as the
basis for a localization infrastructure. On the other hand, in
spite of its several meter-level accuracy, using RSS [1], [5],
[11] is attractive because it can reuse the existing wireless
infrastructure. Dealing with ranging methodologies, range-
based algorithms involve distance estimation to landmarks
using the measurement of various physical properties like
RSS [1], [5], Time Of Arrival (TOA) [12], and Time
Difference Of Arrival (TDOA) [9]. Range-free algorithms
[13], [14] use coarser metrics to place bounds on candidate
positions. Wu et al. [15] combine the range-based and
range-free algorithms. Another method of classifying
localization algorithms involves examining the strategy
used to map a node to a location. Lateration approaches
[12], [14], [16], [17] use the distances to landmarks, while
angulation uses the angles from landmarks. Scene matching
(or fingerprint matching) strategies [1], [5], [18], [19] use a
function that maps observed radio properties to locations
on a preconstructed radio map or database. Finally, another
dimension of classification extends to aggregate [13], [20],
[21] or singular algorithms.

The same type of physical properties is required to be
used in each of the above methods to ensure the appropriate
functioning of the mechanism. Our work is unique in that
our localization approach is generic, i.e., we are not
restricted to examining a single type of physical property.
The closest works to this paper are [1], [22]. Bahl and
Padmanabhan [1] developed a localization mechanism
measuring the minimum euclidean distance in the signal
space, and only deals with the physical property of RSS.
Varshavsky et al. [22] proposed a GSM signal strength
fingerprinting-based localization system to determine the
current floor of a user. It addressed the problem that certain
physical sources may not contribute to localization accuracy
by developing a set of feature selection techniques. How-
ever, these feature selection techniques did not track the
performance of each possible combination in parameter
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Fig. 18. Comparison of Flex-EP-basic using parameter set {1,3,6,14}
and Prog-Flex-EP-basic with four parameters chosen from input
parameter set {1,2,3,5,6,7,8,14} at each testing point.



subsets and might contain “bad” physical sources to start
with. Also, Varshavsky et al. [22] only deal with one type of
physical property, signal strength. By handling all kinds of
physical properties, our work is broader than [1], [22], and
our SCWM algorithm for parameter selection is more
general than the feature selection approaches in [22]. In
addition, our method is novel in that we utilize an existing
sensor network to assist in localization, rather than requiring
the deployment of a localization infrastructure or additional
access points (or landmarks) in the area of interest.

8 CONCLUSION

In this work, we proposed to use the inherent spatial
variability in physical phenomena recorded by sensor
networks to support wireless localization and position
verification. We formulated the problem using a theoretical
measurement model to quantify the localizing capability of
environmental properties. For parameter evaluation and
selection, we proposed a scheme to evaluate the environ-
mental parameters’ ability to capture the physical varia-
bility, the SCWM, which can find the optimal parameter
subset with the highest discriminative power for localiza-
tion under a given size of the parameter subset. Moreover,
we developed a spectrum of algorithms to perform
localization and position verification utilizing parameter
subsets obtained from SCWM.

To evaluate the generality of our approach and the
effectiveness of SCWM, we conducted experiments in a real
office building by collecting various environmental para-
meters including temperature, humidity, ambient noise,
spectrum energy, and RSS over 100 locations. We found that
choosing two environmental parameters containing high
discriminative power is enough to produce comparable
performance to the traditional localization approaches
employing RSS with at least four access points. By
increasing the number of parameters with high discrimina-
tive power in a subset, we can further refine the localization
accuracy and obtain better performance than conventional
localization results. Thus, our experimental results provide
strong evidence of the feasibility of utilizing environmental
properties to assist in localization and the effectiveness of
our approach by using SCWM and environmental-para-
meter-based algorithms. Note that there is a trade-off
between the localization performance, which is related to
the size of the parameter subset, and the computational
cost. SCWM can help select appropriate parameter subsets
which achieve the localization performance based on
application requirements.

APPENDIX

Theorem. There is no continuous injective function f : IR2 ! IR.

Proof. Consider any line l in IR2. It is trivially simply
connected, and so by the Simply Connected Theorem, its
mapping under f is a simply connected subset of IR. But
since f is injective, this means that it maps to some
nonzero interval on IR. Let z be a nonboundary point
along that interval. Then, there exist points p1 and p2 on l
such that fðp1Þ < z < fðp2Þ. Now, consider any point p3

in IR2 not on l. Assume WLOG that fðp3Þ 	 z, and let m
be the line determined by p1 and p3. By the Intermediate

Value Theorem, ½fðp1Þ; fðp3Þ� is contained in the image
set fðmÞ. So, there exists a point q on m such that
fðqÞ ¼ z. But some points on l also map to z, and the only
common point of l and m is p1. So, we have found two
distinct points that both map to z under f . Thus, f is not
injective, which is a Contradiction. tu
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