
XX

Defending against Frequency-based Attacks on Distributed Data
Storage in Wireless Networks

HONGBO LIU, Stevens Institute of Technology
HUI WANG, Stevens Institute of Technology
YINGYING CHEN, Stevens Institute of Technology
DAYONG JIA, Stevens Institute of Technology

As wireless networks become more pervasive, the amount of the wireless data is rapidly increasing. One
of the biggest challenges of wide adoption of distributed data storage is how to store these data securely.
In this work, we study the frequency-based attack, a type of attack that is different from previously well-
studied ones, that exploits additional adversary knowledge of domain values and/or their exact/approximate
frequencies to crack the encrypted data. To cope with frequency-based attacks, the straightforward 1-to-1
substitution encryption functions are not sufficient. We propose a data encryption strategy based on 1-to-
n substitution via dividing and emulating techniques to defend against the frequency based attack, while
enable efficient query evaluation over encrypted data. We further develop two frameworks, incremental
collection and clustered collection, which are used to defend against the global frequency-based attack when
the knowledge of the global frequency in the network is not available. Built upon our basic encryption
schemes, we derive two mechanisms, direct emulating and dual encryption, to handle updates on the data
storage for energy-constrained sensor nodes and wireless devices. Our preliminary experiments with sensor
nodes and extensive simulation results show that our data encryption strategy can achieve high security
guarantee with low overhead.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security
and protection (e.g., firwalls); C.2.1 [Computer-Communication Networks]: Network Architecture and
Design—Distributed networks, network communication

General Terms: Algorithms, Security

Additional Key Words and Phrases: Frequency-based attack, Secure distrbuted data storage, Wireless Net-
works

ACM Reference Format:
Liu, H., Wang, H., Chen, Y., Jia, D. 2011. Ensuring data storage security against frequency-based attacks in
wireless networks. ACM Trans. Sensor Netw. XX, XX, Article XX (May 2012), 37 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

As the rapid advancement of wireless technologies has led to a future where wireless
networks are becoming a part of our social life, the collected wireless data provides
tremendous opportunities to support various applications ranging from environmen-
tal sensing, to infrastructure monitoring, to mobile social network analysis. However,
as the amount of the wireless data is increasing, one of the biggest challenges in wire-
less networks is how to store these data. The traditional approach is to store the col-

Author’s addresses: H. Liu and Y. Chen and D. Jia, Department of Electrical and Computer Engineering,
Stevens Institute of Technology; H. Wang, Department of Computer Science, Stevens Institute of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1550-4859/2012/05-ARTXX $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:2 H. Liu et al.

lected wireless data in a centralized manner. For example, in wireless sensor networks
(WSNs) the sensing data is collected from each individual sensor and sent back to a
central server for data access. However, the centralized approaches may require fre-
quent communication with individual devices collecting data, and may even result in
performance bottlenecks of data access and a single point of failure to both server
compromise and intentional attacks.

To address these problems, distributed data storage [Pietro et al. 2008; Girao et al.
2007; Shenker et al. 2003; Ghose et al. 2003; Shao et al. 2007] in wireless networks
recently have attracted much attention. For instance, the sensed data can be stored
by its type at a group of storage nodes in the network to perform data-centric storage
or stored at each individual device that collects the data. The distributed data storage
has major advantages over centralized approaches: storing the data on the collected
wireless devices or in-network storage nodes decreases the need of constant data for-
warding back to centralized places, which largely reduces the communication in the
network and the energy consumption on individual devices, and consequently comple-
ments the centralized storage and enables efficient and resilient data access. Further-
more, as wireless networks become more pervasive, new-generation wireless devices
with significant memory enhancement and powerful processing capabilities are avail-
able (e.g., smartphones, tablets and laptops), making the deployment of distributed
data storage not only feasible but also practical.

However, as attackers may be eavesdropping on communication among nodes and/or
compromise nodes and thus gain access to all information stored on them, secure data
storage must be achieved before widespread adoption of distributed data storage. Prior
work in wireless network security has been focused on network communication secu-
rity such as key management, secure localization, and intrusion detection [Perrig et al.
2001; Liu and Ning 2003a; Capkun and Hubaux 2005; Chen et al. 2007; Yang et al.
2008]. None of these works have addressed the problem of secure distributed data stor-
age. To fulfill the security requirements raised by the distributed data storage, recent
research has started studying distributed access control, data confidentiality, and data
integrity. [Joshi et al. 2005] introduced a redundancy-based key distribution scheme
that utilizes secret sharing to achieve a decentralized certificate authority. [Nalin et al.
2007] studied to perform secure distributed data storage by developing an adaptive
polynomial-based data storage scheme. [Wang et al. 2009] presented a dynamic data
integrity checking scheme for verifying the consistency of data shares in a distributed
manner, which is constructed based on the principle of algebraic signatures to ensure
the integrity of data shares.

Most of these current research aim to provide data confidentiality, dependability,
and integrity from the perspective that the adversaries will make efforts to access the
data by cracking the data encryption mechanisms with little prior knowledge. None
of these studies have investigated the problem of attackers cracking the data encryp-
tion by exploiting additional adversary knowledge. In particular, today with rapidly
evolving adversarial activities, an attacker may possess the knowledge of domain val-
ues and/or their exact/approximate frequencies. For instance, in the scenario that the
distributed data storage maintains the locations that people visited, the attacker may
know: (1) the most popular locations, and (2) the fact that the frequency of these loca-
tions should be higher than that of the other locations. To protect user privacy, their
locations will be encrypted in the storage. However, a 1-to-1 encryption scheme on lo-
cations is not secure, as the attacker can map the encrypted data values of the highest
frequency to the popular locations easily. In reality, the attacker may possess approx-
imate knowledge of the frequencies or may know the exact/approximate supports of
a subset of data values in the network. However, in order to make the analysis ro-
bust, we adopt the conservative assumption above that the attacker knows the exact

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:3

frequency of every unique data value in the network. The problem gets even worse
if the attacker knows the exact frequency of plaintext data values and utilizes such
knowledge to crack the data encryption by matching the encrypted data values with
original data values based on their frequency distribution. We call such an attack as
the frequency-based attack. The frequency-based attack is both feasible and harmful
in reality. For instance, an attacker can derive the specific activities of an important
officer if the attacker knows the frequency of his visited places revealed by the tra-
jectory of his smartphone, or a hunter can wait at specific locations of an endangered
animal by possessing the knowledge of the frequency of the animal’s habitation-related
movements recorded by monitoring sensors.

To cope with the frequency-based attack, apparently any 1-to-1 substitution encryp-
tion scheme is not secure. A robust encryption mechanism is in great need. However,
very little work has been done to investigate cryptographic solutions that can defend
against the frequency-based attack in the distributed storage. [Wang and Lakshmanan
2006] has developed a secure encryption scheme to mitigate the frequency-based at-
tack in a centralized database. However, the encryption scheme is not suitable for
distributed data storage in wireless networks. In this paper, we consider two represen-
tative types of frequency attacks: (1) the global frequency-based attack, whereby the
attacker only has the knowledge of the global occurrence of the data in the network,
and (2) the local frequency-based attack, whereby the attacker knows the specific oc-
currence frequency of the data on each individual storage node. We propose a data en-
cryption strategy based on 1-to-n substitution to defend against the frequency-based
attack. Our data encryption strategy aims to transform the original frequency distribu-
tion of the original data (i.e., plaintext) to a uniform distribution of the encrypted data
(i.e., ciphertext) so that the attacker cannot derive the mapping relationship between
the encrypted data and the original data based on her knowledge of domain values
and their occurrence frequency. In particular, we develop two basic techniques, divid-
ing and emulating, that can be applied either on an individual storage node (as the
defend against the local frequency-based attack) or across the network (as the defend
against the global frequency-based attack).

Besides the security issue, another equally important issue is how to evaluate
queries over the encrypted data efficiently. A naive method is to transfer all encrypted
data in the network to a trusted node for decryption and query evaluation, which will
incur tremendous communication overhead. Thus we design an order-preserving en-
cryption scheme on top of dividing and emulating, so that both types of point and
range queries that are commonly used on distributed storage can be evaluated effi-
ciently over the encrypted data directly.

Furthermore, when defending against global frequency based attack in practice, the
global frequency of plaintext may not be a known knowledge.

In order to collect plaintext frequency from the network and then distribute keys
across the network to defend against the global frequency based attack, we further de-
velop two frameworks, incremental collection and clustered collection, to achieve global
uniform distribution. The incremental collection framework is proposed for the chain-
based network topology, but could be applied to any type of network. On the other
hand, the clustered collection framework is applied to the tree-based network topology,
in which the frequency of data values is collected in the bottom-up fashion and the
encryption keys are distributed in the top-down style. We conduct the theoretical anal-
ysis and empirical study of the performance of both frameworks. In order to evaluate
the communication overhead of the proposed two frameworks, we build a testbed with
MicaZ motes.

Additionally, it is also important to address how to exploit the basic dividing-and-
emulating approach to deal with incremental updates on the data storage, without

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:4 H. Liu et al.

degrading the security guarantee. We propose two encryption methods to deal with
updates, namely direct emulating and dual encryption. Direct emulating handles en-
cryption on the updated data values independently from the existing ciphertext in data
storage, while dual encryption encrypts the updated information with the existing ci-
phertext together. We compare the overhead of both encryption schemes with various
types of updates for both local and global frequency based attacks.

Our theoretical analysis, preliminary experiments using the wireless sensor testbed,
and extensive simulation results show that our 1-to-n substitution data encryption
framework can achieve high security guarantee, low computational and communica-
tion cost, and efficient query processing. The remainder of the paper is organized as
follows. In Section 2, we first set up the network model and describe the attack model
used in this work. We then describe our 1-to-n substitution data encryption strategy
and present the details of the query evaluation procedure in Section 3. In Section 4 we
discuss our simulation methodology, evaluation metrics, and results that validate our
approach for coping with both local and global frequency based attacks. The evalua-
tion for global frequency based attacks is under the assumption that global frequency
of plaintext is known. In Section 5 we address the problem when the knowledge of
global frequency is not available by introducing two frameworks to defend against
global frequency based attacks. We then propose two encryption methods to deal with
incremental updating in data storage in Section 6, and evaluated the overhead of both
encryption methods. Finally, we put our work into the broader context in Section 7 and
conclude in Section 8.

2. SYSTEM OVERVIEW

2.1. Network Model

In our system, we consider wireless networks consisting of both static and mobile
nodes, where each node represents a wireless device that can take the form of sen-
sor, smartphone, tablet, laptop, or active RFID tag. We assume the collected data will
be stored within the network at each node unless it is required to be sent to a cen-
tralized storage space for backup. We also consider incremental update in the data
storage. By uploading data in a lazy fashion (i.e., on-demand only), distributed data
storage enables real-time query evaluation and avoids frequent data transfer from the
wireless devices to the centralized storage, and consequently reduces massive battery
power consumption and vastly decreases the communication overhead of the network.

To prevent the misuse of data and provide data confidentiality, the data will be en-
crypted in the network. We refer the original unencrypted data values as plaintext and
the encrypted values as ciphertext.

Besides the device nodes that act as the data storage in the network, there also
exist mobile devices that act as query nodes that will query the data stored in the
network. When the query nodes request specific data in the network, all the storage
nodes that contain the data matching the query requests will respond to the query
nodes by sending them the corresponding data values in ciphertext. The query nodes
are responsible to perform the data decryption.

2.2. Attack Model

To describe the attack model used in this work, we first provide an example to illustrate
the frequency-based attack. We then define two types of adversaries, mobile and static.
Based on the knowledge and behavior of the adversaries, we categorize the frequency-
based attack into the global and local frequency-based attack.
Adversary knowledge. The attacker in the network may possess some background
knowledge using which she can conduct attacks on the encrypted data in the network.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:5

We assume that the attacker knows exactly the set of (plain) data values in the net-
work and their true frequencies. The attacker may have access to such data from a
competitor, from published reports, etc. In reality, the attacker may possess approx-
imate knowledge of the frequencies or may know the exact/approximate supports of
a subset of data values in the network. However, in order to make the analysis ro-
bust, we adopt the conservative assumption above that the attacker knows the exact
frequency of every unique data value in the network. The example below gives more
details of the adversary knowledge and its harm to data security.

Type Location

Panda river A

Panda river A

deer wood B

Panda wood C

deer wood B

Panda river A
(a) Original dataset

Type Location

123 river A

123 river A

128 wood B

123 wood C

128 wood B

123 river A
(b) After 1-to-1 encryption

Type Location

123 river A

123 river A

128 wood B

125 wood C

128 wood B

125 river A
(c) After 1-to-n encryption

Table I: Data example: (a) the original data table; (b) after 1-to-1 encryption; and
(c)after 1-to-n substitution encryption via dividing and emulating.

Example. We assume the wireless devices collect the location information of ani-
mals. The original data contains the animal type and the location information (Table I
(a)). As the panda is an endangered species, the location information about panda’s
activities is sensitive and should be protected to avoid the access by poachers. The
straightforward way is to use 1-to-1 encryption function to encrypt the animal type
in the data set (Table I (b)). However, a poacher may know that more sensors are
installed on conservation-reliant species such as panda than other animals, e.g., deer.
Therefore, the number of locations that are associated with panda should be more than
that of the other animals. Based on such adversary knowledge, the poacher can map
the ciphertext values to plaintext ones by their frequency. For example, the attacker
can map the ciphertext value 123, the one of the largest number of entries in Table I
(b), to the plaintext value panda. Consequently, the poacher can decrypt the encryption
successfully and knows all locations where a panda may appear.

We consider two types of attackers, static and mobile, based on their capabilities of
collecting the frequency of ciphertext values in the network.

— Static attacker: A static attacker resides at one particular position in the network
and has the capability of eavesdropping the regular communications within its sens-
ing range or compromising some particular nodes in the network. By eavesdropping
or compromising, the static attacker can collect the frequency distribution of cipher-
text values stored on a subset of nodes in its neighborhood.

— Mobile attacker: A mobile attacker can move around in the network while eaves-
dropping the communication between any pair of nodes or accessing the data storage
of all nodes in the network. Therefore, the mobile attacker can possess the global
frequency distribution of all ciphertext values in the network.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:6 H. Liu et al.

Given N nodes in the network and k distinctive plaintext values, we use fj,i(i ∈
[1, N], j ∈ [1, k]) to denote of the frequency of the plaintext PT j on node i. Based on the
frequency information of ciphertext values that an static or mobile attacker can collect,
we categorize the frequency-based attacks into two types: global and local attack.

Local Frequency-based Attack. By this attack, an attacker has the knowledge
of the distribution of plaintext values on each individual node in the network. Partic-
ularly, the attacker knows the frequency fj,i for each i and j. Both static and mobile
attackers can launch the local frequency-based attack. In particular, when a query
node broadcasts a query that may contain a set of keyword values (in ciphertext for-
mat) to the network, the attacker can collect the frequency of the ciphertext in the
returned answers, and compare it with the its adversary knowledge of frequency of
plaintext values, leading to the success of compromising the encrypted data on each
node independently.

Global Frequency-based Attack. By this attack, an attacker only has the knowl-
edge of the overall distribution of the data in the network. In particular, the ad-
versary knows the occurrence frequency fj(1 ≤ j ≤ k) of the plaintext PTj , where
fj =

∑N
i=1 fj,i. However, the attacker does not have the knowledge of the frequency of

data values on each individual node.
Only mobile attacker can launch the global frequency based attack. The attack is

similar to the local frequency based attack.

3. DIVIDING&EMULATING: 1-TO-N SUBSTITUTION ENCRYPTION

In this section, we first describe our dividing and emulating techniques that are the
basis of the 1-to-n substitution encryption. We then present our efficient query pro-
cessing procedure over encrypted data by using dividing and emulating techniques on
static storage. We will present our scheme for data updates in section 6.

3.1. Overview

The example in Table I shows that simply encrypting the sensitive data values by using
1-to-1 encryption functions will make it easy to launch frequency-based attacks and
disclose the sensitive data to adversaries. To cope with the frequency-based attacks, we
propose to divide each plaintext value into one or more ciphertext values in such a way
that regardless of the original data distribution, the target distribution remains close
to uniform. Furthermore, we propose emulating on the divided data to fit the target
distribution to a uniform distribution, so that the attacker cannot uniquely crack the
identity of ciphertext values, i.e., deriving the corresponding plaintext values, based on
his knowledge of data frequency. As an example, Table I (c) shows that after applying
dividing and emulating techniques, the distribution of the ciphertext values is uniform
(i.e., data values 123, 125, and 128 are of frequency 2), which highly decreases the
probability for an adversary to derive the plaintext values by launching a frequency-
based attack.

To defend against the global frequency-based attacks, our dividing and emulating
techniques exploits the global frequency distribution of plaintext values in the net-
work to achieve uniform frequency distribution of the ciphertext values in the whole
network. Whereas to protect the data from the local frequency-based attack, the uni-
form distribution of the target ciphertext will be achieved on each individual wireless
device independently. Thus, it is possible that the frequency of the same data value (in
encrypted format) on different nodes is different.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:7

3.2. Dividing

Basically, dividing encrypts each plaintext value PT to multiple ciphertext values
whose total frequency equals to the frequency of PT . Intuitively, if k unique plain-
text values are encrypted to m > k unique ciphertext values that are of the same fre-
quency, none of these ciphertext values can be explicitly mapped to their correspond-
ing plaintext values by the frequency-based attack. Indeed, the decipher probability P
that these m ciphertext values can be correctly mapped to k plaintext values by the
frequency-based attack equals

P =
1(

m−1
k−1

) . (1)

In practice, the attacker may only be interested in hacking the encryption of spe-
cific data values. In particular, when we reason the decipher probability of a specific
plaintext value v, we follow these three steps:

— Step 1: construct all possible mapping schemes as candidates. There are
(
m−1
k−1

)
possi-

ble mappings;
— Step 2: count the number of correct mappings of v among all candidate mappings.

There are
(
m−2
k−2

)
such mappings; and

— Step 3: compute the decipher probability Pv of plaintext value v following the result
of Step 1 and 2. This turns out to be:

Pv =

(
m−2
k−2

)
(
m−1
k−1

) =
k − 1
m − 1

(2)

As we consider all the data in the storage as sensitive (and thus is encrypted in the
storage), we focus on defending against the attack to crack all the ciphertext values,
and require the decipher probability of such attack (shown in Equation 1) should be
less than a given threshold σ.
Number of Divided Ciphertext Values. To achieve a threshold σ of the decipher
probability, for k unique plaintext values that are encrypted to m unique ciphertext
values of the same frequency, they must satisfy P = 1

(m−1
k−1)

≤ σ. Intuitively, the smaller

σ is, the more robust the dividing scheme is against the frequency-based attack. With
given σ and k values, deriving m from the constraint 1

(m−1
k−1)

≤ σ is computationally

hard. Thus we consider Stirling’s approximation, i.e., m! ≈ mme−m
√

2πm. We have:

P =
1(

m−1
k−1

) =
1

(m−1)!
(k−1)!(m−k)!

≈ 1
(m−1)(m−1)

√
2π(m−1)

2π(k−1)(k−1)(m−k)(m−k)
√

(k−1)(m−k)

≤ 1
(m−1)(m−1)

√
m−1√

2π((k−1)(k−1)(m−1)(m−k)
√

(k−1)(m−1))

= (
k − 1
m − 1

)(k−1)
√

2π(k − 1). (3)

As it is required that P = 1

(m−1
k−1)

≤ σ, from Equation 3, we can infer that m ≥

(k − 1)(
√

2π(k−1)

σ)
1

k−1 + 1. It is straightforward that larger m value implies the more
robustness of the dividing scheme against the frequency-based attack. However, as we
will discuss soon, larger m values will also result in more keys needed for encryption
and decryption. To balance the trade-off between the robustness of the scheme and the

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:8 H. Liu et al.

cost for key management, we use

m = (k − 1)(

√
2π(k − 1)

σ
)

1
k−1 + 1 (4)

as the number of divided ciphertext values needed to achieve the required robustness
of the scheme. Based on the valued m, next, we discuss how to split k unique plaintext
values into m unique ciphertext values.

3.2.1. Dividing Factor.. We define the dividing factor in our dividing scheme as follow-
ing.

Definition 3.1. Given k unique plaintext values PTj(1 ≤ j ≤ k) that are encrypted
as m unique ciphertext values, let f = Σk

j=1fj , where fj is the frequency of the plaintext
value PTj. Then each PTj is encrypted as � fj

d � unique ciphertext values, where

d = � f

m
�. (5)

We call d the dividing factor.

After dividing, k unique plaintext values are encrypted to m unique ciphertext val-
ues, such that m − �md−f

d � of them are of the same frequency d. If md = f , then all m
ciphertext values are of the same frequency. Otherwise, out of these m values, there
will be �md−f

d � of them with frequency of fj − 	 fj

d
 × d, where fj is the frequency of
their corresponding plaintext values.

3.2.2. Dividing Procedure.. Next, we describe the details of our dividing procedure that
can achieve the goal mentioned above. Step I. Sorting: We sort the plaintext values
by their frequencies in ascending order. Let δ = min(PTj+1 − PTj)(1 ≤ j ≤ k − 1) be
the minimal interval between any two successive frequency values.

Step II. Dividing: For each plaintext value PTj , we choose t distinct random num-
bers w1, . . . , wt(1 ≤ t ≤ � fj

d �) as weight values, where fj is the frequency of PTj, and
d is the dividing factor. We require that w2 should be unique among all the wis, as it
is needed for value decryption (More details are in Section 3.4). Then we partition f j

number of PTj values into � fj

d � partitions, each partition containing d number of PTj

values, except the last one that contains fj − 	 fj

d
 × d number of PTj values. Then the
PTj value in the i-th partition (1 ≤ i ≤ � fj

d �) is encrypted to

CTi = enc(PTj +
∑

wiδ), 1 ≤ i ≤ �fj

d
�, (6)

where wi is a distinct random number ∈ (0, 1/(� fj

d � + 1)) (i.e., Σwi < 1), and enc() is
an order-preserving encryption function [Boldyreva et al. 2009]. More specifically, the
first partition of occurrence of PTj is transformed to enc(PTj + w1δ); the l-th partition
of occurrences to enc(PTj +

∑
1≤i≤l(wiδ)). That is to say, the l-th partition is displaced

from PTj by a fraction of the gap δ given by the sum w1 + w2 + · · ·+ wl. After dividing,
there are � fj

d � number of ciphertext values CT1, . . . , CTt(1 ≤ t ≤ � fj

d �), with their total
frequencies equal to fj.

To illustrate the results of ciphertext values by applying our dividing technique,
we show a simple example as following: Given two plaintext values PT1 and PT2 of
frequency 12 and 21, f = 12 + 21 = 33. Assume Equation 4 has returned m = 5. Then
using Definition 3.1, the dividing factor d is calculated as 7. Based on the dividing
procedure, PT1 will be encrypted as 2 unique ciphertext values, one of frequency 7,

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:9

3 16 22 35
0

10

20

30

40

50

60

Plaintext Value

O
rig

in
al

 P
la

in
te

xt
 F

re
qu

en
cy

0

2

4

6

8

10

12

14

16

18

enc(3,W 1
)

enc(3,W 2
)

enc(16,W 1
)

enc(16,W 2
)

enc(16,W 3
)

enc(22,W 1
)

enc(35,W 1
)

enc(35,W 2
)

enc(35,W 3
)

enc(35,W 4
)

C
ip

he
rt

ex
t F

re
qu

en
cy

 a
fte

r
D

iv
id

in
g

0

2

4

6

8

10

12

14

16

18

enc(3,W 1
)

enc(3,W 2
)

enc(16,W 1
)

enc(16,W 2
)

enc(16,W 3
)

enc(22,W 1
)

enc(35,W 1
)

enc(35,W 2
)

enc(35,W 3
)

enc(35,W 4
)

C
ip

he
rt

ex
t F

re
qu

en
cy

 a
fte

r
E

m
ul

at
in

g

(a)Original plaintext freq. (b)Ciphertext freq. after dividing (c)Ciphertext freq. after emulating

Fig. 1: Dividing and Emulating

and one of frequency 5, by using 2 unique keys; PT2 will be encrypted as 3 unique
ciphertext values, each of frequency 7.

Due to the use of order-preserving encryption function enc(), a nice property of the
dividing scheme is that the ciphertext corresponding to different plaintext values will
not straddle each other. More precisely, for any two values PT i < PTj, and for any
ciphertext values CT m

i , CT n
j (i.e., the m-th and n-th ciphertext values of PTi and PTj

respectively), it is necessary that CT m
i ≤ CT n

j . This will enable the efficient query eval-
uation over the ciphertext values (More details of query evaluation will be discussed
in Section 3.4).
Cost of Key Management. For each plaintext value that is divided into r unique ci-
phertext values, we need r unique keys. To reduce the total number of keys that are
needed for dividing k unique plaintext values in the network, we allow these plaintext
values to share keys for dividing. Therefore, the number of keys r needed for the di-
viding scheme equals to r = max1≤j≤k� fj

d �, which largely reduces the total number of
unique keys during encryption.

3.3. Emulating

The dividing procedure cannot guarantee that all ciphertext values are of the same
frequency. Figure 1 (a) and (b) depict an example of dividing. The 4 plaintext values
3, 16, 22, and 35 of occurrence frequency 21, 41, 14 and 55 (Figure 1 (a)) are divided
into 10 unique ciphertext values (Figure 1 (b)), with the dividing factor as 15. Figure
1 (b) shows some ciphertext values, including the second ciphertext value of plaintext
value 3, the third ciphertext value of plaintext value 16, the first ciphertext value
of plaintext value 22, and the last ciphertext value of plaintext value 35, that are of
different frequency from the other ciphertext values. These ciphertext values may face
the threat that their encryption can be cracked by the frequency-based attack.

Thus, we apply emulating on these values, so that these ciphertext values are indis-
tinguishable from the others by their frequencies. In particular, for these ciphertext
values, they are duplicated so that their frequency also equals to d, the frequency of
the other ciphertext values. Figure 1 (c) shows the results of the frequencies of these
ciphertext values after emulating. Therefore, By performing emulating, these cipher-
text values are indistinguishable by the frequency-based attack. However, it incurs
additional space overhead for the duplicates, which is called emulating noise. There
exists a trade-off between the security guarantee and the space overhead i.e., higher
security guarantee may lead to more space overhead. This trade-off will be studied in
details in Section 4.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:10 H. Liu et al.

To cope with both global and local frequency-based attacks, we apply the divid-
ing and emulating encryption scheme on the plaintext values. To resist the global
frequency-based attack, we apply the scheme on the global distribution information
to achieve globally uniform frequency distribution of the ciphertext values (i.e., all
unique ciphertext values in the network are of the same frequency). While to defend
against the local frequency-based attacks, we exploit the dividing and emulating tech-
niques locally on each individual device, so that the ciphertext values on each device
will achieve uniform frequency distribution.

3.4. Efficient Query Processing over Encrypted Data

We assume that the users issue their original queries that only contain plaintext val-
ues. In this paper, we consider two types of queries: point queries that return all data
values in the network that equal to a given value, and range queries that return all
data values in the network that fit in a range [l, u]. Our goal is to translate the plaintext
queries to ciphertext queries that can be applied directly on the encrypted data in the
network. This mechanism has two advantages: (1) sending ciphertext queries to the
network will protect the queries, especially the plaintext values in the queries, from
the malicious attackers, and (2) it supports efficient query evaluation, as data decryp-
tion in the network, which in general is costly, is avoided. To achieve the goal, we design
the query processing procedure that consists of three phases: query translation at the
user side, query evaluation at the nodes in the network, and query post-processing at
the user side. Next, we discuss the details of these three phases.
Phase-1: Query translation at user side. We assume a user can access all the aux-
iliary information including the weight values wi, the gap values δ, and the order-
preserving encryption function enc() that are used in the dividing scheme. He/she will
make use of these information to translate the plaintext queries as following.

Point queries: Given a point query Q : V = v, the user will translate it to Q′
by following the same dividing scheme for encrypting data values in the network. In
particular, the plaintext value v will be encrypted to r ciphertext values CT1, . . . , CTr.
Since these r ciphertext values follow the order that CT1 < CT2 · · · < CTr, the query
Q will be translated to Q′ : V ∈ [CT1, CTr], where CT1 = enc(v + w1 ∗ δ), and CTr =
enc(v +

∑r
i=1 wi ∗ δ). Here wi and δ are pre-valued in the dividing scheme (see Section

3.2).
Range queries: Recall that our dividing technique performs order-preserving en-

cryption. Thus the range query Q : V ∈ [l, u] will be translated to another range
query Q′. In particular, let wl

i and wu
i be the i-th weight values assigned for divid-

ing l and u, and δl, δu be the gap values used for dividing l and u values, then the
query Q will be translated to Q′ : V ∈ [CT l

1, CT u
r], where CT l

1 = enc(l + wl
1 ∗ δl), and

CT u
r = enc(u +

∑r
i=1 wu

i ∗ δu). In other words, the plaintext range [l, u] is translated to
another range whose lower bound equals to the smallest divided ciphertext value of l,
and upper bound equals to the largest divided ciphertext value of u.
Phase-2: Query evaluation at nodes in the network. After translation, the range
query Q′ : V ∈ [CTl, CTu] (for both point and range plaintext queries), where CT l and
CTu are the lower bound and upper bound ciphertext values, will be sent to the net-
work. Each node will check whether it has any ciphertext value that satisfies the query
Q′, and return these ciphertext values if there is any. To ensure successful decryption
in Phase-3, we require that there are at least two unique ciphertext values to be re-
turned; if there is only one ciphertext CT value that satisfies Q′, the next ciphertext
value that is greater than CT will also be sent back, even though it may not satisfy Q′.
Phase-3: Query post-processing at user side. After the user receives the returned
ciphertext values CT1, CT2, · · · , CTt from the network, he/she will decrypt these values
and obtain the plaintext values. In particular, with the knowledge of the gap values

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:11

δ, he/she calculates sv = CTv+1 − CTv, the distance of every two successive ciphertext
values (we assume CT1 ≤ · · · ≤ CTt). If there exists any sv that equals to w2 ∗ δ, then
the user deciphers CTv as (CTv −w1 ∗δ). The reason that only w2 is used for decryption
is that if there exists any answer PT , it must satisfy that for the first and the second
divided values CT1 and CT2 of PT , CT1 = PT + w1 ∗ δ, and CT2 = PT + (w1 + w2) ∗ δ,
thus there must exist sv = CTv+1 − CTv that equals to w2 ∗ δ. If there is no such sv

that equals to w2 ∗ δ, then there is no answer to the queries. The success of the Phase-3
decryption is guaranteed by: (1) our design of the dividing scheme that requires that
w2 is unique among all weight values, so that is sv = w2 ∗ δ, and (2) our Phase-2 query
evaluation procedure that requires that at least two ciphertext values (i.e., at least the
first and the second divided values) should be returned.

We illustrate the query post-processing procedure through the following example:
Given the plaintext values {10,11,13,14,17} with δ = 0.5, and the weights {0.1, 0,3, 0.2,
0.1}, the divided ciphertext values will be CT = {10.05, 10.15, 11.05, 11.2, 11.3, 13.05,
14.05, 14.2, 14.3, 14.35, 17.05}. Let’s consider a plaintext query Q : V ∈ [13.45, 14.15]. It
is translated to the ciphertext query Q′ : V ∈ [13.5, 14.5]. Applying Q′ on CT will return
{13.05,14.05,14.2,14.3,14.35}. There exists two ciphertext values 14.05 and 14.2 whose
distance equals to δ ∗ w2 = 0.15. Thus the value 14.05 is deciphered as 14.05 − w1 ∗ δ =
14.05− 0.1 ∗ 0.5 = 14.

It is possible that the decrypted query result contains duplicated (noise) values that
is added by the emulating procedure. To remove those duplicated values, we exploit the
signature-based strategy introduced in [Xie et al. 2007]. In particular, each node will
add a special signature sh to each (real or noise) tuple t(c1, c2, · · · , cn) in its dataset.
The signature is constructed in a different way for real values and noise values that
are added by emulating. In particular, for duplicated (noise) tuple, a flag is added when
computing sh, as shown in Equation 7.

sh =

⎧⎨
⎩ H (c1

⊕
c2

⊕ · · ·⊕ cn) if t is real

H (c1

⊕
c2

⊕ · · ·⊕ cn) + 1 if t is noise(added by emulating)
(7)

where
⊕

indicates string concatenation, and H is a one-way hash function that takes
a variable length input string and converts it into a fixed length (e.g., 128 bits) binary
sequence. We assume that only authorized users will be assigned with H ; the attacker
will not be able to access to H and consequently reconstruct sh. The signature sh will
be associated with its value in the network all the time.

On receiving a tuple t(c1, c2, · · · , cn) with its signature sh from querying the network,
the authorized user will determine whether the tuple is real for noise. If it is a real
tuple, it should be true that sh = H (c1

⊕
c2

⊕ · · ·⊕ cn). Otherwise, it must be a noise
value added by the emulating procedure. The signatures will only bring negligible
computation overhead, as they are of fixed length (128 bits).

4. PERFORMANCE ANALYSIS FOR DIVIDING AND EMULATING

In this section, we evaluate the performance of our proposed dividing and emulating
techniques by defining two metrics, overhead by dividing only and total overhead (after
dividing and emulating). We present both theoretic analysis and simulation results to
validate their effectiveness. For defending against global frequency based attack, we
perform simulation under the assumption that global frequency of plaintext is known,
and in the next section (Section 5) we develop two frameworks to show how to collect
global frequency information efficiently in the network for coping with global frequency
based attack.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:12 H. Liu et al.

4.1. Metrics

To evaluate the performance of our proposed dividing&emulation approach, we devel-
oped the following metrics.

Overhead by dividing only. We measure the number of ciphertext values that are
introduced by the dividing process. For the global frequency-based attack, we define
the overhead by dividing as m−k

k , where m and k are the numbers of distinct ciphertext
and plaintext values in the network. For the local frequency-based attack, we define
the overhead by dividing as

∑N
i=1 mi−

∑ N
i=1 ki∑

N
i=1 ki

, where mi and ki are the number of distinct
ciphertext and plaintext values on the i-th node (1 ≤ i ≤ N). Intuitively, the larger the
number of distinct ciphertext values after dividing, the more computational overhead
is incurred by the dividing approach. We will evaluate the overhead by dividing for
various decipher probabilities, including both global and local frequency-based attacks.

we will also quantify the overhead introduced by performing emulating after divid-
ing. We define the total overhead after dividing and emulating as Se−So

So
, where So and

Se are the sizes of the data memory before and after emulating.

4.1.1. Theoretical Analysis. First, we analyze the overhead of our approach theoreti-
cally.

Overhead by dividing only. The overhead by dividing for coping with global fre-
quency based attack should be less than that for coping with local frequency based
attack

According to equation 4, for defending against frequency based attack, the number
of encryption keys required depends on the number of plaintext involved and prior
decipher probability, the only difference resides in that local frequency based attack
is based on individual node whereas the whole network for global frequency based
attack. With respect to one particular plaintext PTj of the frequency fj, given the

dividing factor d, it requires τ =
⌈

fj

d

⌉
encryption keys for coping with global frequency

based attack. However, since PTj is stored on several sensor nodes ni, 1 ≤ i ≤ N , with

frequency f i
j respectively, each node ni needs τi =

⌈
fi

j

d

⌉
, encryption keys for defending

against local frequency based attack if the dividing factor di on individual node equals
to d. The total number of encryption keys from all the nodes

∑N
i=1 τi should be no less

than τ shown as below.
Assume f i

j = Pid + ri
j , so that fj =

∑N
i=1 Pid +

∑N
i=1 ri

j , where 0 ≤ ri
j ≤ d. Note that

ri
j is the remainder after f i

j divided by dividing factor d. Therefore for global frequency
based attack, we have the overhead by dividing:

τ =
N∑

i=1

Pi +

⌈∑N
i=1 ri

j

d

⌉
(8)

whereas for local frequency based attack, the overhead by dividing is:

τ ′ =
N∑

i=1

τi =
N∑

i=1

Pi + N (9)

Next we compare the overhead by dividing τ and τ ′ for global and local frequency

based attack. Since ri
j ≤ d, It is obvious that

⌈∑N
i=1 ri

j

d

⌉
≤ N . Further, the dataset size

on each individual node is only a small portion of the total amount of global dataset,
given the same decipher probability, the dividing factor is generally smaller for local

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:13

frequency based attack than that in global frequency based attack.
∑N

i=1 τi would be
even larger than τ . Therefore, the overhead by dividing for local frequency based attack
is no less than global frequency based attack under different decipher probability or
distinct number of plaintext, which can also be observed from figure 2 and figure 3.

Total overhead. With different number of nodes and the distributions of frequency
for the plaintext in the network, the overhead for local and global frequency based
attacks do not have deterministic relationship.

Given the dividing factor d for coping with global frequency based attack, the total
overhead by dividing and emulation the particular plaintext Pj is derived as

ej = d − mod(fj , d) = d − rj (10)

If the dividing factor on each individual node is di, 1 ≤ i ≤ N , for local frequency
based attack the overhead is:

ej =
N∑

i=1

(di − mod(f i
j , d

i)) =
N∑

i=1

(di − ri
j) (11)

If we assume a uniform distribution of frequency of plaintext PTj, when the frequency
of PTj is much larger than d, the total overhead for PTj also approximately follows
uniform distribution on the range [0, d] when coping with global frequency based at-
tack. Similarly, the overhead by emulation on local node i, 1 ≤ i ≤ N , is also uniformly
distributed on the range [0, di].

When there are k distinct plaintext, the expected total overhead across all plaintext
should be for coping with global frequency based attack.

Sglobal
e =

k∑
j=1

ej =
dk

2
(12)

However, for coping with local frequency based attack, the expected total overhead
for all plaintext in the network is determined as:

Slocal
e =

k∑
j=1

ej =
N∑

i=1

dik

2
(13)

As there is no direct relationship between d and
∑N

i=1 di, it is difficult to compare
Sglobal

e and Slocal
e .

4.2. Empirical Analysis

We conducted simulation of a wireless network with multiple nodes using Matlab.
Each wireless node collects the data and stores it on itself. We tested on three network
sizes with number of nodes set to N = 20, 60 and 100 respectively. For each simula-
tion setup, we controlled the total number of distinct plaintext values in the network
to be less than or equal to 200. The occurrence frequency of plaintext values on each
wireless node is positive integer chosen in the range of [0, 100] that follows a uniform
distribution. We evaluated our approach under a broad range of the decipher probabil-
ity valued from 0.00001, 0.0001, 0.001, 0.01, 0.1 to 1. Our simulation results are the
average over 100 runs for each simulation setup.

4.2.1. Coping with Local Frequency-based Attack. We first examine the overhead of the
dividing. Figure 2 shows the result with the number of distinct plaintext values fixed
as 200 (however, the number of distinct plaintext values on each node is less than
200). As shown in Figure 2 (a), we observed that the overhead by dividing decreases

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:14 H. Liu et al.

(from 16% to 4%) as the decipher probability increases. This is obvious as stronger
security (i.e., smaller decipher probability) needs more distinct cipher values to deceive
the attacker. However, the overhead is always very small even with large decipher
probability; only 16% of overhead is incurred to achieve the decipher probability as
0.00001.

Next, we measure the total overhead introduced by dividing and emulating when
varying the decipher probability. The result is presented in Figure 2 (b). We found that
the total overhead slightly increased (from 22% to 25%) when the decipher probability
increases (from 10−5 to 1), i.e., the total overhead is not sensitive to the changes of de-
cipher probability. This is because the overhead of the emulating alone, which mainly
depends on the frequency of ciphertext values but not the number of distinct cipher
values, dominates the total overhead. Therefore, changing decipher probability, which
consequently change the number of distinct ciphertext values, will not influence the
total overhead by dividing and emulating.

We then measured the overhead of dividing and emulating with various number
of distinct plaintext values. Figure 2 (c) shows the overhead by dividing alone when
P = 0.01 and N = 60. The observation is that the overhead decreases (from 45% to 9%)
as the number of distinct plaintext values increases from 40 to 200. We also measured
the total overhead by dividing and emulating process with various numbers of distinct
plaintext. We show the result in Figure 2 (d). We found that the overhead increases
(from around 35% to 45%) when the number of distinct plaintext increases (from 40 to
200). This is because the larger number of distinct plaintext values needs the larger
number of distinct ciphertext values to achieve the required decipher probability, and
consequently more ciphertext values to be emulated.

Additionally, we observed from figure 2 (a) and (b) that the overhead does not in-
crease as the network size increases, suggesting that both the computational cost and
memory overhead introduced by our scheme are stable and do not vary with network
size. This is advantegous as our scheme is scalable to large networks.

4.2.2. Coping with Global Frequency-based Attack. Next, we turn to study the performance
of our scheme to defend against the global frequency-based attack. First, we measure
the overhead of our approach under various decipher probability. Figure 3 (a) presents
the overhead by dividing in the network under various decipher probability when fix-
ing the number of distinct plaintext values as 200. The key observation from Figure 3
(a) is that the overhead by dividing is always small (under 10%) even when the de-
cipher probability goes to around 10−5. This is encouraging as it indicates that our
scheme can achieve a robust security guarantee under the global frequency-based at-
tack with little overhead incurred by the dividing technique. The other observation is
that the overhead keeps unchanged for different network sizes. This is because the
number of ciphertext values required for dividing does not rely on the number of nodes
in the network. This property shows that our approach can be applied to large-scale
networks. We also observed that the overhead of our approach to defend against the
global frequency-based attack is smaller than (almost half of) the overhead to defend
against the local frequency-based attack. This is inline with our theoretical analysis
in Section 4.1.1. Since the dataset size on each individual node is only a small portion
of the total amount of global dataset, given the same decipher probability, the dividing
factor is generally smaller for local frequency based attack than that needed in global
frequency based attack. Therefore, the overhead by dividing for defending against lo-
cal frequency based attack is no less than that in global frequency based attack under
different decipher probability or distinct number of plaintext.

We then measured the overhead by dividing and emulating with the same setup
of decipher probability, network sizes, and the number of distinct plaintext values.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:15

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Decipher Probability

O
ve

rh
ea

d
by

 D
iv

di
ng

 O
nl

y

20
60
100

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decipher Probability

T
ot

al
 O

ve
rh

ea
d

(A
fte

r
D

iv
id

in
g

an
d

E
m

ul
at

in
g)

20
60
100

(a) (b)

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

O
ve

rh
ea

d
by

 D
iv

id
in

g
O

nl
y

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

T
ot

al
 O

ve
rh

ea
d

(A
fte

r
D

iv
id

in
g

an
d

E
m

ul
at

in
g)

(c) (d)

Fig. 2: Overhead of Diving & Emulating when coping with local frequency-based attack
with network size N = 20, 60 and 100: (a) and (b) measures the overhead by dividing
and emulating under various decipher probability, with the number of distinct plain-
text values fixed at 200; (c) and (d) shows the overhead by dividing and emulating
under various distinct plaintext values, with the decipher probability fixed as 0.01 and
network size fixed as 60.

Figure 3 (b) shows the result. We observed that the overhead by emulating is not sen-
sitive to the decipher probability. It goes up slightly from 22% to 25% as the decipher
probability increases, which is not significant. We further found that the overhead by
emulating does not change with the network size. These discoveries suggest that our
scheme is robust in terms of the amount of overhead even for large networks.

We further investigated the overhead of our approach when varying the number of
distinct plaintext values in the network. We started from the measurement of overhead
by dividing alone. Figure 3 (c) depicts the overhead by dividing with various number of
distinct plaintext values, when the decipher probability P = 0.01 and the network size
N = 60. We found that similar to our overhead measurement for the local frequency-
based attack case, the overhead by dividing decreases (from 22% to 8%) when the
number of distinct plaintext values increases (from 40 to 200). We also examined the
total overhead of dividing and emulating with various number of distinct plaintext val-

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:16 H. Liu et al.

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decipher Probability

O
ve

rh
e
a
d
 b

y
D

iv
id

in
g
 O

n
ly

20
60
100

1e−005 0.0001 0.001 0.01 0.1 1
0

0.02

0.04

0.06

0.08

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decipher Probability

T
ot

al
 O

ve
rh

ea
d

(A
fte

r
D

iv
id

in
g

an
d

E
m

ul
at

in
g)

20
60
100

(a) (b)

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

O
ve

rh
ea

d
by

 D
iv

id
in

g
O

nl
y

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

T
ot

al
 O

ve
rh

ea
d

(A
fte

r
D

iv
id

in
g

an
d

E
m

ul
at

in
g)

(c) (d)

Fig. 3: Overhead of Dividing and Emulating when coping with the global frequency-
based attack: (a) and (b) show the overhead by dividing and emulating under various
decipher probability and network sizes N = 20, 60 and 100, with the number of distinct
plaintext values fixed as 200; (c) and (d) present the overhead by dividing and emu-
lating under various distinct plaintext values with the decipher probability fixed as
0.01.

ues. The result is shown in Figure 3 (d). We found that the total overhead only has a
slight increase with increasing number of distinct plaintext in the network. In partic-
ular, the overhead by emulating generally maintains at around 20% when the number
of distinct plaintext values increases from 40 to 200 in the network. This observation
implies that our proposed algorithm is robust in terms of the amount of overhead of
dividing and emulating with the presence of different number of plaintext values. We
also observed that similar to the overhead of dividing alone, the total overhead of our
approach to defend against the global frequency-based attack is smaller than (almost
half of) the overhead to defend against the local frequency-based attack. These obser-
vations indicate that our scheme does not require more overhead when coping with the
global frequency-based attack than that under the local frequency-based attack.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:17

5. ENCRYPTION FRAMEWORK FOR COPING WITH GLOBAL FREQUENCY BASED ATTACK

In section 4, when evaluating the effectiveness of the proposed diving and emulating
techniques under global frequency based attack, we assume the global frequency infor-
mation is known. However, this assumption may not be applicable to all the cases in
practice. To address the issue of collecting the information of the global frequency and
distributing the keys of each plaintext back to the network, we propose two frame-
works, incremental collection and clustered collection. Incremental collection is in-
tended for the simple network topology (e.g., chain-based), whereas clustered collection
is designed for more advanced network topology such as tree-based. Both of the two
frameworks are used to defend against global frequency based attack when the global
frequency information is not available.

5.1. Framework overview

The basic idea of our frameworks is to collect the global frequency and distribute keys
through the communication among nodes across the network under different topolo-
gies. For each framework, we have a two-round communication process, including col-
lecting global plaintext frequency and distributing encryption keys to each node. The
incremental collection approach is suitable for the network with a chain-based topol-
ogy [Hatcher 2004], in which the global frequency of plaintext is collected and the
encryption keys are distributed by traversing each node in the chain topology. The
clustered collection approach is applied to the tree-based network [Llc 2010]. We group
the network nodes into several clusters, where each cluster includes one cluster head
and a set of in-cluster nodes. We identify one node as the network coordinator who
serves as the root node in the clustered collection framework. In this approach, each
cluster head plays as the intermediate node between in-cluster nodes and network co-
ordinator. The network coordinator is responsible for collecting the global frequency
of plaintext and distributing encryption keys back to each cluster across the network.
We assume that the communication channel is secure so that the attacker is unable to
compromise the process of frequency collection and key dividing.

5.2. Message Format

During the two-round communication process, we define two types of communication
messages, frequency collection message and key dividing message, which carry out the
required information for both the incremental and clustered collection frameworks.

Frequency collection message: The frequency collection message is propagated
to each node to collect the frequency information of plaintext. It includes the plaintext
values and their corresponding frequency. Its format is defined as following:

Definition 5.1. Given k unique plaintext values PTj(1 ≤ j ≤ k), let fj be the fre-
quency of the plaintext value PTj. The payload of PTj in Frequency Collection Message
is shown as:

‖PTj : fj‖ (14)

For the incremental collection approach, in each frequency collection message, f j rep-
resents the accumulated frequency of the plaintext value PTj on nodes from n1 to ni,
whereas for the collected collection approach, fj indicates the local frequency of PTj at
one particular node. The message format is illustrated in Figure 4.

Key dividing message: The key dividing message carries the information for di-
viding encryption keys assigned to each node or cluster. The packet format is shown in
Figure 5. The definition of the key dividing message is given as following:

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:18 H. Liu et al.

PT1 f1 PT2 f2 PTk fk

Fig. 4: Packet format of frequency collection message

PT1 : f e1 wknext c1w next

wknext ckw next

d

PTk : f ek

Fig. 5: Packet format of key dividing message

Definition 5.2. Given k unique plaintext values PTj(1 ≤ j ≤ k), let fe
j be the emu-

lation frequency of PTj , wj
next be the next available encryption key for PTj, and cj

wnext

be the available capacity of wj
next, the payload format for PTj of the key dividing

message for both the incremental and clustered collection approach is defined as:

‖PTj : fe
j : wj

next : cj
wnext

‖ (15)

For the incremental collection approach, inside the key dividing message sent by node
ni(1 ≤ i ≤ N − 1), fe

j is the remaining global emulation frequency of PT j for the next
neighbor ni+1, and wj

next and cj
wnext

are the next available encryption key and capacity
for ni+1. On the other hand, for the clustered collection approach, f e

j is the local em-
ulation frequency of PTj assigned to a particular node or cluster, and wj

next and cj
wnext

are the next available encryption key and capacity for this node or cluster.

5.3. Incremental Collection Approach

The incremental collection approach is applied to the networks of chain-based topology
as depicted in Figure 6(a). The first node, n1, is the initial node for both frequency
collection and key dividing processes. We next discuss the two-round communication
process by steps.

Frequency Collection (1st round): The frequency collection process consists of
two steps.

Step 1.1. Frequency Initialization: Node n1 initializes the frequency collection mes-
sage. The message contains all local plaintext values on n1 and their corresponding
frequencies. The frequency collection message is then passed to the neighbor n2 of n1

on the routing path of the chain topology. For example, consider the plaintext PT 1

in a chain topology as shown in Figure 6(a), assume its frequency f 1
1 on node n1 is

f1
1 = 11. Then in the frequency collection message, the payload of plaintext PT1 is set

as [PT1 : 11]. After that, the frequency collection message is sent to n2.
Step 1.2. Frequency Accumulation: Node ni(2 ≤ i ≤ N − 1) receives the frequency

f i+1
j of PTj(1 ≤ j ≤ k) from ni−1, and updates the frequency of PTj by accumulating

with its local frequency f i
j . Then ni passes the frequency collection message with the

updated accumulated frequency f i+1
j + f i

j of PTj to its neighbor ni+1. Each node on the
routing path repeats the procedure until the last node nN is reached. Finally nN sends

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:19

the frequency collection message including global frequency f j of each plaintext PTj

back to n1.
Continuing the example, assume the local frequency of PT1 on node n2 is f2

1 = 7.
Then the total frequency of PT1 is updated to fj = 18 by summing up the frequencies
on n1 and n2. The updated frequency is then sent to node n3. This process continues
until all the nodes in network are traversed.

1 2 3 N

 PT1 PT1 PT1

 PT1

PT1 PT1 PT1 PT1

(a) Incremental Collection: Frequency collection

1 2 3 N

 PT1
 w2

 PT1
 w2

enc(PT1 ,w1)
enc(PT1 ,w2)

enc(PT1 ,w2) enc(PT1 ,w2)

 PT1
 w2

(b) Incremental Collection: Key dividing

Fig. 6: Illustration of Incremental Collection framework

Key Dividing (2nd round): The key dividing procedure assigns the encryption
keys to each node. The main challenge during this process is to update each node with
the available emulation frequency of particular plaintext values:

Step 2.1. Parameter Calculation: Given the global frequency fj of PTj, n1 calculates
the dividing factor d based on the required security guarantee in Equation 5, and deter-
mines the minimum interval δ between any two successive plaintext values. According
to the dividing factor d, n1 obtains the global emulation frequency f e

j = d − (fjmod d)
for PTj.

Continuing the example, assuming the dividing factor d = 10, and the frequency of
PT1 after emulation is 20, then the global emulation frequency f e

1 = 2. In addition, the
minimum interval of plaintext is δ.

Step 2.2. Key Dividing Initialization: With the frequency knowledge f 1
j of plaintext

PTj, its emulation frequency on n1 is determined as follows: first n1 picks a random
number, i.e., f e

j,1, ranging from 0 to f e
j as PTj ’s emulation frequency on n1, and sub-

tracts fe
j,1 from f e

j . Then the remaining global emulation frequency that is available
for the next node is updated as f e

j − fe
j,1; in the meanwhile, PTj on n1 is encrypted to

�(f1
j +fe

j,1)/d� ciphertexts with identical frequency d, but the last ciphertext may not be
exactly divided by d. The next available encryption key for PTj is wj

next = w
� fj,1+fe

j,1
d �

,

and its remaining capacity cj
wnext

is d − (fj,1 + fe
j,1)mod d.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:20 H. Liu et al.

Continuing the example, starting from the initial node n1, since its local occurrence
frequency of PT1 is 11, the global emulation frequency of PT1, fe

j = 2, is determined.
First n1 generates a random emulation frequency, f e

1,1 = 1, of PT1 at n1. The frequency
after emulating for PT1 will be up to f e

1,1 + f1
1 = 12. n1 needs two encryption weights

w1 and w2 for encrypting PT1, where 10 for w1 and 2 for w2, and the capacity of w2

left for next node is d − 2 = 8. In addition, the remaining global emulation frequency
decreases to f e

1 = 1.
Step 2.3. Message Encapsulation: n1 initializes the key dividing message, including

dividing factor d, minimum interval δ, the plaintext PTj and its remaining global em-
ulation frequencies f e

j . In addition, the next available encryption key wj
next and its

remaining capacity are also included. All these information will be sent to n2.
Continuing the example, node n1 transmits the global remaining emulation fre-

quency f e
1 = 1 and the remaining capacity, c1

w2
= 8, of the next encryption weight

w2 to its neighbor n2, such as [PT1 : 1, w2 : 8].
Step 2.4. Key Dividing Iteration: For each node ni(1 ≤ i ≤ N −1), it generates a ran-

dom local emulation frequency f e
j,i for PTj , and subtracts it from the remaining global

emulation frequency f e
j . Next, the total plaintext frequency of PTj on ni is updated

fe
j,i + f i

j ; then ni re-uses the encryption key wj
next passed from ni−1 to fill the corre-

sponding remaining capacity cj
wnext

. If cj
wnext

< (fe
j,i + f i

j), the other f e
j,i + f i

j − cj
wnext

plaintext will be encrypted by wj
next’s following weights; otherwise, all PTj appeared

on ni are used to fill the remaining capacity of wj
next. Finally, ni updates the next avail-

able encryption weight and corresponding remaining capacity. If c j
wnext

< (fe
j,i + f i

j),
wj

next = w
l+� fe

j,i
+fi

j
−c

j
wnext

d �
, where l is the index of next encryption key before up-

dating, and cj
wnext

= d − (fe
j,i + f i

j − cj
wnext

)mod d; otherwise, wj
next maintains, and

cj
wnext

= cj
wnext

− fe
j,i − f i

j .
Continuing the example, at n2, it gives a random local emulation frequency, f e

1,2 = 0,
which means there is no emulation. Then PT1 of the local occurrence frequency f 2

1 = 7
will be encrypted by w2. Since the remaining capacity of encryption weights for w2

is 8, which is larger than f2
1 , all PT1 are encrypted with the same weight w2. After

encryption, the remaining capacity for w2 becomes 1. This process will repeat on the
all nodes at the path, until the last node nN is reached.

Step 2.5. Key Dividing Ending: When the key dividing message reaches the last
node nN , no matter how many PTjs exist in nN , the frequency of PTj will be f e

j,N−1

passed from nN−1 after emulation. At the end the ciphertext values of the plaintext
PTj achieve global uniform distribution in the network.

Continuing the example, finally, no PT1 is found on nN . However, since the remain-
ing global emulation frequency f e

j passed from nN−1 is not zero, it emulates f r
j = 1

ciphertext via w2. Therefore, the global uniform distribution of the ciphertext values
of PT1 is achieved.

5.4. Clustered Collection Approach

In this section, we present the clustered collection approach which is more suitable for
more advanced network topology [Llc 2010]. We use a three-layer tree network topol-
ogy as an example, where the three layers represent the leaf nodes, the cluster heads,
and the network coordinator respectively. The nodes in the network form several clus-
ters. Each cluster elects a cluster head, which is also a node in the network. During
the frequency collection procedure, each cluster head collects the plaintext frequency

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:21

information from the nodes within its cluster and forwards the total frequency infor-
mation of its cluster to the network coordinator. During the key dividing procedure, the
network coordinator distributes the encryption keys to each cluster. Then the cluster
head enforces dividing and emulating by further dividing the encryption keys to each
leaf node within the cluster. Figure 7(a) illustrates the framework for the clustered
collection. Next, we discuss the details of both the frequency collection and encryption
key dividing procedure.

1 2

Hc1

1 N2

Hc2

1 NQ

HcQ

PT1 :11
...

PT1 :7
...

 PT1 : 11; ... PT1 : 7; ...

 PT1 : 18; ...

(a) Clustered Collection: Frequency collection

1 2

Hc1

1 N2

Hc2

1 NQ

HcQ
 PT1 : 0,
 w1 : 10;

 PT1 : 1,
w2 : 8;

enc(PT1 ,w1):10;
enc(PT1 ,w2):1;

...
enc(PT1 ,w2):8;

...

 PT1 : 1,
 w2 : 1;

 PT1 : 1,
 w2 : 1;

 PT1 : 1,
w1 : 10;

enc(PT1 ,w2):1;
...

(b) Clustered Collection: Key dividing

Fig. 7: Illustration of Clustered Collection framework

Frequency Collection (1st round): there are two main steps in frequency
collection.

Step 1.1. In-cluster frequency collection: The frequency collection starts from the
leaf nodes. Assume the leaf node ni belongs to the cluster ct. The node ni transmits
the frequency collection message including its local occurrence frequency f i

j for its
plaintext PTj(1 ≤ j ≤ k) to its cluster head Hct . All other nodes in cluster ct follow the
same way to send their local frequency collection messages to Hct .

For example, given the network topology shown in Figure 7(a), each leaf node first
sends its local plaintext frequency to its cluster head. The cluster c1 has two nodes n1

and n2. Assume the frequencies of PT1 on these two nodes are: [PT1 : 11] and [PT1 :
7], and other clusters have no PT1. The cluster head Hc1 will receive two frequency
collections messages from PT1 and PT2.

Step 1.2. Cluster based frequency collection: After the cluster head Hct collects all
the plaintext frequency within its cluster ct, it sums up the frequency of PTj as fj,ct .

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:22 H. Liu et al.

Next, the each cluster head constructs a new frequency collection message including
all the plaintext and their frequencies, and forwards the message to the network coor-
dinator for further processing.

Continuing the example, the cluster head Hc1 sums up the frequencies of PT1 and
sends the total in-cluster frequency information [PT1 : 18] to network coordinator.

Key Dividing (2nd round): The key dividing procedure consists of 3 major steps.

Step 2.1. Parameter calculation: The network coordinator calculates the global fre-
quency fj of each plaintext PTj(1 ≤ j ≤ k) from the frequency collection messages col-
lected from all cluster heads. Next, the network coordinator determines the dividing
factor d and calculates the global emulation frequency f e

j = d − (fjmod d). Continu-
ing the example, the network coordinator calculates the global occurrence frequency of
PT1 fj = 18. Then it calculates the dividing factor as 10, and f e

j = 10− (18mod 10) = 2.
Step 2.2. Cluster-based key dividing: The network coordinator assigns each cluster

a random emulation frequency, f e
j,ct

, from the global emulation frequency f e
j , where∑Q

t=1 fe
j,ct

= fe
j , where Q is total number of clusters in the network. It also distributes

the next available encryption weights wj
next and its corresponding capacity cj

wnext
to

each cluster. For cluster c1, combining its local frequency f c1
j of PTj and emulation

frequency f e
j,c1

, the total frequency of PTj becomes f e
j,c1

+ f c1
j . The next plaintext PTj

in cluster c1 is assigned with the encryption weights from w1 to w�(fj,c1+fe
j,c1

)/d�. But the
frequency of the last ciphertext may not be as high as d, thus the remaining capacity
for w�(f e

j,c1
+ fj,c1)/d� is d− (fe

j,c1
+ fj,c1) mod d. As shown in Figure 5, the key dividing

message sent to cluster c1 includes the dividing factor d, the emulation frequency f e
j,c1

on cluster c1, the next available encryption weight w1, and its corresponding remaining
capacity 10. Generally speaking, the updated message sent to cluster ct includes the
dividing factor d, its next available encryption weight wj

next = w�∑ t−1
i=1 fe

j,ci
+fj,ci

/d�, and

the remaining capacity for this encryption weight cj
wnext

= d − ∑t−1
i=1 fe

j,ci
+ fj,ci mod d.

The last cluster will apply emulation to make the capacity of last encryption weight of
PTj 0.

Continuing the example, network coordinator begins to distribute the encryption
weights to each cluster. First, the network coordinator generates a random emulation
frequency f e

j,c1
= 1 for c1, so the total frequency within c1 is 19. Consequently PT1

requires two encryption weights w1 and w2, and the remaining capacity for w2 is 1.
The key dividing message for cluster c1 is [PT1 : 1, w1 : 10]. The network coordinator
then distributes the remaining emulation frequency of PT1 to other clusters, although
there is no PT1 in other clusters. As shown in Figure 7(b), c2 is assigned with emulation
frequency 0, and 1 for cQ. The key dividing message to cluster cQ is [PT1 : 1, w2 : 1].

Step 2.3. In-cluster key dividing: Next, each cluster head acts as the cluster coordi-
nator to divide the encryption weights among its leaf nodes. In particular, the cluster
head assigns a random emulation frequency, f e

j,ni
, to node ni in the cluster. Following

the same principle of key dividing among clusters, the key dividing message from the
cluster head to node ni consists of the dividing factor d, the first available encryption
weight wj

next = w�∑ Nt−1
i=1 fe

j,ni
+fj,ni

/d�, and the remaining capacity for this encryption

weight cj
wnext

= d − ∑Nt−1
i=1 fe

j,ni
+ fj,ni mod d. At the end of this round of communica-

tion, all clusters will achieve the global uniform distribution.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:23

Continuing the example, once the encryption weights on clusters are determined,
the cluster head Hc1 distributes the encryption weights among its cluster. In particular,
Hc1 gives no emulation frequency assignment to n1, but 1 for n2. For n1, PT1 uses 10
w1 and 1 w2 for encryption; for n2, 8 w2 for PT1. The key dividing message within
the cluster should be: n1 : [PT1 : 0, w1 : 10] and n2 : [PT1 : 1, w2 : 8]. For cluster cQ,
although no PTj exists there, it also has the emulation frequency f

cQ

1 = 1. Therefore
the corresponding key dividing message sent to the node nNQ in cQ is nNQ : [PT1 :
1, w2 : 1]. After dividing and emulation executed on each individual node, the global
distribution homogenization is completed.

5.5. Communication Overhead Analysis

We now discuss the communication overhead of the two approaches in terms of the
number of packet exchanges during frequency collecting and key dividing. For the
communication overhead, we consider two main factors: (1) communication cost and
(2) time performance. We measure the communication cost as the number of packets
transmitted during the frequency collection and key dividing processes. We evaluate
time performance as the time cost for completing the two rounds of communication
processes.

5.5.1. Incremental Collection Framework. We assume that the frequency collection and
key dividing messages can be fit into single packet Assume the number of nodes in the
networks is N , the communication cost Cincr is:

Cincr = CFreqCol
incr + CKeyDiv

incr = N + (N − 1) = 2N − 1 (16)

where CFreqCol
incr and CKeyDiv

incr are the communication cost of the frequency collection
and the key dividing procedure respectively. Next, regarding the time cost, we find
that the time cost increases with the growth of the network size, due to the fact that
the incremental collection approach needs to traverse all the node in the network. We
assume that for each node in the network, its neighbor is always in its communication
range; therefore all messages can be transmitted without any relay. We use T0 to de-
note the time unit of transmitting the (frequency collection or key dividing) message
between two neighbor nodes. The time performance T incr of the incremental collection
approach is:

Tincr = T FreqCol
incr + T KeyDiv

incr = NT0 + (N − 1)T0 = (2N − 1)T0 (17)

where T FreqCol
incr and T KeyDiv

incr are the time cost during frequency collection and key
dividing respectively.

5.5.2. Clustered Collection Approach. Each cluster head collects the frequency of plain-
text PTj within the cluster, and passes the cluster frequency information to the net-
work coordinator. Therefore, the communication cost C incr of the clustered collection
approach is:

Cincr = CFreqCol
incr + CKeyDiv

incr = N + N = 2N (18)

Comparing with the incremental collection approach, the clustered collection ap-
proach has one additional network coordinator node that is not used for data storage
but for frequency collection and key dividing. Therefore, comparing with the incremen-
tal collection approach, the communication cost of the clustered collection approach in-
volves two extra messages, one for frequency collection and one for key dividing, from
the network collector.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:24 H. Liu et al.

1 2 3 6

3 4

1

5 6

2

(a) Incremental collection (b) Clustered collection

Fig. 8: Implementation of both Incremental and Clustered Collection framework

However, since the frequency collection and the key dividing procedures of each clus-
ter can take place simultaneously, whereas the incremental collecting messages have
to traverse node by node, the clustered collection approach can be more efficient than
the incremental collection. For example, assume there are G clusters of equal sizes,
each of NG =

⌈
N
G

⌉
nodes. Since all clusters carry out frequency collection and key di-

viding simultaneously, the total time cost is O(G + NG). The time performance Tincr of
the clustered collection approach is:

Tincr = T FreqCol
incr + T KeyDiv

incr = [(G + NG)T0] + [(G + NG)T0] = 2(G +
⌈

N

G

⌉
)T0 (19)

In particular, the time cost between network coordinator and all cluster heads equals
to G × T0, and the time cost within each cluster equals to NG × T0.

5.6. Experimental and Simulation Results

In this section, we perform both experimental and simulation evaluation of the time
performance for the two proposed framework approaches. Our testbed-based experi-
mental study focuses on investigating the feasibility of using two frameworks to defend
against the global frequency based attack in a small network, while our simulation
evaluation provides a more comprehensive performance evaluation of our approaches
in networks at larger scales.

Metrics. We measure the time performance as the time cost of completing all the
required communication process of the encryption framework.

Experimental Evaluation. Our key construction/update mechanism for defending
against the global frequency based attack involves two parts: the communication for
frequency collection and key distribution, and the specific key construction/update on
each involved node. The key construction/update for defending against local frequency
based attack only involves the specific dataset on each involved node. Implementation
of key construction/updates on the sensor nodes are feasible, since previous work has
shown that some popular public key cryptography techniques (e.g., elliptic curve cryp-
tography [Liu and Ning 2003b]) can be implemented and executed on wireless sensors
with small overhead in terms of energy consumption and ROM/RAM consumption.
We expect that integrating our dividing/emulating method with those techniques will
not introduce overwhelming amounts of overhead, especially with the more powerful
sensor nodes these days, e.g., smartphone and tablet.

We build a testbed of a wireless sensor network using MicaZ sensor motes [Crossbow
Tech. Inc.]. Each MicaZ sensor mote is equipped with a 2.4-2.48 GHz Chipcon CC2420

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:25

Preamble(bytes) Frame Check Seq.(bytes) Synchronization(bytes)

4 2 1

Frame Payload(bytes) Frequency Band(MHz) Address(bytes)

Depends on message type 2400-2483.5 2

and number of plaintext

Pkt Trans. Rate(pkt/s) RF Power(dBm) Data Seq. Number(bytes)

10 0 1

Frame Control Field(bytes) Receive Sensitivity(dBm) Frame Length(bytes)

2 -90 1

Table II: Testbed configuration

Radio, 512KB flash memory, TinyOS 2.x as the operating system, and 802.15.4 pro-
tocol. Our testbed configures each sensor mote with B-MAC protocol [Polastre et al.
2004], a carrier sense multiple media access protocol for wireless sensor networks
that provides a flexible interface to obtain ultra low power operation, effective col-
lision avoidance, and high channel utilization. When using the B-MAC protocol, we
configure the node to use adaptive clear channel assessment (CCA), which is an essen-
tial component of carrier sense multiple access (CSMA), the de-facto medium access
control (MAC) protocols in many wireless networks. In particular, each network node
is only allowed to transmit packets when the channel is idle by using CCA as chan-
nel detection. Typically, CCA works as follows: before transmitting, a wireless device
samples the ambient noise floor for a short period and it will transmit only if the
sampled value is larger than a threshold. Studies [Polastre et al. 2004] have shown
that adaptive-CCA, which adjusts the threshold based on the ambient noise floor, can
achieve better throughput and latency than using a pre-determined threshold. Besides
the CCA scheme deployed in MAC layer, the MAC layer frame components and other
related configuration are listed in Table II. We find that, except for the frame payload
that carries the real information of frequency collection and key dividing messages, the
overhead of the frame is about 13 bytes in total, which has little impact on communi-
cation cost. Additionally, the packet transmission rate is set at 10 pkt/s in our testbed,
which could ensure lower probability on packet collision during communication, and
result in lower latency as well.

We test the proposed two frameworks using this testbed for five scenarios of net-
work sizes of 2, 3, 4, 5 and 6 wireless nodes. In order to evaluate how the time cost
varies with the network size, we gradually increase the size of the network starting
from 2 nodes in both frameworks. In particular, for the incremental collection frame-
work, we set up a chain topology with all the nodes in the network connecting with
one another. In the chain topology, each node forwards the message along the topology
until it reaches the destination. The messages exchanged in the framework are fre-
quency collection message and key dividing message. Each node maintains a two-way
communication link with its previous and next neighboring nodes. For the clustered
collection framework, we setup a tree topology, with each node in the tree connected to
at most two leaf nodes at the next lower level in the cluster. The tree topology starts
from two tiers involving two nodes, and then grows up to three tiers for the five dif-
ferent network sizes. Different nodes could exchange messages with their leaf nodes
simultaneously without interfering with each other. The experimental setup is shown
in Figure 8.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:26 H. Liu et al.

2 3 4 5 6
20

40

60

80

100

120

Network size
T

im
e

co
st

 (
m

ili
se

c)

Incremental Collection
Clustered Collection

Fig. 9: Time Performance in real implementation of both frameworks

The time performance (in the level of milliseconds) on the frequency collection and
key distribution for both topologies is shown in Figure 9. We observe that the time cost
for incremental collection is lower than that in clustered collection at different net-
work sizes. Since the incremental collection framework consists of the chain topology
and needs to traverse the chain topology twice for frequency collection and key distri-
bution. Furthermore, we find that the time cost for incremental collection increases
faster than that for clustered collection, and the growing trend follows a linear rela-
tionship to the number of nodes in the network. Since all the clusters in the proposed
clustered collection framework performs frequency collection and key distribution in
parallel, the time cost for clustered collection approach is less sensitive to the size of
network, which is inline with our theoretic analysis. In particular, the time cost in-
creases from 35 ms to over 100 ms when the size of network increases from 2 to 6
nodes for incremental collection, while for clustered collection, the time cost only has a
slight increasing, from 35 to 43 ms, when the tree topology increases from 2 tiers with
2 nodes to 3 tiers with 6 nodes. This observation indicates that using the clustered
collection framework is more efficient when performing key updating in the network
with the time cost grows slowly as the network size increases. In summary, since we
find that the growing trend of the time performance under the incremental collection
framework follows a linear relationship to the number of nodes in the network, the
total communication overhead is still manageable under a large scale network with
hundreds of sensor nodes. And with more clusters or each cluster involving more leaf
nodes under the clustered collection framework in a large scale network, communica-
tion overhead will be much smaller than that in the incremental collection framework,
making the clustered collection framework more compelling.

The results from running the testbed show the feasibility of applying our frame-
works to real wireless sensor networks. Next, we perform a more comprehensive eval-
uation of the frameworks using simulation in a large-scale wireless network.

Simulation Evaluation. To further study in a large scale network setup, we con-
ducted simulation of a wireless network with multiple nodes using Matlab. The data
is collected and stored at each wireless node. We vary the number of nodes from 30
to 100. For the clustered collection approach, we choose four cluster of sizes, 3, 5, 10
and 20. We distribute the nodes into clusters uniformly. For each simulation setup, the
total number of distinct plaintext values appeared in the network is not more than
200. The occurrence frequencies of plaintext values on each wireless node is uniformly
distributed within the range of [0, 100]. We used the decipher probability valued as

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:27

30 40 50 60 70 80 90 100
0

50

100

150

200

Number of Nodes
T

im
e

(x
 T

0)

Incremental Collection
Clustered Collection − 3 clusters
Clustered Collection − 5 clusters
Clustered Collection − 10 clusters
Clustered Collection − 20 clusters

Fig. 10: Time performance of both frameworks

0.00001, 0.0001, 0.001, 0.01, 0.1 and 1. The simulation results are averaged over 100
runs.

Figure 10 shows the time performance of both approaches. First, we observe that
the clustered collection approach is always faster than the incremental collection ap-
proach, regardless of the cluster size. Second, the time cost increases with the growth
of the number of nodes; however, how fast the time increases varies for clusters of
different sizes. Furthermore, we observe that the time performance of the clustered
collection approach increases slower for larger clusters than the incremental collection
approach. Third, there is no consistent trend of the overall time cost when the number
of clusters increases. For example, when the cluster number increases from 3 to 5, the
time cost decreases with the growth of the nodes. When the number of nodes increases
from 40 to 200, for 3 clusters, the time cost increases from 32T0 to 102T0, and from 20T0

to 48T0 for 5 clusters.
Fourth, when the number of nodes is small, the time cost of a small number of clus-

ters outperforms that of larger number of clusters. For example, considering the net-
work of 30 nodes, 3 clusters costs 32 time units, whereas 20 clusters costs 42 time
units. Since the size of each cluster is small for these small networks, the time cost of
the communication between the network coordinator and the cluster heads dominates
the total time. Therefore, the parallel operations of clusters indeed benefit the large
networks and this is consistent with our findings in the experimental evaluation.

Encouragingly, large-scale simulation results show the similar trend to the obser-
vations obtained from our testbed-based experimental study. In both testbed-based
experiments and simulation evaluation, we find that using the clustered collection
framework is more efficient than using the incremental collection framework.

6. UPDATES ON DATA STORAGE

In previous sections, we only consider static data storage. Due to the fact that devices
in wireless networks collect and store data all the time, it is important to deal with
updates on (encrypted) data in the network. In this section, we discuss how to update
data storage efficiently with provable security guarantee against the frequency-based
attacks. First, we discuss two encryption schemes, direct emulating and dual encryp-
tion, that deal with updates on data storage. Second, we conduct a set of experiments
to evaluate the performance of our two methods.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:28 H. Liu et al.

6.1. Encryption Schemes to Deal with Updates

Before we start discussing the details of how to update data storage, we must note that
the only update operation on data storage is data insertion, due to the fact that the
wireless devices keep collecting and storing new data all the time. A naive approach to
encrypt the new data is to first decrypt all existing ciphertext values in the network,
then encrypt all data at one time, including the newly inserted one. Obviously this
approach is not affordable by the energy-constrained sensor nodes or mobile devices,
due to its expensive computational cost. Thus, light-weight methods are needed for the
application on sensor nodes and mobile devices. We develop two efficient approaches,
the direct emulation method and the dual-encryption method, that enable secure and
efficient data storage updates to cope with both global and local frequency based attack
in the network.

Direct Emulation Method. Assume at time t, a set of plaintext values PT t
j (j =

1, · · · , J) with frequency fj,t are collected across the network. Our goal is to encrypt
these new values without affecting the order of original ciphertext, while keeping the
frequency distribution of the ciphertext values for both old and new ones uniform.
There are two possible cases for each new plaintext value PTj(j ∈ [1, J]).

— Case 1: PT t
j already exists in network. For simplicity, we use PTj to denote the

existing occurrence of PT t
j in the network, and PT t

j the newly inserted value. For
this case, the keys which have already been used to encrypt the old PTj cannot be
re-used on the newly inserted PTj . But we use the same dividing factor as the one
in original data storage. In particular, assume the dividing factor of the old PTj is
d. Let w1, w2, · · · , w� fj

d � be the � fj

d � keys that have been used for encrypting original

PTj. Then we use � fj,t

d � number of keys w� fj
d �+1

, w� fj
d �+2

, · · · , w� fj,t
d �+� fj

d � for the new

PTj values, without overriding original ciphertext values. The overhead of dividing
and emulating (defined in section 3) of plaintext PT t

j is d − mod(fj,t, d).
If all PT t

j (1 ≤ j ≤ J) values exist in the network, the arrival of new data will only
increase the number of distinct ciphertext values. Let mo and mu be the number of ci-
phertext before and after updates respectively, and k be the number of distinct plain-
text values. It is straightforward that mu > mo. Next, we prove that the decipher
probability will decrease, i.e., the security guarantee will improve, after the updates.
The proof is shown in Equation 20. The decipher probability Pu after updates is:

Pu =
1(

mu−1
k−1

) ≤ 1(
mu−2
k−1

) ≤ 1(
mu−3
k−1

) ≤ · · · ≤ 1(
mo

k−1

) ≤ 1(
mo−1
k−1

) = Po. (20)

where Po is the decipher probability of the old data.
For example, let us consider the plaintext value PT1 and PT2 that have been mapped
to three and two unique ciphertext values CT1, . . . , CT5 with frequency 10 (Figure 11
(a)). Assume there are three new PT1 values collected in the network. Since the first
three encryption keys w1, w2 and w3 have been taken by original PT1, we use a new
encryption key w4 to encrypt the newly added PT1. After the updates, PT1 is en-
crypted to four ciphertext values, CT1, CT2, CT3 and CT6. For CT6, the amount of
emulating noise is 10 − 3 = 7. Figure 11 (b) shows the ciphertext values after up-
dates.

— Case 2. PT t
j does not exist in the network. For this case, to avoid the overriding of

the order of original ciphertext values in the network, a large value gap, G, between
PT t

j and the largest plaintext value existing in the network, is calculated first. In
particular, G should be no less than R+δ, where R is the range of old plaintext values,

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:29

CT1 CT2 CT3 CT4 CT5
0

5

10

15

Original Ciphertext Value

O
rig

in
al

 C
ip

he
rt

ex
t F

re
qu

en
cy

CT1 CT2 CT3 CT6 CT4 CT5
0

5

10

15

Updated Ciphertext Value

U
pd

at
ed

 C
ip

he
rt

ex
t F

re
qu

en
cy

CT1 CT2 CT3 CT4 CT5 G CT6
0

5

10

15

Updated Ciphertext Value

U
pd

at
ed

 C
ip

he
rt

ex
t F

re
qu

en
cy

(a) (b) (c)

Fig. 11: An example of the direct emulation method. (a) Before updates; (b) PT1 existed
in network (3 PT1 updated and encrypted as CT6); (c) PT1 does not existed in network
(3 PT1 updated and encrypted as CT6)

and δ is the minimal interval between any two successive plaintext values (defined in
section 3). The newly inserted plaintext PT t

j first is increased to be PT t
j +G. Then we

divide the increased PT t
j by using the same dividing factor for encryption of existing

plaintext values. During the emulating step, we duplicate d − mod(f t
j , d) ciphertext

values for the largest split value of PT t
j to achieve the uniform distribution.

For example, consider the case that there are two plaintext PT1 and PT2 in the origi-
nal data storage that are encrypted to five ciphertext values CT1 to CT5 of frequency
10. Now a new plaintext PT3 of frequency 3 is inserted into the data storage. Fol-
lowing our procedure, first, PT3 is changed to be PT ′

3 = PT3 + G. Then a new en-
cryption key, w1′ is applied on PT3 for dividing, which results in a new ciphertext
CT6 = enc(PT3, w

′
1). The amount of emulated noise for PT3 is also 7. The updated

data storage is shown in Figure 11 (c).
Next, we prove that the security guarantee will not decrease after the updates for
this case. Let ko and mo be the number of distinct plaintext and ciphertext values
before updates, and ku and mu be the number of new plaintext and ciphertext values
introduced by the updates. Then the decipher probability Pu after updates is Pu =

1

(mo+mu−1
ko+ku−1) . Note that mo ≥ ko and mu ≥ ku. Then

Pu =
1(

mo+mu−1
ko+ku−1

) =
1(

mo+mu−2
ko+ku−2

)
mo+mu−1
ko+ku−1

≤ 1(
mo+mu−2
ko+ku−2

) = · · ·

≤ 1(
mo+mu−ku−1

ko−1

) =
1(

mo+mu−ku−2
ko−1

)
mo+mu−ku−1
mo+mu−ku−ko

≤ 1(
mo+mu−ku−2

ko−1

) = · · ·

≤ 1(
mo−1
ko−1

) = Po

(21)

Dual-encryption Method. Although the direct emulation method can guarantee
the required security guarantee after updating, it may incur expensive memory cost.
For example, when there is only a single plaintext to be updated, there are d − 1 ci-
phertext values that could be updated, which incurs the memory overhead that is d−1
times larger than the amount of new data. In the following, we will discuss how to
reduce the memory cost without degrading the security guarantee.

Generally speaking, the amount of duplicated noise by emulating is decided by the
dividing factor. If we can decrease the dividing factor, it is more likely to save much

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:30 H. Liu et al.

CT1 CT2 CT3 CT4 CT5
0

5

10

15

20

25

30

Updated Ciphertext Value
U

p
d
a
te

d
 C

ip
h
e
rt

e
xt

 F
re

q
u
e
n
cy

CT6 CT7
0

2

4

6

Fig. 12: Distribution of ciphertext values by dual encryption method after updates

memory space. In particular, assume node i receives multiple new plaintext values
PT t

j (j ∈ [1, J]) of occurrence frequency fj,i at time t. For each plaintext PT t
j (1 ≤ j ≤ J),

we consider the following two cases:

— Case 1: PT t
j has appeared in original data storage. For this case, there exists

a set of ciphertext values CTj of PTj , each with occurrence frequency d. We apply
another round of encryption on the new PT t

j values together with those existing ci-
phertext values, by using the same dividing factor d. The encryption keys used for
newly inserted plaintext values follow the same encryption key sequence as intro-
duced in previous section. To be more specific, let mo be the number of ciphertext
values encrypted from plaintext PTj in the original data storage, and wl

o be the last
encryption key of original plaintext PTj. When there is new PT t

j inserted into the
data storage, the last ciphertext enc(PTj, w

l
o) is decrypted first, and combined with

newly inserted PT t
j . Let nl be the number of PTj encrypted with wl

o, and nu be the
number of newly inserted PTj . We generate mod(nu + nl, d) − 1 new encryption keys
to encrypt the new inserted PT t

j .
— Case 2: PT t

j has not appeared in original data storage. We aim to insert PT t
j

into the place that still maintains the order-preserving relationship with all existing
plaintext values. First, we identify two plaintext values PT l and PT u in original data
storage such that: (1) PT l and PT u are the closest to PT t

j , and (2) PT l < PT t
j and

PT u > PT t
j . PT t

j will locate between PT l and PT u. Second, we calculate an interval
value, δu, between PT t

j and PT l. Assume the previous plaintext PT l has been already
been encrypted as enc(PTj1 , wu), where u = 1, · · · , v. We create a new data interval
δu = PT t

j − (PT l +
∑v

u=1 wuδ), which is less than δ. Third, we define a particular
data interval δnew that is less than δu to encrypt the newly inserted plaintext PT t

j .
Figure 12 shows an example of encryption for this case.

Due to the fact that the total number of distinct ciphertext does not decrease after
updates, the security guarantee of the dual encryption method is always equal to that
before the updates. In other words, the security guarantee does not degrade due to
updates.

Query for updated dataset For the query on updated dataset, we still follow the
three steps as that for original dataset in Section 3.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:31

Phase-1: Query translation at user side. Similar as query on original dataset, we
also assume a user can access all the auxiliary information including the weight values
wi, the gap values δ, and the order-preserving encryption function enc() that are used
in the dividing scheme. It follows the same way to translate the plaintext queries to
ciphetext queries, i.e., a point query Q : V = v is translated as Q′ : V ∈ [CT1, CTr],
where CT1 = enc(v + w1 ∗ δ), and CTr = enc(v +

∑r
i=1 wi ∗ δ), and a range query Q :

V ∈ [l, u] will be translated to Q′ : V ∈ [CT1, CTr], where CT1 = enc(v + w1 ∗ δ), and
CTr = enc(v +

∑r
i=1 wi ∗ δ).

Phase-2: Query evaluation at nodes in the network. The translated query Q ′ :
V ∈ [CTl, CTu] (for both point and range plaintext queries), where CT l and CTu are
the lower bound and upper bound ciphertext values, will be sent to the network. Each
node will return these ciphertext values that satisfy the query Q ′. It also requires
that at least two unique ciphertext values are returned for successful decryption in
Phase-3. For dual encryption method, the updated ciphertext values do not affect the
query evaluation. For direct emulating method, if the updated plaintext does not exist
in original dataset, the updated ciphertext may not be within the query range due to
adding the large gap value G during encryption. But these ciphertext values will be
also returned to users.
Phase-3: Query post-processing at user side. After the user obtains the returned
ciphertext values CT1, CT2, · · · , CTt, he/she will decrypt these values with the same
procedures performed in original dataset. During decrypting, if the user encounters
the ciphertext values do not match the weight values, it indicates that the cipher-
text values have been re-encrypted in dual encryption method. We need to repeat the
data decryption process as the way in original dataset by re-using the weight values.
Further, for the returned ciphtertext values that are not within the query range due
to direct emulating method, the user needs to decrypt them independently. After de-
crypted, the gap value G will be deducted from the decrypted values, and the original
plaintext can be obtained.

6.2. Simulation Evaluation

We ran a set of experiments to measure the performance of the two encryption ap-
proaches of handling updates. The simulation is conducted with Matlab. We tested on
one network with size fixed as N = 60. For each simulation setup, we varied the total
number of distinct plaintext values in the network from 40 to 200. The frequency of
original plaintext values on each wireless node is of uniform distribution in the range
of [0, 100]. The simulation results are averaged over 100 runs.

To evaluate the sensitivity of our approaches to the data distribution of updates,
we create two different datasets. For dataset I, the frequency of updated plaintext
are uniformly distributed in the range [0, 30]; for dataset II, the frequency of updated
plaintext is within the range of [20, 30], where the frequency of each updated plaintext
is no less than 70% of the dividing factor in the original data storage.

6.2.1. Metrics. To evaluate the performance of our proposed approaches for updating,
we developed the following two metrics.

Update of number of keys. We measure the updated number of encryption keys
that are introduced by the data updates. For the global frequency-based attack, we
define the update of number of keys as ku−ko

ko
, where ku and ko are the numbers of

distinct ciphertext before and after data updates. For the local frequency-based attack,
we define the update of number of keys as

∑ N
i=1 ki

u−∑N
i=1 ki

o∑
N
i=1 ki

o

, where ki
u and ki

o are the
number of distinct ciphertext before and after data updates on the i-th node (1 ≤ i ≤
N). Intuitively, the closer the update of number of keys to 1, the smaller impact of data

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:32 H. Liu et al.

40 50 60 70 80 90 100110120130140150160170180190200
−50%

0%

50%

100%

150%

200%

Number of Distinct Plaintext

U
pd

at
e

of
 N

um
be

r
of

 K
ey

s

Direct Emulating (dataset I)
Direct Emulating (dataset II)
Dual Encryption (dataset I)
Dual Encryption (dataset II)

40 50 60 70 80 90 100110120130140150160170180190200
−50%

0%

50%

100%

150%

200%

Number of Distinct Plaintext

U
pd

at
e

of
 T

ot
al

 O
ve

rh
ea

d
(A

fte
r

D
iv

id
in

g
an

d
E

m
ul

at
in

g)

Direct Emulating (dataset I)
Direct Emulating (dataset II)
Dual Encryption (dataset I)
Dual Encryption (dataset II)

(a) (b)

Fig. 13: Data updating: direct emulating and dual encryption methods when coping
with local frequency-based attacks.

updates is on the encryption. We will evaluate the update of number of keys for various
decipher probabilities, including both global and local frequency-based attacks.

Update of total overhead (after dividing and emulating). In addition to mea-
suring the updated number of keys, we also quantify the update of total overhead
after dividing and emulating. We define the update of total overhead (by dividing and
emulating) as Su−So

So
, where Su and So are the sizes of the overhead in memory cost

before and after updating under global frequency based attack. Under local frequency
based attack, this metric is defined as

∑ n
i=1 Si

u−
∑ N

i=1 Si
o∑ N

i=1 Si
o

, where Si
u and Si

o are the sizes of
overhead in memory cost before and after updating on node i. The update of overhead
can be either positive or negative; positive value means the overhead increases after
updates, while negative value means the overhead is reduced after the update.

6.2.2. Overhead of updating under local frequency based attack. We first examine the over-
head of updating the data storage under local frequency based attack for both direct
emulating method and dual encryption method. Figure 13 shows the overhead of up-
dating varying with the number of distinct plaintext values, where the decipher prob-
ability is fixed at 0.01.

In Figure 13 (a), we show the updated number of encryption keys varying as the
number of distinct plaintext for both direct emulating and dual encryption method
under local frequency based attack. Both methods are sensitive to the distribution of
updated data. For direct emulating method, the updated number of keys increases
from 93% to 100.8% on dataset I, while decreases from 10% to 8.7% on dataset II. For
dual encryption method, the updated number of encryption keys on dataset I increases
from 75% to less than 82%, while decreases from 10.2% to 9.4% on dataset II. Both
methods requires much fewer number of updated encryption keys on dataset II. The
reason is that, for the direct emulating method, since the frequency of each updated
plaintext of dataset II is close to the dividing factor used in the original data storage,
it could largely reduce the possibility that each updated plaintext requires multiple
encryption keys for encryption, and thus result in fewer number of updated keys. On
the other hand, for the dual encryption method, since the frequency distribution of
dataset II is restricted in a small range, it reduces the possibility of more encryption
keys comparing with dataset I.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:33

40 50 60 70 80 90 100110120130140150160170180190200
−50%

0%

50%

100%

Number of Distinct Plaintext

U
pd

at
e

of
 N

um
be

r
of

 K
ey

s

Direct Emulating (dataset I)
Direct Emulating (dataset II)
Dual Encryption (dataset I)
Dual Encryption (dataset II)

40 50 60 70 80 90 100110120130140150160170180190200
−50%

0%

50%

100%

Number of Distinct Plaintext

U
pd

at
e

of
 T

ot
al

 O
ve

rh
ea

d
(A

fte
r

D
iv

id
in

g
an

d
E

m
ul

at
in

g)

Direct Emulating (dataset I)
Direct Emulating (dataset II)
Dual Encryption (dataset I)
Dual Encryption (dataset II)

(a) (b)

Fig. 14: Data updating: direct emulating and dual encryption methods when coping
with global frequency-based attacks.

Figure 13 (b) explores the update of total overhead after dividing and emulating,
by varying the number of distinct plaintext values for both direct emulating and dual
encryption methods. We observe that the overhead of the direct emulating method in-
creases from 111% to 124% for dataset I, but decreases from 2.7% to 1.4% for dataset
II. For the dual encryption method, the overhead slightly increases from -41% to -37%
for dataset I, while increases from -9.5% to 5.4% for dataset II. From the observa-
tion above, the dual encryption is more suitable than the direct emulating approach
regarding memory cost for both types of data updates.

6.2.3. Overhead of updating under global frequency based attack. The updating process un-
der global frequency based attack is based on the framework we introduced in section
5. Figure 14 shows performance of our proposed direct emulating and dual encryption
method on data updating with various number of distinct plaintext values.

Figure 14 (a) shows the updated number of encryption keys with various number
of distinct plaintext values for both direct emulating and dual encryption methods on
two different datasets. We observe that the two methods show different trend. For the
direct emulating method, the updated number of keys increases from 81% to 95% for
dataset I, while from 4.2% to almost 0 for dataset II. For the dual encryption method,
the updated number of keys increases from 21.2% to 38.9% for dataset I, while around
-0.01% for dataset II. Based on the observations, the dual encryption method requires
fewer new keys to encrypt both datasets. Moreover, for database I, no matter how
small the frequency of newly inserted plaintext values, the direct emulating method
always requires lager number of encryption keys for encryption on the updated values.
However, since the dual encryption method re-uses existing encryption keys in the
original data storage, the number of updated keys is still affordable. For example, the
number of updated keys by the direct emulating approach is over 40 for dataset I, and
fewer than 2 for dataset II. On the other hand, the number of updated keys by the dual
encryption approach for dataset I is over 10, and around 1 for dataset II.

Figure 14 (b) explores the update of total overhead after dividing and emulating
with regards to various number of distinct plaintext values for both direct emulating
and dual encryption method. We observe that the overhead of the direct emulating
method increases from 71% to 98% for dataset I, but does not change on dataset II. For
the dual encryption method, the overhead increases from -41.8% to -9% on dataset I,

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:34 H. Liu et al.

while maintains at almost 0 for dataset II. This shows that both methods are sensitive
to the updating dataset type. Since the frequency of each plaintext in dataset II is
close to the dividing factor in original data storage, the direct emulating methold could
emulate fewer new ciphertext values. However, since the dual encryption method re-
uses the existing encryption keys, the frequency of emulated ciphertext for dataset II
does not influence the overhead of updating. Therefore, the dual encrypiton always
produces better update overhead than that of the direct emulating method.

7. RELATED WORK

Distributed storage in wireless networks: In recent years, a few distributed in-
network data storage and retrieval schemes [Ye et al. 2002; RatNasamy et al. 2002;
Zhang et al. 2003; Newsome and Song 2003; Greenstein et al. 2003; Li et al. 2003;
Ghose et al. 2003; Desnoyers et al. 2005; Fang et al. 2006] have been proposed for
efficient data management. In the distributed in-network data storage schemes such
as TTDD [Ye et al. 2002], DCS [RatNasamy et al. 2002; Newsome and Song 2003],
TSRA [Desnoyers et al. 2005], HybridS [Ren et al. 2008], HASS [Xu and Jiang 2009],
ZettaDS [Liu et al. 2008], the landmark-based information brokerage system [Fang
et al. 2006], and others [Zhang et al. 2003; Greenstein et al. 2003; Li et al. 2003; Ghose
et al. 2003], the data collected by a sensor node is stored either locally or at some
designated nodes in the network, instead of transferred immediately to a centralized
data center that is usually located out of the network. In our proposed work, a fully
distributed data storage scheme is deployed, where the data collected are stored locally
on individual nodes.

Security in data storage of wireless networks: The past research on sensor net-
work security has focused on securing the information in communication. The research
topics include key establishment [Perrig et al. 2001; Eschenauer and Gligor 2002; Liu
and Ning 2003a], message authentication [Ye et al. 2004; Yang et al. 2005] and in-
trusion detection schemes [Wang et al. 2003]. However, securing information in the
storage has not received adequate attention from the research community. To protect
the stored data from being stolen by the attacker who may be able to compromise the
storage nodes, data on each storage node should be encrypted. This raises the issue of
how to simultaneously achieve data security in distributed data storage and retrieval
systems. Distributed data are vulnerable to random Byzantine failures as well as data
pollution attacks, in which the adversary can modify the data and/or inject polluted
data into the storage nodes. [Nalin et al. 2007] proposes a series of schemes for secur-
ing both distributed data storage and distributed data retrieval. [Wang et al. 2009]
presents an efficient and flexible dynamic data integrity checking scheme for verifying
the consistency of data shares in a distributed manner. In distributed storage system,
data should be encrypted with encryption keys which may compromised by attacker,
then data is at the risk of being cracked by attackers. [Seitz et al. 2003] proposes an
architecture that allows users to store and share encrypted in the environment. From
the view of application, distributed data storage technique has also extended to many
promising areas of wireless networks, such as network coding [Wang and Lin 2008],
etc.

Defending against the frequency-based attack: Previous works [Wong et al.
2007; Molloy et al. 2009] consider how to defend against the frequency-based attack
in the data-mining-as-service paradigm, i.e., the data mining computations are out-
sourced to a third-party service provider. For example, [Wong et al. 2007] proposes
a substitution cipher technique on transactional data for secure outsourcing of as-
sociation rule mining. It deployed a one-to-n item mapping that transforms trans-
actions non-deterministically. However, the mapping scheme has potential security
flaws; [Molloy et al. 2009] introduces an attack that could break the encoding scheme

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:35

in [Wong et al. 2007]. Some other works [Wang and Lakshmanan 2006; Agrawal et al.
2004] consider the frequency-based attack in the scenario of the database-as-service
paradigm (i.e., outsourcing database and its management to a third-party service
provider). The basic idea is to transform the dataset in a way that no matter what the
frequency distribution of the plaintext dataset is, the ciphertext values always follow
some given target distribution. Therefore, the attacker can not decide the mapping re-
lationship between plaintext and ciphertext values by the frequency of plaintext and
ciphertext values. [Wang and Lakshmanan 2006] proposes an approach that could
transform the original occurrence frequency distribution of plaintext into uniform dis-
tribution. [Agrawal et al. 2004] and [Boldyreva et al. 2009] propose to transform
the original occurrence frequency distribution to a certain target distribution, such
as Gaussian distribution. However, all of these work coped with the frequency-based
attack in a centralized framework; none of the work can be applied directly to the
distributed data storage of wireless networks.

Additionally, initialization vectors (IVs) [Paar and Pelzl 2010], can also defend
against the frequency-based attack effectively. However, it cannot support efficient
query evaluation over encrypted data. The reason is two-fold. First, the initialization
vectors do not support order-preserving encryption. This makes the rewriting of range-
based queries (e.g., V > pv) to be extremely difficult. Second, due to the fact that each
plaintext value will be encrypted to be a unique ciphertext value, every point query
with value-based constraint V = pv will be rewritten as V = C1 or C2, · · · or Ck, as-
suming that the set of pv values is encrypted as c1, c2, ...ck respectively. Such query
rewriting is cumbersome. Even worse, this may enable the attacker to infer the map-
ping between plaintext and ciphertext values by observing a sequence of point queries,
as the ciphertext values of different plaintext values in these queries never overlap. In
contrast, our encryption scheme always translates the value-based constraints (either
point-based or range-based) in queries to ranges. This increases the difficulty of the
attacker to crack the encryption scheme by comparing the queries.

8. CONCLUSION

In this paper, we address the security problem when the data is stored in each sensor
node in a distributed manner in wireless networks. We consider a sophisticated attack
model that the attackers possess the knowledge of frequencies of the original data
in the network and utilize such knowledge to decipher the encryption on these data,
both locally and globally. To cope with such frequency-based attacks, we design a 1-
to-n encryption scheme based on our proposed dividing and emulating techniques. We
show that our dividing and emulating techniques not only provide provable security
guarantee against frequency-based attacks but also support efficient query evaluation
over encrypted data. For the advanced case when the knowledge of the global frequency
is not available, we propose two frameworks, incremental collection and clustering
collection, to collect the global frequency across the network under different network
topologies and distribute encryption keys back to each node to cope with the global
frequency based attack. Furthermore, built upon our encryption scheme we further
develop two mechanisms, direct emulating and dual encryption, to handle the data
updates in the distributed wireless environment. Thus, our approach covers both static
and dynamic data in wireless networks. Our testbed study using real sensor nodes
demonstrates the feasibility of our approach in real environments. And the extensive
simulation results confirm the effectiveness and efficiency of our approach.

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

XX:36 H. Liu et al.

9. ACKNOWLEDGMENTS

The preliminary results of this project have been published in DCOSS 2010 [Liu et al.
2010]. This work was supported in part by the National Science Foundation under
grant numbers CNS1016303, CNS0954020, and CCF1018270.

REFERENCES

AGRAWAL, R., KIERNAN, J., SRIKANT, R., AND XU, Y. 2004. Order preserving encryption for numeric data.
In ACM SIGMOD international conference on Management of data (2004).

BOLDYREVA, A., CHENETTE, N., LEE, Y., AND O’NEIL, A. 2009. An introduction to roc analysis. Lecture
Notes in Computer Science 5479, 224–241.

BOLDYREVA, A., N. CHENETTE, Y. L., AND O’NEILL, A. 2009. Order-preserving symmetric encryption.
In ”The proceeding of the International Conference on the Theory and Applications of Cryptographic
Techniques (EuroCrypt)”.

CAPKUN, S. AND HUBAUX, J. P. 2005. Secure positioning of wireless devices with application to sensor net-
works. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM).
1917–1928.

CHEN, Y., TRAPPE, W., AND MARTIN, R. P. 2007. Detecting and localizing wirelss spoofing attacks. In
Proceedings of the Fourth Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON).

CROSSBOW TECH. INC. White paper available at http://www.xbow.com.
DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2005. Tsar: A two tier sensor storage architecture using

interval skip graphs. In 3rd ACM Conference on Embedded Networked Sensor Systems (2005).
ESCHENAUER, L. AND GLIGOR, V. 2002. A key-management scheme for distributed sensor networks. In 9th

ACM Conference on Computer and Communications Security (2002).
FANG, Q., GAO, J., AND GUIBAS, L. 2006. Landmark-based information storage and retrieval in sensor

networks. In 25th IEEE International Conference on Computer Communications (2006).
GHOSE, A., GROSSKLAGS, J., AND CHUANG, J. 2003. Resilient data-centric storage in wireless ad-hoc sensor

networks. In 4th International Conference on Mobile Data Management. 45–62.
GIRAO, J., WESTHOFF, D., MYKLETUN, E., AND ARAKI, T. 2007. Tinypeds: Tiny persistent encrypted data

storage in asynchronous wireless sensor networks. Ad Hoc Networks, Elsevier 5, 1073–1089.
GREENSTEIN, B., RATNASAMY, S., SHENKER, S., GOVINDAN, R., AND ESTRIN, D. 2003. Difs: a distributed

index for features in sensor networks. Ad Hoc Networks, 1, 2-3, 333–349.
HATCHER, A. 2004. Algebraic topology. ACM Mobile Computing and Communications Review 8, 2, 50–65.
JOSHI, D., NAMUDURI, K., AND PENDSE, R. 2005. Secure, redundant, and fully distributed key manage-

ment scheme for mobile ad hoc networks: an analysis. EURASIP Journal Wireless Communnication
Networks 4, 579–589.

LI, X., KIM, Y., GOVINDAN, R., AND HONG, W. 2003. Multi-dimensional range queries in sensor networks.
In 1st International Conference on Embedded Networked Sensor Systems (2003).

LIU, D. AND NING, P. 2003a. Establishing pairwise keys in distributed sensor networks. In 10th ACM
Conference on Computer and Communications Security (2003).

LIU, D. AND NING, P. 2003b. Establishing pairwise keys in distributed sensor networks. In Proceedings of
the 10th ACM Conference on Computer and Communications Security (CCS).

LIU, H., WANG, H., AND CHEN, Y. 2010. Ensuring data storage security against frequency-based attacks in
wireless networks. In Proceedings of the 6th IEEE international conference on Distributed Computing
in Sensor Systems (DCOSS2010). 201–215.

LIU, L., WU, Y., YANG, G., AND ZHENG, W. 2008. Zettads: A light-weight distributed storage system for
cluste. In 3rd ChinaGrid Annual Conference (2008).

LLC, B. 2010. Network Topology: Star Network, Grid Network, Tree and Hypertree Networks, Spanning Tree
Protocol, Metro Ethernet, Token Ring, Mesh Networking. General Books LLC.

MOLLOY, I., LI, N., AND LI, T. 2009. On the (in)security and (im)practicality of outsourcing precise asso-
ciation rule mining. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining.
ICDM ’09. IEEE Computer Society, Washington, DC, USA, 872–877.

NALIN, S., YANG, C., AND ZHANG, W. 2007. Securing distributed data storage and retrieval in sensor net-
works. In 5th Pervasive Computing and Communications (2007).

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

Defending against Frequency-based Attacks on Distributed Data Storage in Wireless NetworksXX:37

NEWSOME, J. AND SONG, D. 2003. Gem:graph embedding for routing and data-centric storage in sensor net-
works without geographic information. In 1st ACM Conference on Embedded Networked Sensor Systems
(2003).

PAAR, C. AND PELZL, J. 2010. Understanding Cryptography: A Textbook for Students and Practitioners.
Springer-Verlag New York Inc.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TYGAR, J. 2001. Spins: security protocols for sensor
netowrks. In 7th ACM International Conference on Mobile Computing and Networking (2001).

PIETRO, R. D., MANCINI, L. V., SORIENTE, C., SPOGNARDI, A., AND TSUDIK, G. 2008. Catch me (if you
can): Data survival in unattended sensor networks. In Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom).

POLASTRE, J., HILL, J., AND CULLER, D. 2004. Versatile low power media access for wireless sensor net-
works. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor
systems. 95–107.

RATNASAMY, S., KARP, B., YIN, L., YU, F., ESTRIN, D., GOVINDAN, R., AND SHENKER, S. 2002. GHT:
A geographic hash table for data-centric storage. In ACM International Workshop on Wireless Sensor
Networks and Applications.

REN, W., REN, Y., AND ZHANG, H. 2008. Hybrids: A scheme for secure distributed data storage in wsns. In
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (2008).

SEITZ, L., PIERSON, J., AND BRUNIE, L. 2003. Key management for encrypted data storage in distributed
systems. In 2nd IEEE International Security in Storage Workshop (2003).

SHAO, M., ZHU, S., ZHANG, W., AND CAO, G. 2007. pdcs: Security and privacy support for data-centric
sensor networks. In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM).

SHENKER, S., RATNASAMY, S., KARP, B., GOVINDAN, R., AND ESTRIN, D. 2003. Data-centric storage in
sensornets. ACM SIGCOMM Computer Communication Review archive 33.

WANG, G., ZHANG, W., CAO, G., AND PORTA, T. L. 2003. On supporting distributed collaboration in sensor
networks. In IEEE Military Communications Conference (2003).

WANG, H. AND LAKSHMANAN, L. V. 2006. Efficient secure query evaluation over encrypted xml database.
In 32nd International Conference on Very Large Data Bases (2006).

WANG, N. AND LIN, J. 2008. Network coding for distributed data storage and continuous collection in wire-
less sensor networks. In 4th International Conference on Wireless Communications, Networking and
Mobile Computing (2008).

WANG, Q., REN, K., LOU, W., AND ZHANG, Y. 2009. Dependable and secure sensor data storage with
dynamic integrity assurance. In 28th IEEE International Conference on Computer Communications
(2009).

WONG, W. K., CHEUNG, D. W., HUNG, E., KAO, B., AND MAMOULIS, N. 2007. Security in outsourcing of
association rule mining. In Proceedings of the 33rd international conference on Very large data bases.
VLDB ’07. VLDB Endowment, 111–122.

XIE, M., WANG, H., YIN, J., AND MENG, X. 2007. Integrity auditing of outsourced data. In Proceedings of
the 33rd international conference on Very large data bases. VLDB ’07. 782–793.

XU, Z. AND JIANG, H. 2009. Hass: Highly available, scalable and secure distributed data storage systems.
In 12th International Conference on Computational Science and Engineering (2009).

YANG, H., YE, F., YUAN, Y., LU, S., AND ARBAUGH, W. 2005. Toward resilient security inwireless sensor
networks. In 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (2005).

YANG, J., CHEN, Y., AND TRAPPE, W. 2008. Detecting sybil attacks in wireless and sensor networks using
cluster analysis. In the Fourth IEEE International Workshop on Wireless and Sensor Networks Security
(IEEE WSNS).

YE, F., LUO, H., CHENG, J., LU, S., AND ZHANG, L. 2002. A two-tier data dissemination model for large-
scale wireless sensor networks. In 8th ACM International Conference on Mobile Computing and Net-
working (2002).

YE, F., LUO, H., LU, S., AND ZHANG, L. 2004. Statistical en-route filtering of injected false data in sensor
networks. In 3rd IEEE Conference of Communications Society (2004).

ZHANG, W., CAO, G., AND PORTA, T. L. 2003. Data dissemination with ring-base index for wireless sensor
networks. In IEEE International Conference on Network Protocols.

Received XXXX; revised XX; accepted XX

ACM Transactions on Sensor Networks, Vol. XX, No. XX, Article XX, Publication date: May 2012.

