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Abstract—Acknowledging the powerful sensors on wearables can perform step counts and log exercises based on users'
and smartphones enabling various applications to improve users’ manual inputs. Additionally, people need to purchase dedi-
life styles and qualities (e.g., sleep monitoring and running -sied sensors and wear them during exercises. etiab[11]

rhythm tracking), this paper takes one step forward developing t t . toh dit t I mi h
FitCoach, a virtual tness coach leveraging users' wearable mo- present a system using smartpnone and Its external mianepno

bile devices (including wrist-worn wearables and arm-mounted that detects running rhythr_’” and improves exerCiS? ef Qi'e_nc
smartphones) to assess dynamic postures (movement patternsfor runners, yet the question whether or not mobile devices

& positions) in workouts. FitCoach aims to help the user to can automatically distinguish different types of exersised

achieve effective workout and prevent injury by dynamically —,6yide ne-grained performance recommendation related t
depicting the short-term and long-term picture of a user's . .
exercises remains open.

workout based on various sensors in wearable mobile devices. .
In particular, FitCoach recognizes different types of exercises ~ Toward this end, we take one step forward to search for an

and interprets ne-grained tness data (i.e., motion strength and  integrated mobile solution that can perform systematieds
speed) to an easy-to-understand exercise review score, WhiChmonitoring and performance review. We propdSéCoach
provides a comprehensive workout performance evaluation and leveraging wearable mobile devices to achieve the follgwin
recommendation. FitCoach has the ability to align the sensor . N . .

readings from wearable devices to the human coordinate system,tw9 main aspgcts(l) Fine-grained F_ltness Data Interpre- .
ensuring the accuracy and robustness of the system. Extensiv tation. Recording the sensor readings on wearable mobile
experiments with over 5000 repetitions of 12 types of exercises devices (e.g., smartwatch or smartphone) during workout

involve 12 participants doing both anaerobic and aerobic exer- tg explore their capability of deriving ne-grained exesei

cises in indoors as well as outdoors. Our results demonstrate that ;1o mation including exercise types, the number of set and
FitCoach can provide meaningful review and recommendations

to users by accurately measure their workout performance and the_ number of repetitions (reps) per set._ The_derlved quantl
achieve 93% accuracy for workout analysis. tative data can be further analyzed for inferring meanihgfu

information. For example, higher level information can be
obtained including calories burn, body fat, body mass index
The proliferation ofwearable mobile deviceg.g., smart- etc. (i) Smart Exercise Guidance.Furthermore, the derived
watches, wrist-worn tness bands, and smartphones mountétess data is of great importance to assist the users to
on arms) has already shown its potential on improving owaintain proper exercise postures and avoid injuries. Tl bu
life styles through a great number of applications in smamtuscles and gain a healthier body, it is widely recognized th
healthcare, smart home, and smart cities. An important yseople should perform their workout properly and effedsive
case of wearable mobile devices is providing guidelinesto i FitCoach aims to not only regulate the workouts by following
prove people's daily activities, for example, tracking kiat the Frequency, Intensity, Time and Type (FITT) principlé][1
steps [18], monitoring sleep qualities [13], and estingadaily but also provide detailed guidelines to review the user's-po
caloric intake [14]. In this work, we take one step forwardure through workout and provide recommendation in keeping
by answering the question: Whether such wearable mobderrect exercise form (e.g., in terms of speed of exercise
devices become powerful enough leveraging ne-grained-semxecution and strength).
ing information to perform systematic comprehensive tes In particular, FitCoach exploitShort Time Energy(STE)
assistance and prevent injuries. to derive ne-grained tness data (i.e., strength and speéd
Traditionally, tness monitoring is performed by analygin body movements) in exercises and recognizes differentstype
the workout captured by video tapes [6] or specialized seof exercises automatically by using embedded sensors (e.g.
sors [7], [8]. Changet al. [7] track free-weight exercises byaccelerometer and gyroscope) on wearable mobile devices.
incorporating an accelerometer into a workout glove. Chempoted in the understanding of body movements in exercises,
et al. [8] develop a technique that can recognize humdfitCoach develops a novel metric for evaluating the quality
activities by attaching a sensor on users' hips. In receot each user's exercisegxercise form scoreThis exercise
years, smartphone apps, tness trackers and dedicatededgviform score re ects the difference of strength and speed of
such as Sworkit [5], Fitbit [1], Garmin watch [2] and Gymbody movements between each repetition of an exercise based
watch [3], show the initial success of tness monitoring.€jh on a reference pro le. The reference prole could be either

I. INTRODUCTION



obtained from the user's own sensor data or built from other TR0 O
people's data (e.g., training coaches or members from tie sa

1%(/(28%6-1+2*8%-3%4*$%5

tness club) through crowdsourcing platforms (e.g., tses o, @ 3\” J\/\/’\/\/\[\/\/\
club's facebook, WhatsApp or WeChat). 9 o
The contributions of our work are summarized as follows: i >z W :
Assessing dynamic postures (movement patterns & posi- L
tions) automatically during workout including anaerobic [
as well as aerobic exercises. #p —— |

Achieving ne-grained exercise recognition (includingF. . . .

: . . ig. 1. Movement in exercises can be revealed by repetitiveenps from
exercise types, the number of sets and repetitions) with@dhsor readings of wearable mobile devices.
user involvement.
Calculating exercise form score and providing perfowatch [3]. However, Garmin watch requires explicit inputs
mance review to assist high-quality workout and prevefiiom users, including the type of workout and the start/stop
injuries for both short term and in the long run. time. Gym watch requires people to purchase dedicated
Aligning sensing data into the human coordinate systesensors and wear them during exercises. Along this trend,
to ensure high recognition accuracy and achieve systéitCoach takes one step forward by utilizing the existingwe
robustness even when the real-time data possess #ide devices (e.g., wrist-worn smartwatches or arm-mainte
different device facing direction or exercise directiosmartphones) to automatically provide ne-grained tracki

comparing to the reference pro les. of workout and offer exercise review and guidance to improve
Demonstrating the system performance involviipeo- tness experience.
ple using both smartwatches and mobile phones in arm- IIl. DESIGN OFFITCOACH
bands during both gym and outdoor workouts with higA. Challenges and Practical Issues
accuracy ove®0% for workout analysis. Exercise Form Correction Using Single Wearable Mo-
Il. RELATED WORK bile Device. It is necessary for the system to understand

Recent studies show that life experience can be improvElf Performance of a exercise through the body movements,
through implementing various types of techniques using seffhich is a challenging task to cope with by using a single

sors and wireless technologies including activity recegnivearable mobile device. This is because commercial mobile
tion [8], [15], [17], [20], [22], [23] and physical exercise devices usually have limited low-power sensing modalities
monitoring [1], [7], [10], [11], [15]. (i.e., accelerometer, gyroscope and magnetometer). fiinere
There has been active work for activity recognition, inth€ System needs to be designed in such a way that can provide
cluding daily activities [8], [15], [22] and healthcare agtd ©€Xercise form correcthns based on the dynamlcslof sensar da
activities such as eating [20] and smoking [17]. Vlagic resulted from the partial knowledge of the exercises.
al. [22] develop a full body motion capture system by using Robus_t Flne—grg!ned Exerusg Differentiation. It is also.
multiple sensors attached on a human body. Chetnal. [8] challenging to utilize sensors in wearable mobile devices

develop a technique that can recognize activities withotft correctly distinguish different types of exercises, csin

training by placing a sensor on users' hips. These studie&"SOr readings collected from the wearable mobile devices
show that either external sensors or sensors embeddedff extremely noisy due to the dynamic nature of exercises.
wearables have the capability to accurately recognize humEUS: it is important to devise a robust exercise classitatt

daily activities. Furthermore, video-based technologies 2" eliminate the impact of noisy sensor data and capture the

capture and recognize human hand motion [19] but requif-9rained differences between different types of exsesi

line-of-sight. Automated Wearing Orientation Alignment. During ex-
Another aspect of related studies focus on automaticafjjciSes, wearable mobile devices may change its facing from

monitoring physical exercises. There are mobile Apps [5tf1e original direction from time to time. Such orientation

wristband [1] and solutions based on mobile devices Wiﬁhanges result in unstable projection of user's body mowsne
sensors [7], [10], [11], [15]. Chanet al. [7] propose to track N the mobile device's coordinate system, and makes it hard

free weight exercises by incorporating an accelerometer ifO" the system to determine the pattern of body movements.
a workout glove. In addition, Dingt al [10] propose to Therefore, a light-weight ahgnment. algorithm is peedgd to
recognize free-weight activities by attaching passivelRiaigs trangform the sensor dgta to tha? in a stable orientation to
on the dumbbells. Along this line, Hacet al. [11] propose facilitate accurate exercise recognition.
to monitor the running rhythm by measuring breathing arl8. System Overview
strides with headsets and smartphones. These technigyes reThe main goal of FitCoach is to examine the users' dynam-
on additional sensors or speci ¢ hardware. Most importantlics (i.e., body movement patterns & intensities) in worlsout
whether a workout feedback and guidance can be further pesd provide detailed workout statistics to assist users to
vided to improve exercise performance still an open questicachieve effective workouts and prevent injuries.

The commercial products also exhibit the trend to automateGiven that these wearable mobile devices are worn on
the tness monitoring, such as Garmin watch [2] and Gyrthe human body of either wrist or upper arm, they become
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the system performgxercise Classi cationwhich utilizes a
pro le based algorithm to determine the types of exercisgs b
comparing the extracted features with those of pre-catbct
pro les in the Pro ling/Crowdsourcing Database

) ] ) _ In addition, the Workout Review/Recommendation aims to
desirable interfaces to sense exercise movements to provb‘ijovide systematic tness monitoring and performanceeevi
detailed workout statistics/analysis. As illustrated igufe 1, 5q feedback to users, which would assist the users to nmaintai
the repetitive pattern of body movements in exercises can per exercise gestures and avoid injuries. FitCoactsttie
well captured by using the inertial sensors of the Wearabé%gments of sensor readings identi ed in the Set/Rep Cognti
mobile device (j.e., a smart\_/vatch). I_:itCoach can gutorgk_iyic and Segmentation as inputs, and performsRbp Energy and
extract ne-grained tness information (e.g., basic s888S, Time |nterval Derivatiorto estimate the characteristics of body
motion energy and performing period) without USers’ COORyoyements in exercises (i.e., strength and frequency of the
eration and provide illustrative feedback to users, whiah Crepetitive motions). The estimated characteristics arehéu
also be exploited to enforce the Frequency, Intensity, TiMgilized by theExercise Form Score Calculatioi calculate
Type (FITT) principle of training [16]. the exercise form score for each rep, which is a novel metric

As illustrated in Figure 2, FitCoach takes as input timenat allows the users to easily understand their perforeimc
series of sensor readings from accelerometer and gyrosceRe exercises.

as well as quaternion, all of which are readily available
in off-the-shelf wearable mobile devices. We rst perform )
Workout Detectiorto lter out the sensor readings that don't”- Workout Detection

contain workout activities based on the presence of paitydi A key observation is that most regular exercises involve
pattern in workout activity. The sensor readings that arepetitive arm movements. For example, jogging and walking
found to contain workout activities will be served to twanvolve periodic arm swing, and weight lifting involves pe-
tasks, Workout Interpretation & Recognitiorand Workout riodic pushing-ups. Such repetitive arm movements result i
Review/Recommendationhe Workout Recognition performsregularly changing values in sensor readings. In additioa,
guantitative analysis to the sensor readings and identffy drepetitive patterns from exercises tend to be last for a tong
ferent types of workouts based on the acceleration featupriod simply because people normally adopt a set-and-rep
that can capture unique repetitive patterns of different egcheme in exercise to maximize the effectiveness. Compared
ercises. The Workout Review/Recommendation examines tloeregular exercises, non-workout activities usually ddwaive
characteristics of each rep (i.e., energy and time inteiaid such long-term repetitive pattern. Therefore, we propase t
provides the novel exercise form scores as feedback to usgesect workout based on determining whether there are long-
for performance evaluation. term repetitive patterns in the sensor readings.

Particularly, the Workout Recognition consists of four araj Towards this end, we adopt an autocorrelation-based ap-
components:Quaternion-based Coordinate Alignmerset/ proach to examine the accelerations resulted from exercise
Rep Counting and Segmentatjdkccel-based Feature Extrac- motions. The autocorrelation approach is a common teckniqu
tion, andExercise Classi cationThe Quaternion-based Coor-used for detecting repetitive patterns in a time series.an p
dinate Alignment tackles the issue of dynamic orientation ticular, we rst apply a moving time window with the length
workouts, and automatically rotates sensor readings toead xof w to the time series of accelerometer readings. For each
coordinate system. The Set/Rep Counting counts the numbere window, we use the Magnitude of Linear Acceleration
of sets during the workout and the number of reps in each §BtLA ) to estimate the linear acceleration (i.e., acceleration
based on the magnitude of the repetitive signals resultad fr without gravitational acceleration) of exercise motiof$ie
workouts. The sensor readings are further divided into kmMLA based on accelerometer readings can be derived by the
segments corresponding to the detected reps. In each sggnfeliowing equation:

Fig. 2. FitCoach framework.

IV. WORKOUT INTERPRETATION& RECOGNITION
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q starts to increase sharply again when the arm moves back
MLA ()= (a(i)x)2+(a(i)y)2+(a(i),)? g; (1) from the ending position to the initial position; and 4) hal
o i ) ) the accumulated energy drops sharply when the hand stops at
where a(')x’a(_')y anda(i), are the acceleration of theh e jnjtial position for some rest. We found that this unique
sample on the; y andz axis of the mobile device respectivelypatiern of accumulated motion energy can be captured by the
and g is the acceleration of gravity. Note that, the MLA inyearable mobile device through the Short Time Energy of
Equation 1 equals to zero when there is no motion. ) A Figure 4 illustrates the relationship of the uniquetpat
Then we calculate the autocorrelation of the time series gf the accumulated energy and the arm movements in each
MLA, and use a typical peak nding algorithm [13] to nd  apetition.
the number of peaks in the autocorrelation, which is denote Particularly, we adopt the Short Time Energy (STE) [9] to
asNp. The number of detected repetitive patterns thus can @i re the unique energy pattern in the time series of MLA.
derived withN: = (N,  1)=2, due to the symmetric natureThe pasic idea of this step is to accumulate the energy of the
of the autocorrelatlgn. Finally, to accommodate the noisy| A in short sliding windows. After obtaining STE of MLA,
accelerometer readings, we use a threshold-based methgeoach applies the same peak nding algorithm used in
to conrm the detected repetitive patterns are resultednfrogeaction 1V-A to detect the peaks in STE. Then the system nds
workouts. The workout detection results for each window c3fe |ocal minimum point between two peaks as the ending
be derived by: point of each repetition, and the data between two detected
Do = 1 N, > @ ending points are de ned as a segment of repetition. Figure 5
w 0; otherwise; shows an example of determining the repetition segments
where D, is a boolean value depicts whether the giveR@sed on the local minimum points that are detected in STE of

sensor readings within a window belong to workout or noMLA from a wearable mobile device (i.e., a smartwatch) when
D. outputs1 when N, is bigger than a threshold value the user conduct3 sets of dumbbell rasing withO repetitions
Figure 3 shows an example of our workout detection resuR§" Set. The results indicate that the motion-energy-based
with w=5s and = 3, which demonstrates that our Systenapproach can accurately separate the data for each repetiti
can accurately detect the windows containing workouts. C. Accel-based Feature Extraction & Workout Classi cation
After repetition segmentation, FitCoach aims to identifg t
workout type for each set. The basic idea is to build a dawbas
After the Workout Detection, FitCoach integrates the winwith the pro les for different types of workouts before the
dows that are continuously labeled as workouts into a segmemorkout classi cation, then we use a pro le-based approach
The time between any two segments are identi ed as the réstdetermine the workout type for each rep segment in the set,
interval, which will be provided as a part of the exercisand further to infer the workout type of the entire set.
review. However, in order to provide ne-grained exercise Accel-based Feature Extraction.In order to distinguish
performance information, FitCoach needs to look into thia dadifferent types of workouts, we need to nd the features
in each set and analyzes the data based on a ner-grainthdt can capture the unique characteristics of each type of
concept,repetition/rep workouts. Based on our extensive feature selection studies
We devise a motion-energy-oriented approach to accuratahally determine nine statistical acceleration-basedtdeas
estimate starting and ending time point of each repetitibn that are most useful to distinguish different types of wartso
the same exercise motion within a set. The intuition behimthmelyskewness, kurtosis, standard deviation, variance, most
the approach is that each repetition usually consists ofiasse frequently appear in the array, median, range, trimmean and
of arm movements that result in a unique pattern in terms wfean To extract features without worrying about the variation
the accumulated motion energy: 1) the accumulated enefythe mobile device's facing orientation, we rst perforimet
starts to increase sharply from zero when the arm moves fraarth-reference alignment to rotate all acceleration tiathe
an initial position to an ending position; 2) the accumudateearth coordinate system. The details of the earth-referenc
energy drops a little when the arm pauses at the endialignment are provided in Section VI-A. After the world-
position for a very short while; 3) the accumulated energgference alignment, FitCoach extracts the nine acc@erat

Fig. 4. lllustration of the relationship between the arm nmoeats in
a repetition and the unique pattern of accumulated energjureap by a
wearable mobile device (i.e., a smartphone in an armband).

B. Set/Rep Segmentation



based features from the already aligned three-axis aeeeler
tions in each rep segment to describe the body movements. Ir
total, we extrac27 features (i.e., nine features per axis) for
each rep segment. a0
Light-weight Classi er. FitCoach utilizes a light-weight
machine learning based approach to identify different $yqfe
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PP deviation from baseline (T )
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workouts based on the acceleration-based features edract % oo a0 a0 a0 T s beviston tom baseine (2 )
from each rep segmer)t. It is light-weight because the system (a) STE of MLA, user A (b) Exercise form scores on the
only needs to determine the workout type for the rst few workout review plan, user A
rep segments within a set, and the workout type of the entire -
set of repetitions is identi ed as the majority decision dxs S
on the classi cation results from the rst few rep segments. - )
Speci cally, we adopt a Support Vector Machine (SVM) wu,, £ o ﬁ%g *
. . . . . . 0 3 £ aseline
classi er [21] with radial basis function kernel. The claes - § ®
. . . g .05
is trained by the pre-collected pro les of different type o ™ 1 3
workouts, which is described in Section VI-C. We note that = JLIULITVIVARAR A % al—pr—
- . . packets MS deviation from baseline (E )
we utilize the classi cation results of the rst ve reps to ‘
determine the workout type of the entire set. (c) STE of MLA, user B (d) Exermsg form scores on the
workout review plan, user B
V. WORKOUT REVIEW AND RECOMMENDATION Fig. 6. Comparison of the Short Time Energy (STE) of the Magfstof

. . . . Linear Acceleration (MLA) and the exercise form scores oe torkout
In this section, we rst sketch the big picture of th€eyiew plane between user A and user B.

workout review prqvided by EitCoach through summarizing Motion Strength (MS). A proper exercise form should
the workout statistics, then discuss the details of our hovr%aintain the motion strength at a certain level. For example

exercise form score and workout performance plane. too much strength may indicate that the user spend more
A. Overview of Workout Review energy on each rep and if the weight is too heavy, it will
In order to achieve effective workouts and avoid injuriedNcrease the risk of injury while too little strength may icate
users usually seek out personal tness plans provided HjAt the user spend too less energy to build muscle effégtive
tness trainers or professionals. Such tness plans oftgrta We intuitively utilize the energy level of each rep to deberi
regulate the workouts by following the Frequency, Intgpsitth® motion strength, which mean a set of reps with good
Time and Type (FITT) principle of training, which is a seferformance should mamtamastable energy Ieyel. Thegyner_
of guidelines that instruct users to set up workout routiné@vel of each rep can be estimated by the maximum value in
tting their goals and tness levels while maximizing theoPtained STE of MLA. _
effects of exercises. However, most of users cannot affordPerforming Period (PP). A proper exercise form should
a full-time personal trainer that can coach their workottts 8v0id too-fast or too-slow movements in order to effectivel
any time. FitCoach IIs the gap between users and the tned4!ild muscles and prevent injuries. In this work, we utiline
plans based on FITT principle of training by providing ne-fime period o_f each rep to describe the performing perloq_of
grained tness information and intuitive feedback to user§ach rep, which re ects how fast a user performs a repetition
Speci cally, FitCoach is able to track the following basid €xercises. Therefore, a set of reps with good performance
workout statistics automatically includirexercise type, num- Should also have similar time periods. The time period of
ber of reps, number of sets, time between sets, time betw88fN rep can be directly obtained from the length of each
sessions (training days/week) enforce the FITT principle of "€P Segment after the segmentation described in Sectidh IV-
training. In addition, FitCoach further provides ne-gnad We note that the performing period provides more insights to
feedback, which is thexercise form scori terms of motion USers. For example, users can leverage such information for
energy and performance period for individual rep, to ass@fluiPment weight adjustment (e.g., reduced speed of last fe

users in ne-tuning their exercises gestures. reps in a set indicates that the user may be training exttuste
and need to decrease the weight or number of reps in next
B. Exercise Form Score Design set).

Besides providing basic workout statistics to the userts, Fi Exercise Form ScoreBased on these two criteria, FitCoach
Coach aims to offer users a more intuitive way to understade nes the Exercise Form Scorewhich consists of two sub-
their performance in exercises by comparing their exersisescoresMS scoreand PP score The subscores depict how the
tatistics to a baseline, which could be either generateebas testing rep deviates from the baseline in terms of the motion
the users' own data or based on the data from croudsourcisgrength and performing period, respectively. We dischss t
Towards this end, we de ne a novel metric namexkrcise details about the baseline in the next subsection. Paatigul
form score which consists of two subscores that respectivethe MS score for thé!" rep is de ned as:
evaluate a user's ne-grained performance of each rep in the AG) A

exercise based on two important criteria as shown below: Ei = T; i=1;2;3;:::5m; 3)



whereA(i) is the maximum STE of the MLA of thé" rep, o ‘
andA is the motion strength baseline. Similarly, the PP score Lo ¢ [owe |
for thei™ rep is de ned as: o oo Al L g

I (i I . 3 D
T = L; i=1;23;:::;nm; (4) susari & y >

I

. . . . ? )%)01/ 2$031/4
wherel; is the length of thé™ rep andl is the performing
period baseline. The output exercise form score is a 2-tuple Fig. 7. Three coordinate systems.
score that can be denoteda& ;T >.

shows that User A has more stable energy levels and time

C. Personal/Crowdsourcing Baseline lengths for each repetition than User B. Figure 6(b) and (d)
The exercise form score re ects the performance of the teséspectively illustrate two users' exercise form scoresebaon

ing rep comparing to a baseline. We design two baselines thiair personal baselines in the review planes, which shbais t

are suitable in different scenarios, namégrsonal Baseline the score points of User A are concentrated around the Qtigin

and Crowdsouring Baseline. while the score points of User B are scattered around the
Personal Baseline.We observe that users usually camecond quadrant of the review plane. The observation itetica

perform exercises with standard strength and frequendyeat that User B have much higher motion strength and longer

beginning of the workout, but the quality of the exerciseserforming period comparing to the user's rst few reps, and

decays with time due to fatigue. Based on this observationttus have worse performance than User A.

good candidate of the baseline for evaluating the perfooman V1. |MPLEMENTATION

of a user's workouts is the early portion of the user's owrstepA. Quaternion-based Coordinate Alignment

In particular, we derive the personal baseline by averatiieg  In workout monitoring scenarios, users wearing wearable

motion strength and performing period of the rstreps of mobile devices basically involve three different coordéna

the rst set in the user's sensor data. We empirically choosgstems as illustrated in Figure 7, namelypbile device

k =5 in our work. coordinate earth coordinate and human coordinate The
Crowdsourcing Baseline.The personal baseline is good forsensor readings from a mobile device are de ned in the device

short-term exercise performance evaluation but could be btoordinate and thus result in non- xed projection of therisse

to the user's own preference. For example, a user could féeldy movements de ned in the human coordinate. In order

tired at the beginning of the exercise and result in bad beselto address this issue, FitCoach adopts a quaternion-based

for evaluating the entire exercise. To tackle this problemapproache to dynamically convert sensor readings from the

we further propose the crowdsourcing baseline, which alowhobile device coordinate either to the human coordinat® or t

users to compare their performance with the baseline framcoordinate system having the xed mapping to the human

exemplars (e.g., tness coaches, bodybuilders, and amateugordinate.

expertise) to achieve a long-term and more accurate erercisl) Earth-reference Alignmentfor exercise recognition in

performance evaluation. The crowdsourcing approach i-fea2 gym, the orientation of wearable mobile devices may change

ble because it is an increasing trend that people would tike due to rotation caused by arm movement. Therefore, our

share their tness data in online social network to earn itsed System needs to convert sensor readings from the mobile

or build record, and more social platforms, such as WhatsAggVice coordinate to the earth coordinate rst. Speci gae

and WeChat, start to provide the functionality allowing peo convert the sensor readings from the mobile device cootelina

to share their tness data among friends. to the earth coordinate by using the quaternion-basedantat
) Pe = OmePmCma, Where p, is the sensor reading vector
D. Workout Review Plane (e.g., accelerations) in the mobile device coordinate, Gipd

FitCoach further adopts an unique view angle of the exercisethe quaternion reading from the mobile device coordinate
form score to allow users to track the performance or theheato the earth coordinate, which can be obtained from the
rep in a illustrative way. In particular, we de neraview plane device directly.q,d is the conjugate quaternion g, . After
in which the x axis and y axis are the MS score and PP scocenversion, the converted sensor readipgsare in the earth
respectively. According to Equation 3 and 4, the Originaloordinate and can provide stable patterns of body movemment
represents the rep having the exactly same performance asdirring exercises to enable our exercise recognition dssulis
chosen baseline, and every exercise form seofe;; T; > in Section IV-C.
corresponding to thé" rep can be mapped to a position in 2) User-reference Alignment\Ve notice that using quater-
the the review plane. Apparently, the rep having its positimion to align sensor reading from wearable coordinate tthear
closer to the Original has better performance, and the mameordinate solves the different wearing orientation of rabke
reps close to the Original the better. devices. Furthermore, we should also consider when people

Figure 6 compares the workout reviews of two differerdoing workout in gym with different facing directions.
users (i.e., User A an User B) in a set of lateral raising Speci cally, we convert the sensor readings from the mo-
exercises (i.e.,15 reps in one set). Figure 6(a) and (chile device coordinate to the human coordinate by using
respectively depict STE of MLA of two users' reps, whichthe quaternion-based rotatigh, = Cmn Pm qm,}, where pm
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Fig. 8. Facing direction estimation of four running direaso toward North )

(N), South (S), West (W) and East (E).

and p, is the sensor reading vector in the mobile device

coordinate and the human coordinate respectivgly. is the By e

conjugate quaternion @, , Gnn is the quaternion readings Fig. 9. lllustration of 12 types of exercides
from the mobile device to the human coordinate, which can be . oo . . .

. ) R guadraniQ of arm swing direction, that is de ned in Cartesian
calculated using Hamilton produfin = G, Ome , Wheregme X
) . . ;e AT : system wherex andy are East and North in earth reference
is the quaternion reading from the mobile device coordit@ate

the earth coordinate, which can be obtained from the devirc%SpeCtNely’ tosconvert itto ranging from0 1o 360 as:

directly. q,; is the conjugate quaternion gfe, andghe is the 3270 + ifQ =1;
guaternion readings from the human to the earth coordinate, - 90 ; if Q =2; (6)
which can be derived from the estimated facing direction. 3 90 + ifQ =3;
More speci cally, we can derivene = [w; X;y; z] using the $ 270 ifQ =4;
Euler anglesin earth coordinate which is de ned as: whereQ can be determined based on the order of maximum
8 ) ) ) and minimum values (i.e., peak and trough)ymandy axes
W = cog(3)cog(3)cos(3)  sin(3)sin(z)sin(3); of accelerometer.
X = 005(5)5!”(5)(305(5)+ s!n(i)codi)c_os(i); (5) We evaluate the proposed facing direction estimation by
3y = cogz)sin(3)cog3) sin(z)co3)sin(3); asking a volunteer to run toward four different directions.(
z = coY5)coy 5)sin(5) + sin(3)sin(3)coy 5); north, south, east and west in earth reference). Figure®ssho

the 10-round estimation results for each direction. We hdltt

where rotation angles, and are therow, pitch andyaw ) q | | ith the f inq di
respect to earth reference respectively as shown in Fig.ureth/e estimated resu t$ are along with t e four running mest
good enough in FitCoach, the little bias is caused by

We assume that people are running on the horizontal gro , X ) )
he fact that people swing their arms naturally while rugnin

and therefore and are equal to zero and we only need & o ; . . 7
calculate facing direction (i.e., yaw). which is not perfectly stick to their facing directions.

B. Facing Direction Estimation C. Proling Database Construction

: . . . When users start FitCoach for the rst time, they are asked
We observe that in rest time and aerobic exercises, the, . ; : o

e , S - ) 0 build a pro ling database for the exercise recognition by
direction of the user's arm swing is usually in line with the

. ) oo . . performing the particular types of exercises. FitCoachaets
user's facing direction, suggesting that we can exploitaira . . .
- . . . ) . . . the accl-based features as discussed in Section IV-C, &sd as
swing direction to estimate the user's facing directionr F

%he user to manually label the corresponding exercise types

anaerobic exercise, users can simply swing their arms fo .
. T : L S e note that FitCoach allows users to wear the wearable
few times to assist FitCoach for facing direction estinatio . : ; . . . .
mobile devices with exible facing orientation when con-

1ep Sbqmentation a2 descrbed i Secton V.5, then comep]LCiNd the pro ing database, because the quateriaset
P Seg ) . . T . ordinate alignment always converts sensor readings to a
the acceleration readings from mobile device's coordina

. . . X . Bordinate system that has the xed mapping relationship to
into ear.th coordinate as d!scussed in Section \(I-Al. Aft e human coordinate during exercises.

conversion, we can double integrate the acceleration gtegje

to the x and y axes in the earth coordinate to derive the moving VIl. PERFORMANCEEVALUATION

distance of the arm along the x and y axes, respectively. Inin this section, we rst present the experimental methodol-
this work, we de ne the arm swing direction as the countesgy and metrics we used to evaluate FitCoach. We then eval-
clockwise rotation around the z-axis from y-axis in the leartuate the performance and robustness of FitCoach using both
coordinate (i.e., North direction), which is similar to thesmartwatch and smartphone during people's tness workout.
de nition of yaw in Euler angles We rst calculate the A Experimental Methodology

included angle between the displacement of x-axis and y-axis 1) wearable Mobile Deviceswe evaluate FitCoach with
caused by arm swing by using= jarctan (sy=s)j, where o types of wearable mobile devices (i.e., a smartphone of
Sx, Sy are the distance accumulated from acceleratiox-in Samsung Galaxy Not8 and a smartwatch of LG Watch

axis andy-axis respectively by usingrapezoidal rule[12]. yrpane). Both devices use Android and can collect sensor
Note that is ranging fromO to 90 and then we need to

convert it fromQ to 360 . Therefore, we need to decide the by courtesy of apgFitness Buddy
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Fig. 10. Comparison of the performance of recognizing 12 ésescbetween using a smartwatch and a smartphone.

readings of accelerometer, gyroscope and quaternion rvecsmnartwatch in FitCoach. An entiM; denotes the percentage
In our experiment, the participants are asked to wear thetween the number of exercisewas predicted as gesture
smartwatch on the wrist with their own wearing preferencgsand the total number of. The average accuracy B5%
and the phone is mounted on their upper arms using a joggingh standard deviatiob% over all 12 types of exercises. We
armband. During exercise, sensor readings are collectdd whd that recognizing results fronE 1 and E 10 are relatively
the sampling rate oflO0Hz. The ground truth of workout low, which are 85% and 89% respectively. This may be
statistics are recorded by a volunteer. caused by some volunteers who go to gym less frequently
2) Fitness Data CollectionWe recruit 12 volunteers from and cannot maintain the exercise in a correct form for all
colleagues, friends and students from research lab. Amaregps. For exampleiz 10 (i.e., Dumbbell Biceps Curl) is free
them, 7 out of 12 go to gym regularly and the rest go teeight exercise and some volunteers may not maintain their
gym less frequently. For over a half year experiments, all Em within a xed space all the time. For exercigel (i.e.,
volunteers are asked to wear the smartwatch and smartphBagbell Bench Press), some volunteers easily perform tsio fa
simultaneously at the same arm, which is for the performanoetoo slow depending on the weights.
comparison between smartwatch and smartphone of the samkn addition, Figure 10(b) presents the precision, recadl an
exercise. In addition, a volunteer accompany with them t& score for each exercise type, respectively. The average
record the ground truth. Speci cally, we study 12 differenvalue of precision, recall anfl; score of each exercise are all
exercise types, as illustrated in Figure 9. The tested eemrc around95% Although the recall of exercisgé4 (i.e., running)
include both anaerobic exercises, including weight maehinis 100% we observe that it has the lowest precision among all
and free weights, and aerobic exercises in which aroRndl2 exercises, which indicates other exercises are mory like
hours running is tested in both indoors (e.g., treadmilll arbe mistakenly classi ed as this exercise. This may be caused
outdoors. In total, we collect ov&000repetitions ofl2 types by the fact that arm swings are naturally moving in space
of exercises involvindl2 participants. and some volunteers freely perform some type of exercise too
B. Evaluation Metrics fast which also involve all axes sensor readings. The above
results support that FitCoach can extract accurate infiioma

We use the following metrics to evaluate FitCoach: for exercise type recognition through wrist-worn smarthat

Precision Given N reps of a exercise/ gesture typen . .
our collected data, precision of recognizing the exergipe t D+ Workout Recognition Using Smartphone
eis de ned as Precision. = NJ=(NJ + MF), whereNT is We then evaluate workout recognition _by using smartphont—lz-
the number of instances collectedly recognized as exeecise>ce arm-mounted phone have been widely used in people's
MF is the number of sets corresponding to other exercis@_@"y exercise. We present the results from smartphone in
that are mistakenly recognized as exerase Figure .1'0 (c) and Figure 10 (d). Result's. sheivo average
Recall. Recall of the exercise typeis de ned as the ratio of "ecognition accuracy for exercise recognition. We nd

the reps that are correctly recognized as the exeeoiser all E 4 still has the lowest precision Wh|(_:h is consistent with the
reps of exercise type. which is de ned aRecalle = NJ =N. results collected from smartwatch since the volunteersr wea

Fl-score F1-score is the harmonic mean of precision argnartwatch and smartphone on the same arm to make fair

recall, which reaches its best valuelaand worst a0. In our cognparlso_n. b S hand S honeki
multi-class scenario, the F1-score for a speci ¢ gestireas omparison etvyeen martwatch and Smartphon It
dened asF(® =  precisin . _recall o Coach presents high accuracy of workout recognition for

precision ¢+ recall ¢ * .
Rep Detection Rate.Given all reps of an exercise typeboth smartphone and smartwatch. Comparing results between

e, rep detection rate is de ned as the ratio of the number ;Bfnartwatch and smartphone, we found that results obtained
detected reps of over all reps ofe the user performed rom smartwatch are better than results from smartphone. Th

average recognition accuracy of smartwatct®i86 whereas
C. Workout Recognition Using Smartwatch smartphone has 81% average recognition accuracy. This
We rst evaluate the performance of FitCoach on exewbservation is due to the fact that for exercise recognitioa
cise recognition using smartwatch. Figure 10(a) shows tepace scope of the arm gesture trajectories was constrained
confusion matrix of the recognizing exercise types by usiry the machine for some exercise and most of the exercises
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