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Abstract—Acknowledging the powerful sensors on wearables
and smartphones enabling various applications to improve users'
life styles and qualities (e.g., sleep monitoring and running
rhythm tracking), this paper takes one step forward developing
FitCoach, a virtual �tness coach leveraging users' wearable mo-
bile devices (including wrist-worn wearables and arm-mounted
smartphones) to assess dynamic postures (movement patterns
& positions) in workouts. FitCoach aims to help the user to
achieve effective workout and prevent injury by dynamically
depicting the short-term and long-term picture of a user's
workout based on various sensors in wearable mobile devices.
In particular, FitCoach recognizes different types of exercises
and interprets �ne-grained �tness data (i.e., motion strength and
speed) to an easy-to-understand exercise review score, which
provides a comprehensive workout performance evaluation and
recommendation. FitCoach has the ability to align the sensor
readings from wearable devices to the human coordinate system,
ensuring the accuracy and robustness of the system. Extensive
experiments with over 5000 repetitions of 12 types of exercises
involve 12 participants doing both anaerobic and aerobic exer-
cises in indoors as well as outdoors. Our results demonstrate that
FitCoach can provide meaningful review and recommendations
to users by accurately measure their workout performance and
achieve93% accuracy for workout analysis.

I. I NTRODUCTION

The proliferation ofwearable mobile devices(e.g., smart-
watches, wrist-worn �tness bands, and smartphones mounted
on arms) has already shown its potential on improving our
life styles through a great number of applications in smart
healthcare, smart home, and smart cities. An important use
case of wearable mobile devices is providing guidelines to im-
prove people's daily activities, for example, tracking walking
steps [18], monitoring sleep qualities [13], and estimating daily
caloric intake [14]. In this work, we take one step forward
by answering the question: Whether such wearable mobile
devices become powerful enough leveraging �ne-grained sens-
ing information to perform systematic comprehensive �tness
assistance and prevent injuries.

Traditionally, �tness monitoring is performed by analyzing
the workout captured by video tapes [6] or specialized sen-
sors [7], [8]. Changet al. [7] track free-weight exercises by
incorporating an accelerometer into a workout glove. Cheng
et al. [8] develop a technique that can recognize human
activities by attaching a sensor on users' hips. In recent
years, smartphone apps, �tness trackers and dedicated devices,
such as Sworkit [5], Fitbit [1], Garmin watch [2] and Gym
watch [3], show the initial success of �tness monitoring. They

can perform step counts and log exercises based on users'
manual inputs. Additionally, people need to purchase dedi-
cated sensors and wear them during exercises. Haoet al [11]
present a system using smartphone and its external microphone
that detects running rhythm and improves exercise ef�ciency
for runners, yet the question whether or not mobile devices
can automatically distinguish different types of exercises and
provide �ne-grained performance recommendation related to
exercises remains open.

Toward this end, we take one step forward to search for an
integrated mobile solution that can perform systematic �tness
monitoring and performance review. We proposeFitCoach
leveraging wearable mobile devices to achieve the following
two main aspects:(i) Fine-grained Fitness Data Interpre-
tation. Recording the sensor readings on wearable mobile
devices (e.g., smartwatch or smartphone) during workout
to explore their capability of deriving �ne-grained exercise
information including exercise types, the number of set and
the number of repetitions (reps) per set. The derived quanti-
tative data can be further analyzed for inferring meaningful
information. For example, higher level information can be
obtained including calories burn, body fat, body mass index,
etc. (ii) Smart Exercise Guidance.Furthermore, the derived
�tness data is of great importance to assist the users to
maintain proper exercise postures and avoid injuries. To build
muscles and gain a healthier body, it is widely recognized that
people should perform their workout properly and effectively.
FitCoach aims to not only regulate the workouts by following
the Frequency, Intensity, Time and Type (FITT) principle [16],
but also provide detailed guidelines to review the user's pos-
ture through workout and provide recommendation in keeping
correct exercise form (e.g., in terms of speed of exercise
execution and strength).

In particular, FitCoach exploitsShort Time Energy(STE)
to derive �ne-grained �tness data (i.e., strength and speedof
body movements) in exercises and recognizes different types
of exercises automatically by using embedded sensors (e.g.,
accelerometer and gyroscope) on wearable mobile devices.
Rooted in the understanding of body movements in exercises,
FitCoach develops a novel metric for evaluating the quality
of each user's exercises,exercise form score. This exercise
form score re�ects the difference of strength and speed of
body movements between each repetition of an exercise based
on a reference pro�le. The reference pro�le could be either



obtained from the user's own sensor data or built from other
people's data (e.g., training coaches or members from the same
�tness club) through crowdsourcing platforms (e.g., �tness
club's facebook, WhatsApp or WeChat).

The contributions of our work are summarized as follows:
� Assessing dynamic postures (movement patterns & posi-

tions) automatically during workout including anaerobic
as well as aerobic exercises.

� Achieving �ne-grained exercise recognition (including
exercise types, the number of sets and repetitions) without
user involvement.

� Calculating exercise form score and providing perfor-
mance review to assist high-quality workout and prevent
injuries for both short term and in the long run.

� Aligning sensing data into the human coordinate system
to ensure high recognition accuracy and achieve system
robustness even when the real-time data possess the
different device facing direction or exercise direction
comparing to the reference pro�les.

� Demonstrating the system performance involving12 peo-
ple using both smartwatches and mobile phones in arm-
bands during both gym and outdoor workouts with high
accuracy over90% for workout analysis.

II. RELATED WORK

Recent studies show that life experience can be improved
through implementing various types of techniques using sen-
sors and wireless technologies including activity recogni-
tion [8], [15], [17], [20], [22], [23] and physical exercises
monitoring [1], [7], [10], [11], [15].

There has been active work for activity recognition, in-
cluding daily activities [8], [15], [22] and healthcare related
activities such as eating [20] and smoking [17]. Vlasicet
al. [22] develop a full body motion capture system by using
multiple sensors attached on a human body. Chenget al. [8]
develop a technique that can recognize activities without
training by placing a sensor on users' hips. These studies
show that either external sensors or sensors embedded in
wearables have the capability to accurately recognize human
daily activities. Furthermore, video-based technologiescan
capture and recognize human hand motion [19] but require
line-of-sight.

Another aspect of related studies focus on automatically
monitoring physical exercises. There are mobile Apps [5],
wristband [1] and solutions based on mobile devices with
sensors [7], [10], [11], [15]. Changet al. [7] propose to track
free weight exercises by incorporating an accelerometer into
a workout glove. In addition, Dinget al. [10] propose to
recognize free-weight activities by attaching passive RFID tags
on the dumbbells. Along this line, Haoet al. [11] propose
to monitor the running rhythm by measuring breathing and
strides with headsets and smartphones. These techniques rely
on additional sensors or speci�c hardware. Most importantly,
whether a workout feedback and guidance can be further pro-
vided to improve exercise performance still an open question.

The commercial products also exhibit the trend to automate
the �tness monitoring, such as Garmin watch [2] and Gym
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Fig. 1. Movement in exercises can be revealed by repetitive patterns from
sensor readings of wearable mobile devices.

watch [3]. However, Garmin watch requires explicit inputs
from users, including the type of workout and the start/stop
time. Gym watch requires people to purchase dedicated
sensors and wear them during exercises. Along this trend,
FitCoach takes one step forward by utilizing the existing wear-
able devices (e.g., wrist-worn smartwatches or arm-mounted
smartphones) to automatically provide �ne-grained tracking
of workout and offer exercise review and guidance to improve
�tness experience.

III. D ESIGN OFFITCOACH
A. Challenges and Practical Issues

Exercise Form Correction Using Single Wearable Mo-
bile Device. It is necessary for the system to understand
the performance of a exercise through the body movements,
which is a challenging task to cope with by using a single
wearable mobile device. This is because commercial mobile
devices usually have limited low-power sensing modalities
(i.e., accelerometer, gyroscope and magnetometer). Therefore,
the system needs to be designed in such a way that can provide
exercise form corrections based on the dynamics of sensor data
resulted from the partial knowledge of the exercises.

Robust Fine-grained Exercise Differentiation. It is also
challenging to utilize sensors in wearable mobile devices
to correctly distinguish different types of exercises, since
sensor readings collected from the wearable mobile devices
are extremely noisy due to the dynamic nature of exercises.
Thus, it is important to devise a robust exercise classi�er that
can eliminate the impact of noisy sensor data and capture the
�ne-grained differences between different types of exercises.

Automated Wearing Orientation Alignment. During ex-
ercises, wearable mobile devices may change its facing from
the original direction from time to time. Such orientation
changes result in unstable projection of user's body movements
in the mobile device's coordinate system, and makes it hard
for the system to determine the pattern of body movements.
Therefore, a light-weight alignment algorithm is needed to
transform the sensor data to that in a stable orientation to
facilitate accurate exercise recognition.

B. System Overview
The main goal of FitCoach is to examine the users' dynam-

ics (i.e., body movement patterns & intensities) in workouts
and provide detailed workout statistics to assist users to
achieve effective workouts and prevent injuries.

Given that these wearable mobile devices are worn on
the human body of either wrist or upper arm, they become
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Fig. 2. FitCoach framework.

desirable interfaces to sense exercise movements to provide
detailed workout statistics/analysis. As illustrated in Figure 1,
the repetitive pattern of body movements in exercises can be
well captured by using the inertial sensors of the wearable
mobile device (i.e., a smartwatch). FitCoach can automatically
extract �ne-grained �tness information (e.g., basic statistics,
motion energy and performing period) without users' coop-
eration and provide illustrative feedback to users, which can
also be exploited to enforce the Frequency, Intensity, Time,
Type (FITT) principle of training [16].

As illustrated in Figure 2, FitCoach takes as input time-
series of sensor readings from accelerometer and gyroscope
as well as quaternion, all of which are readily available
in off-the-shelf wearable mobile devices. We �rst perform
Workout Detectionto �lter out the sensor readings that don't
contain workout activities based on the presence of periodicity
pattern in workout activity. The sensor readings that are
found to contain workout activities will be served to two
tasks, Workout Interpretation & Recognitionand Workout
Review/Recommendation. The Workout Recognition performs
quantitative analysis to the sensor readings and identify dif-
ferent types of workouts based on the acceleration features
that can capture unique repetitive patterns of different ex-
ercises. The Workout Review/Recommendation examines the
characteristics of each rep (i.e., energy and time intervals) and
provides the novel exercise form scores as feedback to users
for performance evaluation.

Particularly, the Workout Recognition consists of four major
components:Quaternion-based Coordinate Alignment, Set/
Rep Counting and Segmentation, Accel-based Feature Extrac-
tion, andExercise Classi�cation. The Quaternion-based Coor-
dinate Alignment tackles the issue of dynamic orientation in
workouts, and automatically rotates sensor readings to a �xed
coordinate system. The Set/Rep Counting counts the number
of sets during the workout and the number of reps in each set
based on the magnitude of the repetitive signals resulted from
workouts. The sensor readings are further divided into small
segments corresponding to the detected reps. In each segment,
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Fig. 3. Workout detection based on a 5-second sliding window(output 1 if
the number of repetitive patterns is larger than3 within the window, otherwise
output0).

the Accel-based Feature Extraction derives statistics features
that capture each repetitive moving patterns of exercises from
three-axis acceleration readings. After Workout Interpretation,
the system performsExercise Classi�cation, which utilizes a
pro�le based algorithm to determine the types of exercises by
comparing the extracted features with those of pre-collected
pro�les in the Pro�ling/Crowdsourcing Database.

In addition, the Workout Review/Recommendation aims to
provide systematic �tness monitoring and performance review
as feedback to users, which would assist the users to maintain
proper exercise gestures and avoid injuries. FitCoach takes the
segments of sensor readings identi�ed in the Set/Rep Counting
and Segmentation as inputs, and performs theRep Energy and
Time Interval Derivationto estimate the characteristics of body
movements in exercises (i.e., strength and frequency of the
repetitive motions). The estimated characteristics are further
utilized by theExercise Form Score Calculationto calculate
the exercise form score for each rep, which is a novel metric
that allows the users to easily understand their performance in
the exercises.

IV. WORKOUT INTERPRETATION& RECOGNITION

A. Workout Detection

A key observation is that most regular exercises involve
repetitive arm movements. For example, jogging and walking
involve periodic arm swing, and weight lifting involves pe-
riodic pushing-ups. Such repetitive arm movements result in
regularly changing values in sensor readings. In addition,the
repetitive patterns from exercises tend to be last for a longtime
period simply because people normally adopt a set-and-rep
scheme in exercise to maximize the effectiveness. Compared
to regular exercises, non-workout activities usually don't have
such long-term repetitive pattern. Therefore, we propose to
detect workout based on determining whether there are long-
term repetitive patterns in the sensor readings.

Towards this end, we adopt an autocorrelation-based ap-
proach to examine the accelerations resulted from exercise
motions. The autocorrelation approach is a common technique
used for detecting repetitive patterns in a time series. In par-
ticular, we �rst apply a moving time window with the length
of w to the time series of accelerometer readings. For each
time window, we use the Magnitude of Linear Acceleration
(MLA ) to estimate the linear acceleration (i.e., acceleration
without gravitational acceleration) of exercise motions.The
MLA based on accelerometer readings can be derived by the
following equation:
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Fig. 4. Illustration of the relationship between the arm movements in
a repetition and the unique pattern of accumulated energy captured by a
wearable mobile device (i.e., a smartphone in an armband).

MLA (i ) =
q

(a(i )x )2 + ( a(i )y )2 + ( a(i )z )2 � g; (1)

where a(i )x ; a(i )y and a(i )z are the acceleration of thei th
sample on thex; y andz axis of the mobile device respectively
and g is the acceleration of gravity. Note that, the MLA in
Equation 1 equals to zero when there is no motion.

Then we calculate the autocorrelation of the time series of
MLA, and use a typical peak �nding algorithm [13] to �nd
the number of peaks in the autocorrelation, which is denoted
asNp. The number of detected repetitive patterns thus can be
derived with N r = ( Np � 1)=2, due to the symmetric nature
of the autocorrelation. Finally, to accommodate the noisy
accelerometer readings, we use a threshold-based method
to con�rm the detected repetitive patterns are resulted from
workouts. The workout detection results for each window can
be derived by:

Dw =
�

1; N r > �
0; otherwise;

(2)

where Dw is a boolean value depicts whether the given
sensor readings within a window belong to workout or not.
Dw outputs1 when N r is bigger than a threshold value� .
Figure 3 shows an example of our workout detection results
with w = 5s and� = 3 , which demonstrates that our system
can accurately detect the windows containing workouts.

B. Set/Rep Segmentation

After the Workout Detection, FitCoach integrates the win-
dows that are continuously labeled as workouts into a segment.
The time between any two segments are identi�ed as the rest
interval, which will be provided as a part of the exercise
review. However, in order to provide �ne-grained exercise
performance information, FitCoach needs to look into the data
in each set and analyzes the data based on a �ner-grained
concept,repetition/rep.

We devise a motion-energy-oriented approach to accurately
estimate starting and ending time point of each repetition of
the same exercise motion within a set. The intuition behind
the approach is that each repetition usually consists of a series
of arm movements that result in a unique pattern in terms of
the accumulated motion energy: 1) the accumulated energy
starts to increase sharply from zero when the arm moves from
an initial position to an ending position; 2) the accumulated
energy drops a little when the arm pauses at the ending
position for a very short while; 3) the accumulated energy
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Fig. 5. Example of rep segmentation for10 repetitions of dumbbell raising
exercise.

starts to increase sharply again when the arm moves back
from the ending position to the initial position; and 4) �nally
the accumulated energy drops sharply when the hand stops at
the initial position for some rest. We found that this unique
pattern of accumulated motion energy can be captured by the
wearable mobile device through the Short Time Energy of
MLA. Figure 4 illustrates the relationship of the unique pattern
in the accumulated energy and the arm movements in each
repetition.

Particularly, we adopt the Short Time Energy (STE) [9] to
capture the unique energy pattern in the time series of MLA.
The basic idea of this step is to accumulate the energy of the
MLA in short sliding windows. After obtaining STE of MLA,
FitCoach applies the same peak �nding algorithm used in
Section IV-A to detect the peaks in STE. Then the system �nds
the local minimum point between two peaks as the ending
point of each repetition, and the data between two detected
ending points are de�ned as a segment of repetition. Figure 5
shows an example of determining the repetition segments
based on the local minimum points that are detected in STE of
MLA from a wearable mobile device (i.e., a smartwatch) when
the user conducts3 sets of dumbbell rasing with10 repetitions
per set. The results indicate that the motion-energy-based
approach can accurately separate the data for each repetition.

C. Accel-based Feature Extraction & Workout Classi�cation
After repetition segmentation, FitCoach aims to identify the

workout type for each set. The basic idea is to build a database
with the pro�les for different types of workouts before the
workout classi�cation, then we use a pro�le-based approach
to determine the workout type for each rep segment in the set,
and further to infer the workout type of the entire set.

Accel-based Feature Extraction.In order to distinguish
different types of workouts, we need to �nd the features
that can capture the unique characteristics of each type of
workouts. Based on our extensive feature selection studies, we
�nally determine nine statistical acceleration-based features
that are most useful to distinguish different types of workouts,
namelyskewness, kurtosis, standard deviation, variance, most
frequently appear in the array, median, range, trimmean and
mean. To extract features without worrying about the variation
of the mobile device's facing orientation, we �rst perform the
earth-reference alignment to rotate all acceleration datato the
earth coordinate system. The details of the earth-reference
alignment are provided in Section VI-A. After the world-
reference alignment, FitCoach extracts the nine acceleration-



based features from the already aligned three-axis accelera-
tions in each rep segment to describe the body movements. In
total, we extract27 features (i.e., nine features per axis) for
each rep segment.

Light-weight Classi�er. FitCoach utilizes a light-weight
machine learning based approach to identify different types of
workouts based on the acceleration-based features extracted
from each rep segment. It is light-weight because the system
only needs to determine the workout type for the �rst few
rep segments within a set, and the workout type of the entire
set of repetitions is identi�ed as the majority decision based
on the classi�cation results from the �rst few rep segments.
Speci�cally, we adopt a Support Vector Machine (SVM)
classi�er [21] with radial basis function kernel. The classi�er
is trained by the pre-collected pro�les of different types of
workouts, which is described in Section VI-C. We note that
we utilize the classi�cation results of the �rst �ve reps to
determine the workout type of the entire set.

V. WORKOUT REVIEW AND RECOMMENDATION

In this section, we �rst sketch the big picture of the
workout review provided by FitCoach through summarizing
the workout statistics, then discuss the details of our novel
exercise form score and workout performance plane.

A. Overview of Workout Review
In order to achieve effective workouts and avoid injuries,

users usually seek out personal �tness plans provided by
�tness trainers or professionals. Such �tness plans often try to
regulate the workouts by following the Frequency, Intensity,
Time and Type (FITT) principle of training, which is a set
of guidelines that instruct users to set up workout routines
�tting their goals and �tness levels while maximizing the
effects of exercises. However, most of users cannot afford
a full-time personal trainer that can coach their workouts at
any time. FitCoach �lls the gap between users and the �tness
plans based on FITT principle of training by providing �ne-
grained �tness information and intuitive feedback to users.
Speci�cally, FitCoach is able to track the following basic
workout statistics automatically includingexercise type, num-
ber of reps, number of sets, time between sets, time between
sessions (training days/week)to enforce the FITT principle of
training. In addition, FitCoach further provides �ne-grained
feedback, which is theexercise form scorein terms of motion
energy and performance period for individual rep, to assist
users in �ne-tuning their exercises gestures.

B. Exercise Form Score Design
Besides providing basic workout statistics to the users, Fit-

Coach aims to offer users a more intuitive way to understand
their performance in exercises by comparing their exercises-
tatistics to a baseline, which could be either generated based on
the users' own data or based on the data from croudsourcing.
Towards this end, we de�ne a novel metric namedexercise
form score, which consists of two subscores that respectively
evaluate a user's �ne-grained performance of each rep in the
exercise based on two important criteria as shown below:
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Fig. 6. Comparison of the Short Time Energy (STE) of the Magnitude of
Linear Acceleration (MLA) and the exercise form scores on the workout
review plane between user A and user B.

Motion Strength (MS). A proper exercise form should
maintain the motion strength at a certain level. For example,
too much strength may indicate that the user spend more
energy on each rep and if the weight is too heavy, it will
increase the risk of injury while too little strength may indicate
that the user spend too less energy to build muscle effectively.
We intuitively utilize the energy level of each rep to describe
the motion strength, which mean a set of reps with good
performance should maintain a stable energy level. The energy
level of each rep can be estimated by the maximum value in
obtained STE of MLA.

Performing Period (PP). A proper exercise form should
avoid too-fast or too-slow movements in order to effectively
build muscles and prevent injuries. In this work, we utilizethe
time period of each rep to describe the performing period of
each rep, which re�ects how fast a user performs a repetition
in exercises. Therefore, a set of reps with good performance
should also have similar time periods. The time period of
each rep can be directly obtained from the length of each
rep segment after the segmentation described in Section IV-B.
We note that the performing period provides more insights to
users. For example, users can leverage such information for
equipment weight adjustment (e.g., reduced speed of last few
reps in a set indicates that the user may be training exhausted
and need to decrease the weight or number of reps in next
set).

Exercise Form Score.Based on these two criteria, FitCoach
de�nes theExercise Form Score, which consists of two sub-
scores:MS scoreandPP score. The subscores depict how the
testing rep deviates from the baseline in terms of the motion
strength and performing period, respectively. We discuss the
details about the baseline in the next subsection. Particularly,
the MS score for thei th rep is de�ned as:

E i =
A(i ) � A �

A � ; i = 1 ; 2; 3; : : : ; n; (3)



whereA(i ) is the maximum STE of the MLA of thei th rep,
andA � is the motion strength baseline. Similarly, the PP score
for the i th rep is de�ned as:

Ti =
I (i ) � I �

I � ; i = 1 ; 2; 3; : : : ; n; (4)

whereI i is the length of thei th rep andI � is the performing
period baseline. The output exercise form score is a 2-tuple
score that can be denoted as< E i ; Ti > .

C. Personal/Crowdsourcing Baseline
The exercise form score re�ects the performance of the test-

ing rep comparing to a baseline. We design two baselines that
are suitable in different scenarios, namelyPersonal Baseline
andCrowdsouring Baseline.

Personal Baseline.We observe that users usually can
perform exercises with standard strength and frequency at the
beginning of the workout, but the quality of the exercises
decays with time due to fatigue. Based on this observation, a
good candidate of the baseline for evaluating the performance
of a user's workouts is the early portion of the user's own reps.
In particular, we derive the personal baseline by averagingthe
motion strength and performing period of the �rstk reps of
the �rst set in the user's sensor data. We empirically choose
k = 5 in our work.

Crowdsourcing Baseline.The personal baseline is good for
short-term exercise performance evaluation but could be bias
to the user's own preference. For example, a user could feel
tired at the beginning of the exercise and result in bad baseline
for evaluating the entire exercise. To tackle this problem,
we further propose the crowdsourcing baseline, which allows
users to compare their performance with the baseline from
exemplars (e.g., �tness coaches, bodybuilders, and amateur
expertise) to achieve a long-term and more accurate exercise
performance evaluation. The crowdsourcing approach is feasi-
ble because it is an increasing trend that people would like to
share their �tness data in online social network to earn credits
or build record, and more social platforms, such as WhatsApp
and WeChat, start to provide the functionality allowing people
to share their �tness data among friends.

D. Workout Review Plane

FitCoach further adopts an unique view angle of the exercise
form score to allow users to track the performance or their each
rep in a illustrative way. In particular, we de�ne areview plane
in which the x axis and y axis are the MS score and PP score,
respectively. According to Equation 3 and 4, the Original
represents the rep having the exactly same performance as the
chosen baseline, and every exercise form score< E i ; Ti >
corresponding to thei th rep can be mapped to a position in
the the review plane. Apparently, the rep having its position
closer to the Original has better performance, and the more
reps close to the Original the better.

Figure 6 compares the workout reviews of two different
users (i.e., User A an User B) in a set of lateral raising
exercises (i.e.,15 reps in one set). Figure 6(a) and (c)
respectively depict STE of MLA of two users' reps, which
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Fig. 7. Three coordinate systems.

shows that User A has more stable energy levels and time
lengths for each repetition than User B. Figure 6(b) and (d)
respectively illustrate two users' exercise form scores based on
their personal baselines in the review planes, which shows that
the score points of User A are concentrated around the Original
while the score points of User B are scattered around the
second quadrant of the review plane. The observation indicates
that User B have much higher motion strength and longer
performing period comparing to the user's �rst few reps, and
thus have worse performance than User A.

VI. I MPLEMENTATION
A. Quaternion-based Coordinate Alignment

In workout monitoring scenarios, users wearing wearable
mobile devices basically involve three different coordinate
systems as illustrated in Figure 7, namely,mobile device
coordinate, earth coordinate, and human coordinate. The
sensor readings from a mobile device are de�ned in the device
coordinate and thus result in non-�xed projection of the user's
body movements de�ned in the human coordinate. In order
to address this issue, FitCoach adopts a quaternion-based
approache to dynamically convert sensor readings from the
mobile device coordinate either to the human coordinate or to
a coordinate system having the �xed mapping to the human
coordinate.

1) Earth-reference Alignment:For exercise recognition in
a gym, the orientation of wearable mobile devices may change
due to rotation caused by arm movement. Therefore, our
system needs to convert sensor readings from the mobile
device coordinate to the earth coordinate �rst. Speci�cally, we
convert the sensor readings from the mobile device coordinate
to the earth coordinate by using the quaternion-based rotation
pe = qme pm q� 1

me , where pm is the sensor reading vector
(e.g., accelerations) in the mobile device coordinate, andqme

is the quaternion reading from the mobile device coordinate
to the earth coordinate, which can be obtained from the
device directly.q� 1

me is the conjugate quaternion ofqme . After
conversion, the converted sensor readingspe are in the earth
coordinate and can provide stable patterns of body movements
during exercises to enable our exercise recognition discussed
in Section IV-C.

2) User-reference Alignment:We notice that using quater-
nion to align sensor reading from wearable coordinate to earth
coordinate solves the different wearing orientation of wearable
devices. Furthermore, we should also consider when people
doing workout in gym with different facing directions.

Speci�cally, we convert the sensor readings from the mo-
bile device coordinate to the human coordinate by using
the quaternion-based rotationph = qmh pm q� 1

mh , where pm
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Fig. 8. Facing direction estimation of four running directions: toward North
(N), South (S), West (W) and East (E).

and ph is the sensor reading vector in the mobile device
coordinate and the human coordinate respectively.q� 1

mh is the
conjugate quaternion ofqmh , qmh is the quaternion readings
from the mobile device to the human coordinate, which can be
calculated using Hamilton product:qmh = q� 1

he qme , whereqme

is the quaternion reading from the mobile device coordinateto
the earth coordinate, which can be obtained from the device
directly. q� 1

he is the conjugate quaternion ofqhe , andqhe is the
quaternion readings from the human to the earth coordinate,
which can be derived from the estimated facing direction.

More speci�cally, we can deriveqhe = [ w; x; y; z] using the
Euler anglesin earth coordinate which is de�ned as:

8
>><

>>:

w = cos( �
2 )cos( �

2 )cos(  
2 ) � sin ( �

2 )sin ( �
2 )sin (  

2 );
x = cos( �

2 )sin ( �
2 )cos(  

2 ) + sin ( �
2 )cos( �

2 )cos(  
2 );

y = cos( �
2 )sin ( �

2 )cos(  
2 ) � sin ( �

2 )cos( �
2 )sin (  

2 );
z = cos( �

2 )cos( �
2 )sin (  

2 ) + sin ( �
2 )sin ( �

2 )cos(  
2 );

(5)

where rotation angles� , � and are therow, pitch andyaw
respect to earth reference respectively as shown in Figure 7.
We assume that people are running on the horizontal ground
and therefore� and � are equal to zero and we only need to
calculate facing direction (i.e., yaw).

B. Facing Direction Estimation
We observe that in rest time and aerobic exercises, the

direction of the user's arm swing is usually in line with the
user's facing direction, suggesting that we can exploit thearm
swing direction to estimate the user's facing direction. For
anaerobic exercise, users can simply swing their arms for a
few times to assist FitCoach for facing direction estimation.

In particular, FitCoach segments each arm swing using
rep segmentation as described in Section IV-B, then converts
the acceleration readings from mobile device's coordinate
into earth coordinate as discussed in Section VI-A1. After
conversion, we can double integrate the acceleration projected
to the x and y axes in the earth coordinate to derive the moving
distance of the arm along the x and y axes, respectively. In
this work, we de�ne the arm swing direction as the counter-
clockwise rotation around the z-axis from y-axis in the earth
coordinate (i.e., North direction), which is similar to the
de�nition of yaw in Euler angles. We �rst calculate the
included angle� between the displacement of x-axis and y-axis
caused by arm swing by using� = jarctan (sy =sx )j, where
sx , sy are the distance accumulated from acceleration inx-
axis andy-axis respectively by usingTrapezoidal rule[12].
Note that� is ranging from0� to 90� and then we need to
convert it from0� to 360� . Therefore, we need to decide the
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Fig. 9. Illustration of 12 types of exercises1.

quadrantQ of arm swing direction, that is de�ned in Cartesian
system wherex and y are East and North in earth reference
respectively, to convert it to ranging from0� to 360� as:

 =

8
>><

>>:

270� + � ; if Q = 1 ;
90� � � ; if Q = 2 ;
90� + � ; if Q = 3 ;
270� � � ; if Q = 4 ;

(6)

whereQ can be determined based on the order of maximum
and minimum values (i.e., peak and trough) onx andy axes
of accelerometer.

We evaluate the proposed facing direction estimation by
asking a volunteer to run toward four different directions (i.e.,
north, south, east and west in earth reference). Figure 8 shows
the 10-round estimation results for each direction. We �nd that
the estimated results are along with the four running directions
and good enough in FitCoach, the little bias is caused by
the fact that people swing their arms naturally while running
which is not perfectly stick to their facing directions.
C. Pro�ling Database Construction

When users start FitCoach for the �rst time, they are asked
to build a pro�ling database for the exercise recognition by
performing the particular types of exercises. FitCoach extracts
the accl-based features as discussed in Section IV-C, and asks
the user to manually label the corresponding exercise types.
We note that FitCoach allows users to wear the wearable
mobile devices with �exible facing orientation when con-
structing the pro�ling database, because the quaternion-based
coordinate alignment always converts sensor readings to a
coordinate system that has the �xed mapping relationship to
the human coordinate during exercises.

VII. PERFORMANCEEVALUATION

In this section, we �rst present the experimental methodol-
ogy and metrics we used to evaluate FitCoach. We then eval-
uate the performance and robustness of FitCoach using both
smartwatch and smartphone during people's �tness workout.
A. Experimental Methodology

1) Wearable Mobile Devices:We evaluate FitCoach with
two types of wearable mobile devices (i.e., a smartphone of
Samsung Galaxy Note3 and a smartwatch of LG Watch
Urbane). Both devices use Android and can collect sensor

1by courtesy of appFitness Buddy.
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Fig. 10. Comparison of the performance of recognizing 12 exercises between using a smartwatch and a smartphone.

readings of accelerometer, gyroscope and quaternion vector.
In our experiment, the participants are asked to wear the
smartwatch on the wrist with their own wearing preferences
and the phone is mounted on their upper arms using a jogging
armband. During exercise, sensor readings are collected with
the sampling rate of100Hz. The ground truth of workout
statistics are recorded by a volunteer.

2) Fitness Data Collection:We recruit 12 volunteers from
colleagues, friends and students from research lab. Among
them, 7 out of 12 go to gym regularly and the rest go to
gym less frequently. For over a half year experiments, all 12
volunteers are asked to wear the smartwatch and smartphone
simultaneously at the same arm, which is for the performance
comparison between smartwatch and smartphone of the same
exercise. In addition, a volunteer accompany with them to
record the ground truth. Speci�cally, we study 12 different
exercise types, as illustrated in Figure 9. The tested exercises
include both anaerobic exercises, including weight machines
and free weights, and aerobic exercises in which around2
hours running is tested in both indoors (e.g., treadmill) and
outdoors. In total, we collect over5000repetitions of12 types
of exercises involving12 participants.

B. Evaluation Metrics

We use the following metrics to evaluate FitCoach:
Precision. Given Ne reps of a exercise/ gesture typee in

our collected data, precision of recognizing the exercise type
e is de�ned as P recision e = N T

e =(N T
e + M F

e ), whereN T
e is

the number of instances collectedly recognized as exercisee.
M F

e is the number of sets corresponding to other exercises
that are mistakenly recognized as exercisee.

Recall.Recall of the exercise typee is de�ned as the ratio of
the reps that are correctly recognized as the exercisee over all
reps of exercise typee. which is de�ned asRecalle = N T

e =Ne.
F1-score. F1-score is the harmonic mean of precision and

recall, which reaches its best value at1 and worst at0. In our
multi-class scenario, the F1-score for a speci�c gesturee was
de�ned asF ( e)

1 = 2 � precision e � recall e
precision e + recall e

.
Rep Detection Rate.Given all reps of an exercise type

e, rep detection rate is de�ned as the ratio of the number of
detected reps ofe over all reps ofe the user performed.

C. Workout Recognition Using Smartwatch
We �rst evaluate the performance of FitCoach on exer-

cise recognition using smartwatch. Figure 10(a) shows the
confusion matrix of the recognizing exercise types by using

smartwatch in FitCoach. An entryM ij denotes the percentage
between the number of exercisei was predicted as gesture
j and the total number ofi . The average accuracy is95%
with standard deviation5% over all 12 types of exercises. We
�nd that recognizing results fromE1 and E10 are relatively
low, which are 85% and 89% respectively. This may be
caused by some volunteers who go to gym less frequently
and cannot maintain the exercise in a correct form for all
reps. For example,E10 (i.e., Dumbbell Biceps Curl) is free
weight exercise and some volunteers may not maintain their
arm within a �xed space all the time. For exerciseE1 (i.e.,
Barbell Bench Press), some volunteers easily perform too fast
or too slow depending on the weights.

In addition, Figure 10(b) presents the precision, recall and
F1 score for each exercise type, respectively. The average
value of precision, recall andF1 score of each exercise are all
around95%. Although the recall of exerciseE4 (i.e., running)
is 100%, we observe that it has the lowest precision among all
12 exercises, which indicates other exercises are more likely to
be mistakenly classi�ed as this exercise. This may be caused
by the fact that arm swings are naturally moving in space
and some volunteers freely perform some type of exercise too
fast which also involve all axes sensor readings. The above
results support that FitCoach can extract accurate information
for exercise type recognition through wrist-worn smartwatch.

D. Workout Recognition Using Smartphone
We then evaluate workout recognition by using smartphone

since arm-mounted phone have been widely used in people's
daily exercise. We present the results from smartphone in
Figure 10 (c) and Figure 10 (d). Results show91% average
recognition accuracy for exercise recognition. We �nd exercise
E4 still has the lowest precision which is consistent with the
results collected from smartwatch since the volunteers wear
smartwatch and smartphone on the same arm to make fair
comparison.

Comparison between Smartwatch and Smartphone.Fit-
Coach presents high accuracy of workout recognition for
both smartphone and smartwatch. Comparing results between
smartwatch and smartphone, we found that results obtained
from smartwatch are better than results from smartphone. The
average recognition accuracy of smartwatch is95% whereas
smartphone has a91% average recognition accuracy. This
observation is due to the fact that for exercise recognition, the
space scope of the arm gesture trajectories was constrained
by the machine for some exercise and most of the exercises
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Fig. 11. Detection rate of exercise repetitions by using smartwatch.

require users to use their hands to grab and therefore the
smartwatch on the wrist are close to hand and re�ect more
similar movement as machine or dumbbell.

E. Rep Detection Rate

Finally, we evaluate FitCoach by showing our detection
rate for exercises. For workout exercise detection, the average
detection accuracy reaches99%. The lowest detection rate
occurs at running exerciseE4 (i.e., step detection) on a
treadmill but it still achieves around95%detection accuracy as
shown in Figure 11. Such relative low detection rate of running
exercise is cased by occasionally holding on the handrails or
wiping perspiration while running. The above results show that
FitCoach can accurately detect reps, and such high detection
rate supports that �ne-grained statistical information provided
by FitCoach is reliable.

VIII. C ONCLUSION

In this work, we propose FitCoach, an integrated mobile
solution that can conduct systematic �tness monitoring and
provide performance review based on a single off-the-shelf
wearable device (e.g., wrist-worn wearables or arm-mounted
smartphones). FitCoach has the capability to perform �ne-
grained exercise recognition including exercise types, the
number of sets and repetitions by using inertial sensors
from wearable devices without user involvement. Two novel
metrics, exercise form score and workout review plane, are
developed to provide effective review and recommendation
for achieving effective workout and preventing injuries. To
ensure the system accuracy and robustness, FitCoach uses
the earth/human coordinate system to align and integrate
sensor readings from various device orientations. Extensive
experiments involving12 participants doing workout for over
half a year time period demonstrate that FitCoach successfully
takes one step forward to provide the integrated �tness mon-
itoring system with over90% workout analysis accuracy. By
integrating other existing sensors such as shoe sensors [4]and
ankle-based belt, FitCoach can be extended to monitor non-
arm based exercises. In addition, FitCoach can further reduce
the energy consumption by utilizing location information.The
system only needs to start sampling when detecting gym or
�tness center nearby through the assistant of GPS and we left
this part in our future work.
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