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ABSTRACT

Activity monitoring in home environments has become increas-
ingly important and has the potential to support a broad array of ap-

plications including elder care, well-being management, and latchkey

child safety. Traditional approaches involve wearable sensors and
specialized hardware installations. This paper presents device-free
location-oriented activity identification at home through the use of
existing WiFi access points and WiFi devices (e.g., desktops, ther-
mostats, refrigerators, smartTVs, laptops). Our low-cost system
takes advantage of the ever more complex web of WiFi links be-
tween such devices and the increasingly fine-grained channel state
information that can be extracted from such links. It examines
channel features and can uniquely identify both in-place activi-
ties and walking movements across a home by comparing them
against signal profiles. Signal profiles construction can be semi-
supervised and the profiles can be adaptively updated to accom-
modate the movement of the mobile devices and day-to-day signal
calibration. Our experimental evaluation in two apartments of dif-
ferent size demonstrates that our approach can achieve over 96%
average true positive rate and less than 1% average false positive
rate to distinguish a set of in-place and walking activities with only
a single WiFi access point. Our prototype also shows that our sys-
tem can work with wider signal band (802.11ac) with even higher
accuracy.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION

There exists a broad range of applications that benefit from higher-
level contextual information—an understanding of activities that
persons are engaged in, not just their position inside a coordinate
system. For example, activity recognition is the essential part of a
trend towards the quantified self. By tracking a sequence of mean-
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Figure 1: Design Space: comparing to related work.

ingful activities and generating statistics for a person, it is possible
to monitor well-being and suggest behavioral changes that improve
health. Such activity tracking is arguably even more compelling for
children and the elderly. In aging-in-place settings, it can be helpful
to understand whether established routines are still followed since
the absence of usual activities can be an important indicator for
detecting falls and other situations of need.

Existing solutions. The challenge in activity recognition for
these applications lies in finding solutions that can provide suffi-
ciently accurate tracking and recognition with minimal infrastruc-
ture requirements and without the need to carry a dedicated de-
vice. As illustrated in Figure 1, existing activity recognition solu-
tions [1,2, 15, 16,20, 23,24,32,40,42] primarily rely on dedicated
sensors that are worn by the tracking subjects or cameras, motion
sensors and other special sensors that are installed in the environ-
ment [1, 20, 32]. These solutions require either significant infras-
tructure installation or diligent usage of the wearable device. More
generally, some activities that are tied to particular places can also
be inferred from location systems [7, 44], either device-based or
device-free, but these system cannot distinguish multiple activities
that occur in the same place. Device-free systems do not require
persons to carry any devices, but they require a dense placement
of tens of sensors to create a mesh of wireless links inside the area
of interest. Perhaps most related to our work is the effort to use
detailed physical layer measurements such as Doppler shifts from
one single wireless monitor to detect people’s movement, location,
and even gestures. The granularity of the monitoring ranges from
coarser movements (such as Wi-Vi [5]) to fine-grained gestures
(such as WiSee [25] and WiTrack [4]). However, these systems
all have been prototyped with USRP software radios and require a
specialized receiver that extracts carrier wave features that are not



reported in current WiFi systems. In addition, activity identification
differs from gesture recognition in that the system needs to iden-
tify a more loosely defined series of motions over a period of time
rather than a single well-defined body movement. For example, an
activity such as cooking includes several movements to fetch, pre-
pare, and mix ingredients that are not always exactly the same and
do not necessarily occur in the same sequence, making it difficult
to detect with gesture recognition techniques that are designed for
precise single motions such as a punch.

Approach. This paper explores a novel point in the design space
and demonstrates that device-free location-oriented activity recog-
nition is possible (i) using the existing channel state information
provided by IEEE 802.11n devices and (ii) using relatively few
wireless links, such as those to existing in-home WiFi devices. The
system exploits the trend to wider bandwidths (e.g., 802.11ac), and
in particular, the more fine-grained channel state information that
is being tracked in MIMO communications. Whereas traditional
received signal strength (RSS) measurements are a single quan-
tity per packet that represents signal-to-interference-plus-noise ra-
tio (SINR) over the channel bandwidth, channel state information
contains amplitude and phase measurements separately for each
OFDM subcarrier. Due to the slight frequency delta, separate sub-
carriers experience different multipath fading. While such effects
are often averaged out, when looking at a single average RSS mea-
surement, the individual subcarrier measurements are more likely
to change when small movements have altered the multipath envi-
ronment. This essentially means that our system will not just detect
obstructions on the direct path but can also take advantage of the
rich web of reflected rays to cover a space. This makes it possible
to operate with a single access point and a small set of stationary
WiFi devices, which likely already exist or will exist soon in many
buildings.

Moreover, many of the important daily activities that the device-
free, location-oriented activity identification system (dubbed E-eyes)
is designed to identify are linked to a few specific locations in
the home, for example, cooking is usually limited to the kitchen
and brushing teeth is limited to sinks. We seek therefore to iden-
tify activities from CSI signal measurement by comparing them to
location-activity profiles. We also seek to distinguish two activities
that occur in the same location, meaning that multiple location-
oriented activity profiles can have the same location. We refer
to this approach as location-oriented activity identification or as
location-activity profiles, because the profiles are affected by both
the activities that people perform and the location people are in.
While traditional activity identification is more location indepen-
dent [16, 42], our approach prioritizes device-free operation and
detection of more loosely-defined daily activities involving a series
of motions as opposed to gestures or basic sitting, walking, run-
ning classification. Our system can also be extended to recognize
the same activity occurring in different locations by constructing
multiple location-activity profiles for the same activity.

More specifically, our system first obtains wireless signals from
off-the-shelf WiFi devices (e.g., Intel WiFi Link 5300 NICs) and
classifies the wireless signals as belonging to an in-place or a walk-
ing activity. We refer these two types of activities as loosely-defined
because they may involve non-repetitive body movements and the
sequences of body movements involved may not remain the same
across repetition. Examples of loosely-defined activities include
cooking dinner in front of the stove, eating dinner at the dining
table, exercising on a treadmill, or working at a desk. Walking ac-
tivities involve movements between rooms or across a larger room.
The system then applies novel matching algorithms to compare the
amplitude measurements against known profiles that identify the
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activity. If known profiles do not exist or change afterwards, it can
also apply semi-supervised learning strategies to establish or adap-
tively update profiles. Our system is device-free because it relies
only on the existing WiFi environment (e.g., smart appliances con-
necting to a WiFi AP) and the person who performs the activities
does not have to carry any device. This approach allows reusing
the existing WiFi AP deployment in homes for location-oriented
activity recognition, without the need for additional stationary in-
frastructure or wearable sensors. The contributions of our work are
summarized as follows:

e We show that the channel state information (CSI) from off-
the-shelf 802.11n devices can be utilized to identify and dis-
tinguish in-place activities inside a home with a much smaller
set of transmitting devices than in previous device-free local-
ization solutions.

We develop a monitoring framework that can run on a single
WiFi AP with its connected devices and use the associated
profile matching algorithms to compare amplitude profiles
against those from known activities.

We explore dynamic profile construction. The profile can
be adaptively updated to accommodate the movement or re-
placement of wireless devices (e.g., laptop or smartphone)
and the day-to-day profile calibration.

We conduct extensive experiments in two different-sized apart-
ments over a 4-month time period to demonstrate that a sin-
gle AP with 3 connected devices can accurately distinguish
8 walking activities between rooms (20 rounds each), 9 daily
activities (50 rounds each), and over more than 100 rounds
of other activities with an average detection rate of over 96%
and an average false positive rate less than 1%. With only
one device, the detection rate can still achieve around 92%
with a similar false positive rate.

e We show through experiments how the trend to wider chan-
nels (e.g., 802.11ac) will further enhance recognition since it

allows measurements over many additional subcarriers.

Limitations. Our system has the following limitations: first,
our system E-eyes is mainly designed for and tested with a sin-
gle occupant at home, which is an important scenario, such as in
an aging-in-place environment. It may be extended to multiple
persons, however this would require a much larger set of profiles
covering different combinations of activities. Second, E-eyes was
tested without pets or other movements at home. While the effect
of small pets is probably negligible, larger pets may pose additional
signal processing challenges. Third, E-eyes relies on a relatively
stable environment (e.g., no furniture movement). While it could
detect such environment changes, each would trigger an activity
profile updating procedure, which may require user input.

The rest of the paper is organized as follows. In Section 2, we
place our work in the context of related research. The background,
challenges, and system overview of E-eyes are provided in Sec-
tion 3. In Section 4, we present the proposed activity recognition
schemes. We then describe the implementation of E-eyes in Sec-
tion 5. In Section 6, we perform extensive evaluation of our system
in real environments with two apartments. The related issues of E-
eyes are discussed in Section 7. Finally, we conclude our work in
Section 8.

2. RELATED WORK

There has been active work in using dedicated sensors for activ-
ity recognition [1,2, 15, 16, 20, 23, 24, 32, 40,42]. Sensors can be
either attached to a person’s body [16], or placed on target objects
with which people interact [15]. For example, an accelerometer
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Figure 2: CSI takes the advantage of multipath effects and cap-
tures the detailed changes on different subcarriers.

is attached on human body to detect falls in Philips Lifeline [24],
whereas a motion sensor is attached to a door to detect movement
in GrandCare [32]. Another wearable sensor is the acoustic sen-
sor used in BodyScop for classifying activities, such as eating and
coughing [42]. Vision based systems [1,20], such as Leap [2] and
Kinect [23], can be used to track user movements and gestures.
These dedicated sensors can achieve fine-grained activity recogni-
tion. However, they need the installation and maintenance of dedi-
cated sensors which usually entail high costs and are thus not scal-
able.

Another body of related work is indoor localization systems which
can be extended to activity recognition [6-9, 11, 14,17,21,22, 30,
34,37,38,41,43]. These systems localize a wireless emitter using
Received Signal Strength (RSS) [6-8,11,17,22,38,41,43], OFDM

channel state information [30], antenna arrays [14,37], RFID tags [34],

rotating anchors [9], or visible LED lights [21]. These systems
provide various accuracy ranging from several meters (e.g., RSS-
based) to sub-meter but require people to carry a wireless emitter.
This can be intrusive and poses the problem of people, especially
the elderly with age-related memory loss, forgetting to carry such
a device. Furthermore, they need the support of wireless infras-
tructure, either lightweight devices such as re-use multiple access
points if available [7, 11,22] or costly specialized devices, such as
antenna arrays [14,37]. The infrastructural cost of these systems
thus prevents their large scale deployment.

The radio tomography imaging (RTI) [35, 45] and device-free
passive (DfP) localization [19,29,39,44], like our system, do not
require a device be attached to or carried by the user. The state
of art RTI requires tens or hundreds of wireless sensors to achieve
sub-meter accuracy, while DfP localization [19,29] with four WiFi
APs has an accuracy of several meters. Several works [13,31] pro-
pose to distinguish some basic activities such as walking, crawling,
standing and lying based on RSS using a set of receivers or USRP
SDR devices. These systems are either impractical for roaming
deployment or not accurate enough for fine-grained activity recog-
nition.

Recent work in using a single wireless monitor to detect human
movement or location [4,5,25] can be used for activity recogni-
tion as well. The granularity of the activity can be inferred from
these systems is either modest (such as Wi-Vi [5]) or fine-grained
(such as WiSee [25] and WiTrack [4]). However, these systems all
require a specialized WiFi monitor (e.g., USRP) for extracting the
carrier wave. In contrast, we use an off-the-shelf WiFi device for
activity recognition. Our method can provide fine-grained activity
recognition by re-using existing home WiFi network and thus has
much higher scalability for wide deployment. Furthermore, dif-
ferent from WiSee that focuses on recognizing well-defined, quick
gestures, our work aims to discriminate loosely defined daily activi-
ties that involve a series of body movements over a certain period of
time. In recognizing such loosely defined daily activities, we find
that channel characteristics, such as the statistical distribution and
time series, are more suitable for distinguishing between activities
lasting a certain period of time than quick gestures.
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Figure 3: Histograms of RSS amplitude and CSI amplitude of a
particular subcarrier for two different in-place activities at the
same position: washing dishes and talking on the phone nearby
the sink.

3. DESIGN OF E-EYES

To build a low-cost solution leveraging WiFi signatures in a home
environment, we devise an approach that senses and identifies fine-
grained WiFi signal changes when an activity is performed. In this
section, we discuss the intuition, challenges and overview of our
system design.

3.1 Intuition

This work seeks to exploit two trends. First, WiFi usage has
expanded from providing laptop Internet connectivity to connect-
ing smart devices such as TVs, game consoles, surveillance cam-
eras, refrigerators, and loudspeakers to home networks and the In-
ternet. This provides a larger number of WiFi links inside homes,
some of which use constant beaconing. Second, WiFi radios pro-
vide more fine-grained channel measurements over wider band-
widths. With 802.11n MIMO systems, it became necessary for ra-
dios to track more fine-grained channel state information. On it’s
standard 20MHz channel, 802.11n radios measure amplitude and
phase for each of the 52 orthogonal frequency-division multiplex-
ing (OFDM) subcarriers. With 40MHz channels, measurements
are available for 128 subcarriers. The emerging IEEE 802.11ac
standard supports even wider bandwidths. These measurements es-
sentially allow estimating the channel frequency response. In con-
trast, the traditional received signal strength (RSS) was only a sin-
gle value per packet, typically a SINR reading averaged over the
entire channel bandwidth.

Measuring the channel frequency response has important impli-
cations for detecting and differentiating minute movements. Inside
buildings, signal propagation is dominated by multipath, that is the
received signal amplitude (or strength) is the combined amplitude
of signals arriving over many different paths (scattered from and re-
flected off different objects). Since the individual signals can con-
structively or deconstructively, combine based on their individual
phase shifts, this effect can lead to large differences in the com-
bined amplitude, which is commonly known as small-scale fading.
A small change in frequency, however, can have a large effect on
the combined signal. The amount of frequency change for a sig-
nal amplitude to become uncorrelated with its previous value is
also known as the coherence bandwidth and can be estimated as
B. = % where D is the delay spread of the arriving multipath
signals. Interestingly, the width of an OFDM subcarrier is cho-
sen to match this coherence bandwidth to simplify receiver design.
This means that amplitude measurements on each subcarrier will
provide many uncorrelated combinations of the received multipath
components, which increases the likelihood that some are affected
by a small movement. A single RSS measurement over the sig-
nal bandwidth, in comparison, averages out many of these detailed
small scale fading effects.

Figure 3 shows a motivational experiment where two different
activities were conducted in the same location: talking on the phone

0
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and washing dishes. The histograms of RSS readings collected for
both of these activities show relatively little difference. The his-
tograms of CSI amplitudes (quantized to 20 bins) for a specific sub-
carrier, however, show very distinct distributions that can clearly
distinguish these different movements in the same location. The
insight is that since an activity involves a series of body movements
during a certain period of time, the distribution of CSI amplitudes is
a desirable channel statistic that can capture unique characteristics
of activities in both time and frequency domains.

With more WiFi devices in homes and the ability to measure
small changes in multipath rays, our intuition suggests that it might
be possible to track activities and movements around a home with
only this existing infrastructure. Device-free localization and activ-
ity recognition requires that at least one measurable RF rays travels
through any location of interest, because the presence or movement
of a human body at this position would only alter the propagation
of these rays. Earlier device free localization system have therefore
blanketed spaces with tens of transceivers to create a fine mesh of
measurable direct links. As illustrated in Figure 2(a) and (b), such a
measurable mesh can now also be created by all the multipath rays
from only a handful of WiFi devices instead of requiring many ad-
ditional devices.

3.2 Challenges

Realizing such a system that seeks to recognize activities at an
access point using CSI measurements from only a small number of
WiFi links raises a number of challenges:

Profile Uniqueness and Robustness. CSI measurements can
be affected by signal interferences, user movements, and chang-
ing environments. To identify activities, the system has to match
signatures or features of activities to measurements in a way that
is robust to noisy signal readings collected from WiFi devices in
real-world environments yet are still sufficiently unique to map to
a specific activity.

Algorithm Generality. Distinguishing different activities needs
different information of activities. For example, one activity might
involve walking from one room to another (which generates a time
series of CSI measurements without an obvious pattern), whereas
another activity (e.g., washing dishes in the kitchen) is only per-
formed at one location with repetitive gestures (which results in
CSI measurements with repetitive patterns). These different types
of activities will lead to very different signal characteristics, and our
algorithm should be general enough to profile and identify them.

Profile Generation. After system installation or after significant
changes to the environment, appropriate profiles for activities may
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not exist. The system should be able to assist with profile genera-
tion, to reduce the effort of this process.

3.3 System Overview

The basic idea of our system is to match CSI patterns against
activity profiles. As illustrated in Figure 4, the system takes as in-
put time-series amplitude measurements, which can be collected at
a single access point with off-the-shelf hardware (e.g., Intel 5300
NIC). The amplitude measurements are available for each subcar-
rier on a link and are collected over several links to rarely moved
devices (such as home entertainment devices or appliances). We
discuss later on how the system might be extended to also take ad-
vantage of mobile devices when they do not move. The system can
take advantage of CSI measurements from existing traffic across
these links, or if insufficient network traffic is available, the sys-
tem might also generate periodic traffic for measurement purposes.
This data is then preprocessed to remove outliers via a low-pass
filter and to filter out artifacts introduces by rate adaptation, where
the radios switch to different modulation and coding schemes.

The core of our system, E-eyes, are the Activity Identification
and the Profile Construction and Updating. Activity identification
encompasses two different activity matching approaches to address
the generality challenge. The system distinguishes between walk-
ing activities and in-place activities. In general, a walking activity
causes significant pattern changes of the CSI amplitude over time,
since it involves significant body movements and location changes.
An in-place activity (such as watching TV on a sofa) only involves
relative smaller body movements and will not cause significant am-
plitude changes but present certain repetitive patterns. It thus first
applies a moving variance thresholding technique to discriminate
the two types of activities. The cumulative moving variance across
all subcarriers can be expected to be greater for walking activities
than in-place activities. Moreover, our system leverages the moving
variance to segment the long-term CSI trace. Since the trace often
contains multiple different activities over time, moving variance is
used to determine the start and end of individual activities.

Next, our system identifies activities by calculating the similar-
ity between such a CSI segment and the pre-constructed activity
profiles. Based on the characteristics of walking and in-place ac-
tivities, we develop two separate similarity metrics and classifiers.
For walking activities, we use the Multiple-Dimensional Dynamic
Time Warping (MD-DTW) technique, which can align a trace with
larger CSI changes to the profile while correcting for differences
in speed. For in-place activities, we base the comparison on CSI
distributions (i.e., histograms) rather than the exact time series to
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Figure 5: Histogram of CSI amplitudes on a particular subcar-
rier for cooking and sleeping.

achieve higher robustness to the repetitive but often more random
patterns generated by such activities. We use the Earth Mover Dis-
tance (EMD) to quantify the similarity of two distributions.

To construct activity profiles, our system can utilize a semisu-
pervised approach. It starts with continuous monitoring of a home
environment and applies a clustering-based method to identify mul-
tiple similar instances of an activity without a matching profile (re-
ferred to non-profile based). Users can then label the resulting
clusters to create known activity profiles. Furthermore, this tech-
nique can be used to detect and update activity profiles after sig-
nificant changes in the environment (e.g., the media console WiFi
device has been moved from one side of the room to the other side
or the furnishings have been significantly altered). Users can pro-
vide feedback and trigger a profile update (after such environmental
changes) by using the Non-profiling Clustering (Section 5.2).

4. ACTIVITY IDENTIFICATION

In this section, we first describe Coarse Activity Determination.
We then present In-place Activity Identification and Walking Ac-
tivity Tracking components in our system. And we also discuss
how our system can benefit from wider signal bandwidths using
802.11ac.

4.1 Coarse Activity Determination

Since various activities cause different degrees of signal changes,
we apply the moving variance on top of the CSI measurements to
capture this difference and determine the category of the activity.
In particular, a large moving variance indicates the presence of a
walking activity whereas a small moving variance represents the
presence of an in-place activity or no activity at all. The detailed
steps are presented as follows:

Step 1. We denote the CSI samples of P subcarriers as C' =
{C(1),...,C(p),...,C(P)}, where C(p) = [c1(p),...,cr(p)]
represents 7" CSI amplitudes on the p'™ subcarrier. We further de-
note the moving variances of the P subcarriersas V = {V (1),...,
V(p),...,V(P)}, where V(p) = [vi(p),...,vr(p)] are the mov-
ing variances derived from C'(P). Our system can then calculate
the cumulative moving variance of CSI samples crossing P subcar-
riers as V = Zle V(p).

Step 2. The next step is to examine the cumulative moving vari-
ances to determine whether the collected CSI samples contain a
walking activity or an in-place/no activity. If the maximum cumu-
lative moving variance max()) is larger than the threshold 7, the
CSI samples are determined to contain a walking activity, otherwise
they contain an in-place/no activity. We empirically determine the
threshold through 40 rounds of different walking activities and in-
place activities in apartment environments. A threshold, 7, = 20,
is found to be able to distinguish over 98% of walking and in-place
activities in our experiments.
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Figure 6: Similar CSI time series pattern for same walking tra-
jectory.

Compared with recognizing gestures, people’s daily in-place ac-
tivities do not have such strictly pre-defined patterns but result in a
relatively stable distribution of CSI amplitude due to the presence
of the human body and loosely defined body motions. In E-eyes,
segmentation is first performed in the task of Coarse Activity De-
termination by examining the CSI variance in the collected trace.
Note that Coarse Activity Determination can be also used to iden-
tify the starting and ending of both walking activities and in-place
activities, since walking activities often separate in-place activities.
If the segmented CSI trace belongs to an in-place activity, we will
further use the EMD technique [28] to compare the distribution of
CSI amplitudes in a sliding time window with in-place activity pro-
files (Section 4.2) to identify different activities within this trace. If
the segmented CSI trace is recognized as a walking activity, we will
further identify the walking trajectory or the passing of doorways
(Section 4.3).

4.2 In-place Activity Identification

4.2.1 Characteristics

We find that an in-place activity results in a relatively stable dis-
tribution of CSI amplitude due to the presence of the human body
and (possibly) repetitive body movement over time. Furthermore,
different in-place activities cause different distributions of CSI am-
plitude as the location and/or the repetitive body movement pat-
terns and the posture of the human body are different for different
in-place activities. We illustrate the similarity of the CSI amplitude
distribution for the same activity, and the difference of the CSI am-
plitude distribution for two different in-place activities (i.e., cook-
ing in a kitchen and sleeping on a bed) at a particular subcarrier
(subcarrier 12) in Figure 5. We observe that the CSI amplitude dis-
tributions are similar for the same activity at different rounds, but
distinctive for different activities. This important observation in-
spires us to exploit the distribution of CSI amplitude to distinguish
different in-place activities and shows that a particular in-place ac-
tivity can be identified by comparing against known profiles.

4.2.2 In-place Activity Classifier

Based on the characteristics of the in-place activities, we em-
ploy the earth mover’s distance (EMD) [28] technique, which is
a well-known approach for evaluating the similarity between two
probability distributions. The EMD calculates the minimal cost to
transform one distribution into the other. Our classifier seeks to
compare the distribution of the testing CSI measurements to those
of the known in-place activity profiles by using the EMD metric.
CSI measurements being tested are identified to contain a known
activity when the resulted minimal cost (i.e., minimal EMD dis-
tance) is small enough.



Specifically, at run time, our system first identifies the testing
CSI measurements as a candidate of a particular known in-place
activity if the EMD distance from the candidate to the known in-
place activity is the minimum among the EMD distances to all
known activities stored in the CSI profiles. Then our system fur-
ther confirms the candidate known in-place activity by comparing
the resulted minimal EMD distance to a threshold, which can be
empirically determined in the profile construction. The candidate
known in-place activity is confirmed if the minimal EMD distance
is less than the threshold, otherwise, it will be identified as an un-
known activity. An alternate way to determine whether the testing
CSI measurements correspond to a known activity or not is to use
an outlier detection method, such as the median absolute deviation
(MAD) [27], to examine whether the resultant minimum EMD dis-
tance is within a range. To determine the range, an EMD distance
pool containing the minimal EMD distances of previous success-
fully identified activities is needed in the profiles. We note that our
system can also recognize the same in-place activities occurring in
different locations by comparing the testing CSI measurements to
a set of CSI profiles constructed when the same activities occur in
different locations. In this case, the profile for an activity is a set
of CSI profiles instead of a single CSI profile, and the testing CSI
measurements are determined to contain the activity if it has the
minimum EMD distance to any of the CSI profiles belonging to the
activity profile.

4.3 Walking Activity Tracking

4.3.1 Characteristics

We find that the CSI collected from walking activities is chang-
ing constantly over time due to body movement and change of lo-
cations. In particular, Figure 6 presents CSI amplitude of each sub-
carrier versus the packet index (i.e., time series) for two different
walking paths in two experimental runs. We observe that the CSI
measurements exhibit similar changing patterns for the same trajec-
tory in different rounds, whereas the changes of CSI measurements
over time are different for different trajectories. This observation
indicates that the CSI pattern is dominated by the unique path of
each walking activity.

Furthermore, since there are always in-place activities before and
after a walking activity, ideally we can identify the walking activ-
ity by identifying the in-place activities at both ends. However,
the starting and ending points of the walking activity can be any-
where inside the space. It is possible that the two endpoints are
not that meaningful and thus no such in-place activity profiles are
constructed. To tackle this problem, we propose to further build
the CSI measurement profile when the person passes through door-
ways. Since, in general, a person must pass through a door way
when walking from one room to another, they can be utilized to
facilitate walking activity tracking. By identifying the doorway the
person moves through, our system can determine a walking activ-
ity in high level without requiring extensive profiling of paths that
have less meaningful starting and ending locations.

4.3.2  Walking Activity Discrimination

Walking Path Discrimination. Since people may walk at dif-
ferent speeds for the same trajectory, we propose using Dynamic
Time Warping (DTW) [26] to align the testing CSI measurements
to those of known activities in the profile. We then identify the ac-
tivity contained inside the testing CSI measurements based on the
similarity measures using DTW. DTW stretches and compresses
required parts to allow a proper comparison between two data se-
quences. This is useful to match CSI samples from different walk-
ing speeds in real-world scenarios. In our system, CSI measure-

622

ments are in a format that reports the channel metrics for mul-
tiple subcarrier groups (e.g., 30 subcarriers). To perform multi-

dimensional sequence alignment, our system employs Multi-Dimensional

Dynamic Time Warping (MD-DTW) [33], in which the vector norm

is utilized to calculate the distance matrix according to:
P

d(ei ;) =Y _(cilp) = & (),
p=1
where C' = c¢i,ca,...,cr and C'=c}, ch, ..., cp are two CSI se-
quences for walking path discrimination, and where P is the num-
ber of dimensions of the sequence data (with P=30 for CSI sam-
ple). A least cost path is found through this matrix and the MD-
DTW distance is the sum of matrix elements along the path.

During activity identification, our system distinguishes each walk-
ing activity by calculating the MD-DTW distance between the test-
ing CSI measurements and all the known walking activities in CSI
profiles. Our system stores the segment of CSI measurements of
known activities in profiles. If the MD-DTW distance is less than a
threshold (i.e., considering it as a known activity), we then regard
the corresponding CSI measurements labeled in the CSI profiles
with the minimum distance as the activity identified for the testing
measurements.

Doorway Discrimination. Doorway discrimination is used to
handle the case where the testing CSI measurements are unknown
after attempting to match them with the profile database. We seek
to identify which doorway the person passes through and the cor-
responding walking activity can then be recognized in a high-level.
This strategy makes our system more robust and handles the case
when people are moving freely. The possible activities are strongly
tied to which doorway the person passes by. For example, passing
through kitchen doorway in the noon time is very likely followed
by cooking or eating.

In particular, our system also collects CSI for profiling when
people pass through doorways during walking activity profile con-
struction (i.e., constructing doorway profiles). It then compares
the testing CSI measurements using a sliding window approach to
that of the doorway profiles. The EMD distance used in in-place
activity recognition is applied for such comparison. Therefore, dis-
tinguishing between passing different doorways is transformed into
an in-place activities identification. To show the feasibility of this
strategy, we test 20 rounds each for 8 walking trajectories (refer
to Figure 7) in two different-size apartments. Table 1 shows the
doorway detection ratio (DR) of each trajectory corresponding to
the doorway passed. Our approach achieves an average detection
accuracy of over 96.25%, which is sufficient as a supplementary to
walking trajectory discrimination.

4.4 Extension to Wider-band WiFi Signals
The direction of WiFi protocol development moves towards ex-
tending the channel capacity and data transmission rate. A very
efficient way to achieve the extension is to use wider-band chan-
nels, for example 802.11n protocol has the option to use 40MHz
channels to increase the data rate from 54Mbits/s to 150Mbits/s
per spatial stream. Similarly, the next generation WiFi protocol
802.11ac would support 80MHz and 160MHz channels with the
data rate up to 867Mbits/s per spatial stream. The increasing trend
of the channel bandwidth also brings us more available subcarri-
ers in each channel (i.e., 114 subcarriers for a 40MHz channel,
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Table 1: Doorway Detection Accuracy.
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Figure 7: Experimental setups and the illustration of activities
in two different-size apartments: (a) one-bedroom apartment
and (b) two-bedroom apartment.

242 subcarriers for a 80MHz channel), which suggests that using
wider-band signals could potentially increase the performance of
activity recognition using CSI measurements since more subcarri-
ers available in CSI would increase the chance to capture the de-
tailed small-scale fading effects caused by small activities. In this
direction, we seek to extend E-eyes to use a wider-band signal pro-
viding CSI measurements with more subcarrier information which
is expected to help improve the activity recognition accuracy es-
pecially for in-place activities. We utilize two 40MHz channel in
802.11n to emulate an 80MHz channel in 802.11ac in our experi-
ments.

5. IMPLEMENTATION
5.1 Activity Profile Construction

In our system, we collect the CSI measurements of typical activ-
ities for profile construction. In particular, we use the distribution
of CSI amplitude to profile in-place activities and the sequence of
CSI amplitude for walking activities. If multiple WiFi devices are
available, the profile is constructed by using each WiFi device. Ad-
ditionally, we build a profile for “empty room” (i.e., no one inside
the room), which is a special case of an in-place activity. When
constructing profiles, it is possible the profile of an activity from
a particular WiFi device is similar to the profile of “empty room”
when the activity is very far away from that device.

5.2 Non-profiling Clustering

After profile construction, the activity profiles may still change
due to many factors. For example, the activity profiles may change
over time due to the involved WiFi device being moved to another
location, e.g., the desktop being moved from one room to another.
Furthermore, the activity profiles may also get affected by day-to-
day environmental changes. Therefore, our system E-eyes requires
a method that can adaptively update activity profiles. We propose
a process called non-profiling clustering, in which E-eyes first uti-
lizes a semi-supervised approach to cluster the daily activities from
the collected CSI measurements, and then label each activity to
produce CSI profiles. After clustering, the CSI measurements from
the same type of activities are clustered together. Once significant
changes of profiles are detected, E-eyes utilizes users’ feedback
(i.e., user labels each new cluster returned by non-profile cluster-
ing) to perform adaptive profile updating. The non-profiling clus-
tering is also utilized to construct CSI profiles when our system
starts without any CSI profile.

We next illustrate this strategy by applying clustering to profile
in-place activities. Assume we have R sets of CSI samples from
K different unknown activity instances, where each CSI sample
set C",1 < r < R, corresponds to one particular activity in-
stance with a certain number of CSI samples. Here we exploit the
K-Means clustering technique to discriminate different activity in-
stances based on the EMD between CSI samples.

In order to utilize EMD for clustering, we first calculate the EMD
between any particular CSI sample set C" and all the sample sets
(including C" itself). We then obtain R EMD vectors of length R,
ie., E" = [E(C",C"),--- ,E(C",C™)]. Next, the K-means al-

gorithm searches for K appropriate clusters, i.e., S = s1, -+ , Sk,
satisfying the following equation:
K
arg min Z Z |E" — |, 2
s k=1 E"€sy,

where i, is the mean value of the EMD vectors in si. Equation 2
searches for K appropriate clusters .S that minimizes the variances
of the CSI vectors C'" in each cluster.

Table 2 shows the results of clustering based on 400 CSI sam-
ple sets involving 8 activity instances, where each set contains 40
CSI samples. Most of the activities can be differentiated from each
other with the detection ratio as high as over 84% and an acceptable
false positive rate, except the two activities of brushing and bathing
in the bathroom due to the small differences in their corresponding
CSI patterns, which cannot be differentiated by clustering.

With the relationship between the activity instances and the clus-
ters .S, the CSI sample sets correctly classified are used to create
new activity profiles. Furthermore, if the profile for a particular
activity instance already exists, the system adaptively determines
whether to update the activity profile through the comparison with
the new profile.

5.3 Data Calibration

Data calibration is used to improve the reliability of the CSI by
mitigating the noise presented in the collected CSI samples. The
noise sources could be the complicated indoor propagation, the
WiFi devices’ inner noise (e.g., vibration or ring of devices), and
etc.

5.3.1 Low-pass Filtering

Low-pass filtering aims to remove high frequency noise which
is unlikely to be caused by human activities as human activities
usually have a low frequency range. To remove high frequency
noises, we adopt the dynamic exponential smoothing filter (DESF)
[10], since it is an exponential smoother that changes its smoothing
factor dynamically according to previous samples. The DESF can
remove high frequency noise and preserve the features affected by
human activities in the CSI measurements.

5.3.2 Modulation and Coding Scheme Index Filter-
mn

Besides th% effects from human activities, we find that the modu-

lation and coding scheme (MCS) index, which occasionally changes

due to the unstable wireless channel in our experiments, could also

influence the amplitude of CSI. To get the changing CSI patterns

only affected by human activities, we need to remove the CSI mea-

Table 2: Results of activity identification using clustering with-
out profiles.

Test [ empty | cook. eat. wash. | study. | brush. | bath. | other

S1 S2 S3 S4 S5 56 S7 S8
DR 1 0.98 0.88 0.84 0.92 0.66 0.46 0.94
FPR 0.06 0 0.15 0.09 0 0.45 0.43 0.10
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Figure 8: Confusion matrix of in-place activity identification in
two different apartments.

surements affected by a different MCS index (indicates different
channel condition) for a pure reflection metric of human activities.

Specifically, MCS index is a specification of the high-throughput
(HT) physical layer (PHY) parameter in 802.11n standard [3]. It

contains the information of the modulation order (e.g., BPSK, QPSK,

16-QAM, 64-QAM), the forward error correction (FEC) coding
rate, etc. for transmitting a packet. Each 802.11n packet header
contains a 16-bit MCS index, which can be extracted together with
the CSI sample of each packet. In particular, we find that CSI
measurements with the MCS index greater than 263 ' can make
CSI measurements relatively stable in empty rooms even though it
changes in such a range. Therefore, we filter out the CSI measure-
ments with MCS value less than 263 and keep the rest of them for
activity identification.

5.4 Data Fusion Crossing Multiple Links

WiFi usage has expanded from providing Internet access to con-
necting in-home smart devices such as TVs, refrigerators, and loud-
speakers. This provides a number of WiFi links to capture an activ-
ity simultaneously inside home. Our system E-eyes thus can exploit
anumber of WiFi links to improve the activity recognition accuracy
based on the basic schemes shown in Section 4.

Assume we have L WiFi devices collecting CSI measurements
independently and each device has J activity profiles denoted as
{d}, ... ,aé, ...,a4},1=1,..., L. The final activity recognition
result is the j*" activity (profile) that minimizes the weighted sum-
mation of the similarities between the collected CSI measurements
and the profiles on each WiFi device, i.e.,

L

a; = argminz [wh(ab,a’) x D,
7 1=1

where Dé is the EMD or DTW distance (Section 4.2.1 and 4.3)

between the CSI measurements and the j** activity profile on the

I"" WiFi device; w} (ab, a}) is the normalized weight dominated by

the significance of the ;%" I*" WiFi device, which is

defined as follows:

3

activity on the

'The MCS index of 263 corresponds to 20M H z bandwidth chan-
nel, 802.11a/g/n mixed network, single spatial stream with trans-
mission rate 60Mbps
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1 — X(ab,al)
Sy [1 = X(ah, al)]’

where a}, denotes the profile for empty room on the I** WiFi device,

and X (al, aé) is the cross correlation between the profile of the
empty room and the j** activity on the I*" WiFi device. To reduce
the computational complexity, only the CSI measurements having
significant difference from the empty room profile will be included

in the above calculation.

6. EVALUATION

In this section, we present the performance of our E-eyes system
using commercial off-the-shelf WiFi devices in two apartments of
different sizes.

6.1 Experimental Setup

wj(ap, aj) =

“

lth

6.1.1 Devices and Network

We conduct experiments in an 802.11n WiFi network with three
off-the-shelf WiFi devices (i.e., two Lenovo T500 laptops and one
Lenovo T61 laptop) connected to a single commercial wireless ac-
cess point (i.e., Linksys £2500) in two apartments. The laptops
run Ubuntu 10.04 LTS with the 2.6.36 kernel and are equipped
with Intel WiFi Link 5300 cards for measuring CSI [12]. While
CSI information is only publicly exposed by modified drivers for
several chipsets, e.g., Intel WiFi Link 5300 and Atheros AR9390,
it is internally tracked by 802.11 MIMO implementations and we
expect more chipsets will expose such information in the near fu-
ture. The packet transmission rate is set to 20pkts/s. How the rate
of packet transmission affects the performance will be discussed
in Section 6.2.6. For each packet, we extract CSI for 30 subcar-
rier groups, which are evenly distributed in the 56 subcarriers of a
20M H z channel [3].

6.1.2 Apartments and Activities

We conduct experiments in two apartments of different sizes to
test the generality of our system. The experimental setups in these
two apartments are shown in Figure 7. The smaller one (i.e., one
bedroom apartment) has the size of about 23ft x 20ft with one bed-
room, one kitchen and one bathroom, whereas the larger one (i.e.,
two bedroom apartment) is about 24ft x 36ft with two bed rooms,
one storeroom, one kitchen, one living room, and one bathroom.
It is commonly accepted that the presence of manifold WiFi de-
vices in home environments is highly possible in the near future.
To name a few existing applications: smartTVs in living rooms,
thermostats in bedrooms, smart-refrigerators in kitchens, and wa-
terproof wireless speakers in bathrooms. In our experiments, one
AP and three WiFi devices are placed at each apartment for daily
activity monitoring.

A total of 9 typical daily in-place activities and 8 walking activ-
ities (passing through 4 door-ways) with different walking speeds
are performed by 4 male adults in both apartments. These activities
are listed in Table 3, and are shown in Figure 7. The yellow circles
show the in-place activities, whereas the red/blue lines represent
the paths of the walking activities. Due to different conditions in
the two apartments (e.g., having a TV in the living room or not),
we have chosen slightly different yet still typical in-place activities
to perform in the two apartments. Note that we find it is typical for
in-place activities to occur at dedicated locations in home environ-
ments, for example activities in a kitchen usually just occur in front
of the sink or stove, beside the refrigerator, or at the dining table,
whereas activities in a living room usually occur on the couch. In
our experiments, the profiles were generated in one day and testing
data was collected over different days. Over the days, one chair
was moved to a different room, coffee makers were moved around
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Figure 9: Confusion matrix of walking activity identification in
two different apartments.

in the kitchen and items on tables, such as bowls and bottles, were
moved, as usually occurs in daily life. Moreover, we build the pro-
file for the empty room when there is no one at home (i.e., Empty
apartment (a)). To test the ability of our system on differentiat-
ing diverse in-place activities that occur in the same place, we ex-
periment with 4 in-place activities in the one-bedroom apartment:
sleeping on the bed, sitting on the bed, talking besides the sink, and
washing dishes near the sink. Furthermore, the experimenter con-
ducts several in-place and walking activities which are not profiled
(i.e., Other activities (0)). They are used to evaluate the robustness
of our system for recognizing unknown or random activities.

6.1.3 Metrics

We use the following metrics to evaluate the performance of our
system.

Confusion Matrix. Each row represents the actual activity per-
formed by the user and each column shows the activity it was clas-
sified as by our system. Each cell in the matrix corresponds to the
fraction of activity in the row that was classified as the activity in
the column.

True Positive Rate (TPR). TPR for an activity A is defined as
the proportion of the instances that are correctly recognized as the
activity A among actual A performed.

False Positive Rate (FPR). FPR for an activity A is defined as
the percentage of the instances that are incorrectly recognized as A
among all testing instances other than A.

6.2 Evaluation in Real Apartments

6.2.1 Activity Identification with Multiple WiFi De-
vices

Figure 8 plots the confusion matrix for the in-place activities
recognition in two apartments with three WiFi devices. In the one-
bedroom apartment, 7 different in-place activities (see Figure 8(a))
were performed (50 rounds for each). Another 100 rounds of dif-
ferent unknown in-place activities (i.e., others) are preformed to
evaluate E-eyes’s ability of detecting unknown activities. Simi-
larly, in the two-bedroom apartment, 7 different in-place activities
as shown in Figure 8(b) (each one has 50 rounds) and 100 rounds
of unknown activities are performed. For the one-bedroom apart-
ment, the average accuracy of identifying in-place activities is 97%
with a standard deviation of 5.66% whereas in the two-bedroom
apartment, the average accuracy of identifying in-place activities is
97.38% with a standard deviation of 4.31%.

Figure 9 plots the confusion matrix for the walking activities
identification and doorway passing detection in two apartments. As
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shown in Figure 7, 4 trajectories for each apartment are performed,
and 20 rounds for each trajectory. Similar to that of the in-place
activity experiment, we performed 20 rounds of aimless walking
activities (i.e., walking in the apartment but no passing through
predefined doorways) in each apartment as others. For the one-
bedroom apartment, the average accuracy is 97% when identifying
these 4 walking activities. E-eyes can also achieve high accuracy
of detecting doorway passing with an average accuracy of 99.17%.
For the two-bedroom apartment, the average accuracy of identi-
fying walking activities is 94%, and the passing doorway can be
detected with an accuracy of 95.83%. The above results show that
our E-eyes can distinguish a set of in-place activities and walking
activities with high accuracy by using only a single WiFi access
point in two apartments of different size. Our system E-eyes can
thus have potential to support lots of emerging applications such as
elder care, well-being management, and latchkey child safety.

6.2.2 Robustness Validation

We next evaluate the robustness of E-eyes by studying the false
positive rates (FPRs) of identifying different activities in two apart-
ments. Figure 10 (b) and (d) show that overall E-eyes has very low
false positive rates for identifying different activities in two apart-
ments — an average FPR of about 0.6%. The walking activities have
higher FPRs which are around 0.8% for both apartments. This is
primarily because it is hard to follow exactly the same trajectory
every time, and people’s body movements maybe different from
time to time when walking, such as the sequences of waving arms
and alternating two legs. We also observe that the FPRs for identi-
fying all activities are ranging from 0% to 2.5% in both apartments
with an average TPR as high as 97% as shown in Figure 10 (a) and
(c). The results indicate that E-eyes is robust in identifying both
in-place and walking activities in two apartments of different sizes.

6.2.3 Activity Identification with Single WiFi Device

To further show the capability of E-eyes in activity recognition
with limited WiFi devices at home, we experiment with only one
WiFi device connecting with one single AP. This is a challeng-
ing scenario as with only one AP and one WiFi device, the sig-
nal affected by the human body may become very weak after going
through several walls. We place the WiFi device at one of the previ-
ous locations to sense the activities in both apartments. The results
are shown in Figure 10. We find that E-eyes is capable of identify-
ing activities accurately when placing a single AP at an appreciate
location. In particular, Figure 10 (a) and (b) show that the TPRs of
identifying both in-place and walking activities are in general over
90% with FPRs less than 5% in the one-bedroom apartment.

In the two-bedroom apartment, most in-place activities have TPRs
over 90% and FPRs less than 2%, except the activity sleeping. This
is because sleeping involves little body movements and lying on the
bed, thus having less effects on altering multipath environments. In
addition, Figure 10 (c) and (d) show that the TPRs for walking ac-
tivities G and H are O because they do not generate large moving
variances and are classified as empty room in the pre-constructed
profiles. This is because with the WiFi device and the AP sepa-
rated by several walls, the conducted activities that are far away
from either the WiFi device or the AP will have little effect on al-
tering the multipath environment. Besides G and H, the other two
walking activities F and F' still have TPRs over 90% with FPRs
less than 3%.

6.2.4 Distinguishing Activities in the Same Location
Given that some activities take place at the same location but

with different human postures or body movements (e.g., sleeping/sitting

on the bed), we experiment with such in-place activities to evalu-
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Figure 10: True positive rate and false positive rate, in-place and walking activity recognition in two different apartments.

ate how well E-eyes can distinguish such activities that occur in
the same location. We use different numbers of EMD bins to test
the impact on the resolution of identifying activities occurring in
the same location. Intuitively, a larger number of EMD bins can
provide more detailed distribution information. We add two more
activities that occur in the same locations as two of the previously
considered activities. We therefore experiment with 4 in-place ac-
tivities in the one-bedroom apartment: sleeping on the bed, sit-
ting on the bed, receiving calls nearby the sink and washing dishes
nearby the sink. The system compares the measure in-place activity
data against 12 profiles (the 10 from Table 3 and the two additional
ones). We use the worst TPR (minimum TPR of all activity iden-
tification) and the worst FPR (maximum FPR of all activity iden-
tification), to evaluate the worst-case performance with different
numbers of EMD bins. Figure 11 shows the results of identifying
different activities in the same location. We find that the system
can achieve high accuracy (over 97%) if the number of EMD bins
is greater than 8 when different activities took place at the same
locations.

6.2.5 Activity Recognition Using Wider-band Signals

Next we study the feasibility of extending E-eyes to work with
wider-bandwidth channel of 802.11ac. The bandwidth of a 802.11ac
channel is 4 times wider than that of 802.11n. The number of
available subcarriers thus increases from 56 in 802.11n to 242 in
802.11ac. Larger numbers of subcarriers provided by 802.11ac
therefore have potential to capture in-place activities more accu-
rately and reliably. Since 802.11ac shares the same 5GHz band
with 802.11n, we use multiple 802.11n channels to emulate the
802.11ac channel for CSI extraction as no handy tool is available
to collect CSI from 802.11ac.

In particular, we use two laptops respectively communicating
with two access points to collect CSI measurement from two 802.11n
channels (40MHZ) simultaneously at the 5GHz band. The CSI
measurements are off-line synchronized and cascaded in frequency
domain to emulate the CSI measurements from a 802.11ac channel
(80MHz). In order to make sure the two 802.11n channels share
the same multipath effect, we use two external antennas for the
laptops and place them next to each other. The distance between
two antennas is about 2 cm, which is smaller than the half wave-
length of the 5GHz WiFi signal (i.e., about 2.8cm). Similarly, we
take the internal antennas of the access points out and bind them
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together with the distance much less than the half wavelength of
the 5GHz WiFi signal. We experiment with 7 in-place activities in
the two-bedroom apartment with the laptops in the living room and
the access points in the kitchen as shown in Figure 7.

Figure 12 presents the performance comparison of E-eyes with
the 802.11n and the emulated 802.11ac channel at 5GHz band.
We find that E-eyes results in higher accuracy under the emulated
802.11ac than 802.11n, which demonstrates the feasibility of im-
proving the recognition accuracy by utilizing wider-bandwidth of
802.11ac. The TPRs for all in-place activities are over 99%. With
such high TPRs, the FPRs are still lower than 1% even for two
close proximity activities f- brushing teeth and g: taking a bathing.
Furthermore, comparing to the performance of the same setup us-
ing 802.11n with one WiFi device, we find that using the 802.11ac
channel has about 4% improvement in the worst TPRs (i.e., in-
creases from 94% to 98% for the activity i: playing video game).
And the worst FPR drops to 0.67% under 802.11ac from 8.5% un-
der 802.11n for unknown activities. This indicates that the wider
channels (e.g., 802.11ac) can improve the recognition accuracy since
it allows measurements over many additional subcarriers.

6.2.6 Impact of Traffic Transmission Rate

Since CSI is measured from each of the received packets, the
higher packet transmission rate (PTR) results in larger sizes of CSI
measurements for characterizing an activity. We thus study the im-
pact of PTR on the performance of E-eyes. In particular, PTR is
changed from 5pkts/s to 20pkts/s with a fixed step of 5pkts/s.
As the commercial access points send beacon signals at 10beacons/s
to broadcast their SSID and the connection information, the range

Table 3: Codes for in-place and walking activity profiles.

Code | In-place activity Code | Walking activity
a Empty apartment A Bedroom—Kitchen
b Cooking B Kitchen— Bedroom
c Eating C Kitchen—Bathroom
d Washing dishes D Bathroom— Kitchen
e Studying at a table E Outside—Bedroom1
f Brushing teeth F Bedroom1—Outside
g Taking a bath G Bedroom2—Bathroom
h Watching TV on a sofa H Bathroom— Bedroom?2
i Playing video games 6] Other wandering paths
] Sleeping on a bed
0 Other activities
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Figure 12: True positive rate and false positive rate of activity
recognition using 802.11n or emulated 802.11ac channel.

of our PTR is thus reasonable and includes the normal transmission
rate that is considered to be energy-efficient (10pkts/s). Figure 13
shows the average TPRs and FPRs over all activities with different
transmission rates. The increasing and decreasing trends in TPRs
and FPRs respectively demonstrate that higher PTR would help
to distinguish different activities. We can see that when the PTR
is above 10 pkts/s, the average TPRs and FPRs are respectively
over 92% and less than 2%, and the improvement of the increased
packet rate is less obvious. The results demonstrate that E-eyes is
capable of working with very low PTR, such as the default beacon
packet rate in WiFi.

7. DISCUSSION

Presence of Multiple Persons or Pets. The current system is
designed for and tested with only a single occupant. We believe
that this is an important use case, particularly in an aging-in-place
setting, which aims to ensure that a single person can live in his/her
home and community safely and independently regardless of age
and ability level. Since the temporary presence of additional people
in the home can alter signatures, one improvement might be to sim-
ply detect this case using existing methods (e.g., [36]) and to sus-
pend operation during this time. It may also be possible to switch to
a different set of profiles for multiple persons. The number of pro-
files needed with multiple persons would increase exponentially,
however. A more promising approach therefore would be to find
techniques that can isolate concurrent activities in separate spaces
from each other and match them against profiles separately. This
would involve separating effects detected on different links and we
leave this for future work. In addition, pets in the home may also
change the environment dynamically. However, such cases only
happen when the pet is large and moving around frequently, thus
additional signal processing will be required to remove the inter-
ference in CSI and we will consider it in future work.

Mobile Devices and Environment Changes. E-eyes relies on
stationary WiFi enabled devices, such as refrigerators, smartTVs,
mounted cameras, or desktop computers. If a device is moved,
our system could detect such changes by detecting many profile
deviations across one link or by using other movement detection
techniques (e.g., [18]) and then trigger an activity profile updat-
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Figure 13: True positive rate and false positive rate of E-eyes
with different PTR.

ing. In some cases this would require user effort. If the number of
available links is large enough, however, the system might still be
able to match activities using the remaining links and can automat-
ically update the profile for the changed link. Smaller environment
changes might be handled in a similar manner.

Constant Traffic Requirement. The system has been evalu-
ated with periodic traffic at various rates. When some links are in
use, the system could take measurements from existing traffic and
downsample to match the expected periodicity. When links are not
in use, an AP-based solution could create dummy traffic on links
(e.g., TCP SYNs) which invokes a response from the device. Since
our system works at rates that are often used in many beaconing
applications, such overhead appears manageable.

Activities in the Same Location. This work has exploited that
many activities that are meaningful for home monitoring are linked
to a few specific locations in the home, such as sinks, kitchens,
couches, or desks. This has allowed us to create a limited set of
profiles, which combine both location information and activity in-
formation. It is an open question to what extent a profile could be
used to detect the same activity in a different location, although
it is possible to create additional profiles for different locations as
long as the number of activities and locations remains manageable.
We also have only begun to explore to what extent it is possible to
distinguish between different activities in the same location. While
our results are promising, it would be useful to explore the limits
of this technique by considering a larger number of different activ-
ities in the same location and the dependency of the results on the
amount of change in the propagation environment.

8. CONCLUSION

Understanding in-home activities that persons are engaged in
would facilitate a broad range of applications including wellbe-
ing monitoring and health management. However, providing accu-
rate activity recognition without dedicated wearable or in-building
devices is challenging. We exploit the prevalence of WiFi infras-
tructure and design a system called E-eyes to perform device-free
location-oriented activity identification by utilizing the fine-grained
channel state information (CSI) available in the existing WiFi pro-
tocol (i.e., 802.11n). We find that CSI can capture the unique pat-
terns of small-scale fading caused by different human activities at
a subcarrier level, which is not available in the traditional received
signal strength (RSS) extracted at the per packet level. Our system
benefits from the observation that many important in-home activi-
ties occur in one or a few dedicated locations and that it is therefore
often sufficient to collect a small number of profiles for these activ-
ities in each of these locations. An experiment with two pairs of ac-
tivities that occur in the same location, however, also showed strong
potential for the technique to identify a set of activities that occur
in the same place. E-eyes applies matching algorithms to com-
pare the CSI measurements against known profiles to identify the
activity. Extensive experiments in two different-sized apartments



demonstrate that E-eyes is effective in distinguishing a number of
daily activities, and that it can achieve a detection rate as high as
92% with a single AP and only one WiFi device. In addition, we
also show how trends to wider-bandwidth channels (e.g., 802.11ac)
will enhance activity recognition performance further.
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