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Abstract—Real-time driving behavior monitoring is a corner
stone to improve driving safety. Most of the existing studies
on driving behavior monitoring using smartphones only provide
detection results after an abnormal driving behavior is finished,
not sufficient for driver alert and avoiding car accidents. In
this paper, we leverage existing audio devices on smartphones to
realize early recognition of inattentive driving events including
Fetching Forward, Picking up Drops, Turning Back and Eating or
Drinking. Through empirical studies of driving traces collected in
real driving environments, we find that each type of inattentive
driving event exhibits unique patterns on Doppler profiles of
audio signals. This enables us to develop an Early Recognition
system, ER, which can recognize inattentive driving events at
an early stage and alert drivers timely. ER employs machine
learning methods to first generate binary classifiers for every
pair of inattentive driving events, and then develops a modified
vote mechanism to form a multi-classifier for all inattentive
driving events along with other driving behaviors. It next turns
the multi-classifier into a gradient model forest to achieve early
recognition of inattentive driving. Through extensive experiments
with 8 volunteers driving for about half a year, ER can achieve
an average total accuracy of 94.80% for inattentive driving
recognition and recognize over 80% inattentive driving events
before the event is 50% finished.

I. INTRODUCTION

Inattentive driving [1] is a significant factor in distracted
driving and is associated with a large number of car accidents.
According to statistics, in 2014, 3,179 people were killed and
431,000 were injured in the United States alone in motor vehi-
cle crashes involving inattentive drivers [2]. National Highway
Traffic Safety Administration(NHTSA) is working to reduce
the occurrence of inattentive driving and raise awareness of the
dangers of inattentive driving [3]. However, recent research [4]
shows that many inattentive driving events are unapparent
and thus easy to be ignored by drivers. Most drivers fail to
realize themselves as inattentive while driving. Therefore, it
is desirable to build an inattentive driving recognition system
to alert drivers in real time, helping to prevent potential car
accidents and correct drivers’ bad driving habits.

There have been existing studies on detecting abnormal
driving behaviors [5] [6] [7] including inattentive, drowsy and
drunk drinking. These studies detect driver’s status based on
pre-deployed infrastructure, such as cameras, infrared sensors,
and EEG devices, incurring high cost. In recent years, with
the increasing popularity of smartphones, more and more

smartphone-based applications [8] [9] [10] are developed to
detect driving behaviors using sensors embedded in smart-
phones, such as accelerator, gyroscope, and camera. However,
most of these investigations on driving behavior detection
using smartphones can only provide a detection result after
a specific driving behavior is finished, making it less helpful
to alert drivers and avoid car accidents.

Among all kinds of dangerous driving behaviors, inattentive
driving is the most common one but also easily to be ignored
by drivers. Thus, early recognition of inattentive driving is the
key to alert drivers and reduce the possibility of car accidents.
Our objective is to build a system for early recognition of
inattenive driving using existing smartphone sensors. Accord-
ing to the judicial interpretation of inattentive driving [1],
there are four most commonly occurring events of inattentive
driving, i.e. Fetching Forward, Picking up Drops, Turning
Back and Eating & Drinking. Our goal is to recognize these
most common inattentive driving events and alert drivers as
early as possible to prevent drivers from continuing these
behaviors dangerous to driving safety. Our work is grounded
on the basic physics pheonomenon that human actions may
lead to Dopper shifts of audio signals [11] to recognize
different inattentive driving events. To realize the inattentive
driving recognition leveraging audio signals, we face several
challenges in practice. First, the unique pattern of each type of
inattentive driving needs to be distinguished. Second, any inat-
tentive driving event should be recognized as early as possible
under the guarantee of a high recognition accuracy. Finally, the
solution should be effective in real driving environments and
computational feasible on smartphones.

In this paper, we first investigate the patterns of Doppler
shifts of audio signals caused by inattentive driving events.
Through empirical studies of the driving traces collected from
real driving environments, we find that each type of inattentive
driving event exhibits an unique pattern on Doppler profiles of
audio signals. Based on the observation, we propose an Early
Recognition system, ER, which aims to recognize inattentive
driving events at an early stage and alert drivers in real time
for safe driving. In ER, effective features of inattentive driving
events on audio signals collected by smartphones are first
extracted through Principal Components Analysis (PCA). To
improve the recognition accuracy of driving events, we train



these features through a machine learning method to generate
binary classifiers for every pair of inattentive driving events,
and propose a modified vote mechanism to form a multi-
classifier for all inattentive driving events based on the binary
classifiers. In this work, the training is performed based on 3-
month driving traces in real driving environments involving
8 drivers. Furthermore, to detect the inattentive driving at
an early stage, we first analyze the relationship between
the completion degree and time duration for each type of
inattentive driving event, and then exploit the relationships to
turn the multi-classifier into a Gradient Model Forest for early
recognition. Our extensive experiments validate the accuracy
and the feasibility of our system in real driving environments.

We highlight our main contributions as follows:

o We design an early recognition system of inattentive
driving, ER, leveraging audio devices on smartphones.
It aims to recognize inattentive driving behaviors at an
early stage and alert drivers in real time for safe driving.

« We find each inattentive driving event presents an unique
pattern on Doppler profiles of audio signals. We validate
this important finding through empirical analysis of the
driving traces collected from real driving environments.

o We propose a modified vote mechanism based on Sup-
porting Vector Machine to generate a highly accurate
multi-classifier for inattentive driving recognition, and
further present a gradient model forest for early recogni-
tion of inattentive driving events.

o We conduct extensive experiments in real driving envi-
ronments. The results show that ER achieves an average
total accuracy of 94.80% for recognition and over 80%
inattentive driving events can be recognized before a
specific event is half-way done.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. Patterns of inattentive driving
events on Doppler profiles of audio signals are analyzed in
Section III. Section IV presents the design details of ER.
Systems issues and possible solutions in the implementation of
ER are presented in Section V. We evaluate the performance
of ER and present the results in Section VI. Finally, we give
our solution remarks in Section VIL.

II. RELATED WORK

In this section, we review the existing works on driving
events detection. Some existing works realize driving events
detection by using professional infrastructure including EEG
[5] and water cluster detectors [6], or common sensors such as
infrared sensors [12] and cameras [7]. However, the solutions
all rely on pre-deployed infrastructure and additional hard-
ware that incur installation cost. Moreover, those additional
hardware could suffer the difference of day and night, bad
weather condition and high maintenance cost.

To overcome the limitations of pre-deployed infrastructure,
recent studies put their efforts to exploit smartphones on driv-
ing events detection, which can be categorized as vision-based
solutions [8] [13] and sensor-based solutions [9] [10] [14]. In
vision-based solutions, the build-in cameras are used to capture
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Fig. 1. Illustration of inattentive driving events.

the graphic information for processing. [8] uses rear cameras
of smartphones to monitor road conditions, [13] leverages
dual cameras of smartphones to tract road conditions and
detect drivers’ status at the same time. However, the accuracy
of vision-based approaches is unstable depends on weather,
lighting and smartphones placement. In sensor-based solutions,
[10] leverages accelerators and gyroscopes of smartphones
to detect abnormal driving behaviors, and [14] combines
sensors by using Inertial Measurement Units on smartphones
to detect various steering maneuvers. These two solutions can
only provide detection results after driving behaviors finished.
Besides, [9] uses accelerators of smartphones to determine
usage of phones while driving, but this work can not recognize
other driving behaviors but usage of phones.

Moreover, there are some works of gesture recognition and
behavior monitoring based on the acoustic techniques [15]—
[18]. [15] proposes an audio-based system to sense gestures
for laptops. As implemented on smartphones, [18] builds an
acoustic system leveraging FMCW to detect sleeping con-
dition. [17] realizes a virtual mouse based on audio signals
of smartphones. [16] leverages microphones in smartphones
as well as car speakers for determining usage of phones.
Unlike the above works, our work achieves early recognition
of inattentive driving events using acoustic techniques, which
is meaningful for safety in real driving environments.

III. INATTENTIVE DRIVING EVENTS ANALYSIS

In this section, we first give a brief introduction to inatten-
tive driving events, and then analyze patterns of these events
on Doppler profiles of audio signals.

A. Defining Inattentive Driving Events

Drivers are encountered with a variety of road hazards
because of their unawareness of being in negligent driving
state, such as eating or picking drops while driving. These
inattentive driving events are potentially posing drivers in
danger. According to reference [1], there are four types of the
most commonly occurring inattentive driving events of drivers
themselves, as shown in Fig. 1.
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Fig. 2. Frequency-time Doppler profiles of inattentive driving events.

Fetching Forward: this state refers to the condition where
drivers fetch out to search widgets like keys, car audio
consoles, etc.

Eating or Drinking: drivers eat snacks or replenishing water
when driving.

Turning Back: drivers intend to take care of their children
in rear seat, or turn around searching for bags or packages
placed on rear seat.

Picking Drops: drivers are likely to pick dropped keys
or other objects when driving where their heads temporarily
moves away from the front sight.

Through analyzing the above four inattentive driving events,
we realize each driving event is not a transient action, but
a consecutive action lasts for a time period. For example,
Fig. 1(a) shows a Fetching Forward event, which can be
demonstrated as stretching out to reach the deck, searching for
something, and stretching retrieved to normal condition. Our
work is to detect these consecutive inattentive driving events
in real time and try to recognize these events at the early stage,
so as to alert drivers as early as possible.

B. Analyzing Patterns of Inattentive Driving Events

We utilize the Doppler shifts of audio signals to recognize
inattentive driving events. Doppler shift (or Doppler effect)
is the change in frequency of waves from observers moving
relative to sources. Specifically, a mass point moving at speed
v and angle @ to a speaker brings a frequency change:

Af = 21}0005(9)

x fo, 1
where ¢ and f denotes the speed and frequency of the signal.

We recruit five volunteers to perform four inattentive driving
events depicted in Fig. 1 while driving in relatively safe area.
The experiments are conducted by generating continues pilot
tones from speakers and then collect the audio signals from
microphones on smartphones.

When selecting the frequency of audio signals to use, we
take two factors into consideration, i.e. background noise and
unobtrusiveness. According to [16], frequency range from
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50Hz to 15,000Hz covers almost all naturally occurring
sounds, and human hearing becomes extremely insensitive to
frequencies beyond 18k H z. Thus, we could straightforwardly
filter the background noise and eliminate the effects for people
by locating our signal above 18kH z. Furthermore, a higher
frequency results in a more discernible Doppler shift confined
by Eq. 1, and most phone speaker systems only can product
audio signals at up to 20kHz. Taking all above analysis
into account, fo = 20kHz is selected as our frequency of
pilot tone, through which we sample raw data from given
inattentive driving events at the rate of 44.1kH z, which is
the default sampling rate of audio signals under 20k H z. Then
we transform it into frequency domain using 2048-points
Fast Fourier Transform (FFT) for appropriate computation
complexity and relative high frequency resolution. Fig. 2
shows the structure of Doppler profiles of the four inattentive
driving events. From Fig. 2, it can be seen that although the
four profiles share the similarity that they all consist of positive
and negative Doppler shifts, the patterns are different across
the four events in frequency range, energy amplitude, etc.
From above analysis, we find that each type of inattentive
driving events has unique patterns on the structure of Doppler
profiles. Although some existing works, [11] and [10], present
human action recognition methods based on the unique pat-
terns of actions already, the recognition can only be done after
actions finished, which is acceptable for transient actions like
single gestures in [11], but not good enough for consecutive
actions like inattentive driving events here because it is too late
to alert drivers after the driving events finished in a driving
security warning system. Our goal is to recognize inattentive
driving events as early as possible and alert drivers timely.

IV. SYSTEM DESIGN

In order to monitor inattentive driving events effectively and
efficiently, we present an early recognition system, ER, which
can alert drivers as early as possible when they are performing
inattentive driving events. ER does not depend on any pre-
deployed infrastructure and additional hardware.

A. System Overview

ER can recognize inattentive driving events through analyz-
ing patterns of Doppler profiles of audio signals over time.
The work flow of ER is shown in Fig. 3. The whole system is
divided into offline part - Modeling Inattentive Driving Events,
and online part - Monitoring Inattentive Driving Events.



In the offline part, for different types of inattentive driving
events, effective features are extracted from the Doppler pro-
files of audio signals collected in real driving environments.
Then, we train these features through machine learning meth-
ods to generate binary classifiers for every pair of inattentive
driving events, and propose a modified vote mechanism to
form a multi-classifier for all inattentive driving events along
with other driving behaviors based on them. Afterwards, the
multi-classifier model is turned into a gradient model forest for
realizing early recognition, which is stored in the database.

In the online part, ER senses real-time audio signals gen-
erated by speakers and received by microphones. The audio
signals are first transformed through FFT to Doppler profiles.
Then, ER detects the beginning of an event and continuously
segments the corresponding frequency-time Doppler profile
from the beginning to current time and sends to Early Recog-
nition until ER outputs a recognition result. Then in Early
Recognition, ER extracts features from segments and identifies
whether the events are inattentive driving events or other
driving behaviors at some early stages based on the trained
model forest. Finally, if any of the four inattentive driving
events is recognized through the above procedure, ER sends
a warning message to alert driver.

B. Model Training at Offline Stage

1) Establishing Training Dataset: To collect data in real
environments, we develop an Android-based program to gen-
erate and collect audio signals, and then transform the raw
sampled signals to the frequency-time Doppler profiles.

We collect these transformed data from 8 drivers with
distinct vehicles. 8 smartphones of 4 different types are
used, which are HTC Desire G7, ZTE U809, HTC EVO 3D
and SAMSUNG Nexus5, two for each type. Meanwhile, all
vehicles are equipped with a special camera so that drivers’
events can be recorded as the ground truth. Our data collection
spans from October 23, 2015 to January 27, 2016, during
which all the daily driving including commuting to work,
shopping, touring, etc. is recorded. Drivers are not told about
our purpose so that they can drive in a natural way. And each
of our volunteer has their own driving routes differs from each
other. After that, we ask 5 experienced drivers to watch the
videos recorded by the cameras and recognize all types of
inattentive driving events from the 3-month traces. In total,
we obtain 3532 samples of inattentive driving events from
the collected traces, which are severed as the ground truth.
Afterwards, we combined the collected Doppler profiles of
audio signals and their labels into a training dataset X.

2) Extracting Effective Features: Traditional feature ex-
tracting methods extract features by observing the unique
patterns manually. Features extracted by these methods usually
have redundant information and are poor in robustness. To
achieve better features, ER leverages Principal Components
Analysis(PCA) algorithm to the raw data.

In PCA algorithm, to extract features from training dataset
X, aprojection matrix W that contains features vectors ranked
by variance, is calculated using Singular Value Decomposition
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Fig. 4. Distributions of Fetching Forward events with other inattentive driving
events and normal driving in 2-dimensional feature space.

(SVD), which is given by X = USWT. For m x n matrix
X, U is a m X m unitary matrix, > is a m X n matrix
with non-negative singular values on the diagonal. W is a
n X n unitary matrix, which has n orthogonal features ranked
by importance. Since too many features may bring in the
danger of over-fitting, we should select the minimum number
of features, d, which contains enough information of the raw
data. Considering the reconstruction property of PCA, the
object function is

d n

O o)/ )=t telo1], )

i=1 =1

min
d
where o; is the " largest singular value of matrix X,
which denotes the importance of the i** features in W, and
t is the threshold of reconstruction, denoting the remaining
information of the raw data. In ER, ¢ is set to be 0.95 to
guarantee the features’ validity. For all four inattentive driving
events, we have d = 17 from Eq. 2, which is slightly large.

To further reduce d, we analyze inattentive driving events
pairwise. According to Eq. 2, for any pair of the four inatten-
tive driving events, d = 2 is good enough to represent most
information of the raw data. Fig. 4 shows the distributions of
Fetching Forward events versus other three inattentive driving
events and normal driving in 2-dimensional feature spaces. It
is can be seen from Fig. 4 that Fetching Forward events can be
discriminated from other inattentive driving events along with
normal driving using two features extracted by PCA. Similarly,
for all pairs for inattentive driving events along with normal
driving, this conclusion remains. Therefore, in order to reduce
the amount of features and improve recognition accuracy, we
extract features for inattentive driving events pairwise.

3) Training a Multi-Classifier: After features extracting
through PCA, We first use Supportive Vector Machine (SVM)
to train binary classifiers for every pair of inattentive driving
events. Based on the binary classifiers, a voting mechanism
is proposed to form a multi-classifier to differentiate all four
inattentive driving events.
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Given that each binary classifier has one vote v € {0, 1} for
building the multi-classifier. Considering a binary classifier for
separating event a from event b, then for a specific event e, if
the binary classifier identifies e as event a, then event a get a
vote v, = 1, event b get a vote v, = 0. Assuming an event
set E containing k types of events, a classifier group has C?
binary classifiers. For the event e, the votes of all C7 binary
classifiers can be denoted as

Vie)= > v

jelL,cz]

3)

where v; is a vote vector of k elements that denotes the vote
of the j*" binary classifier. The event class which get the most
votes in V' (e), i.e.

¢ = max V'J(e) JE [Lk]a “4)
J
is supposed to the classified event of e.
Moreover, for a specific type of inattentive driving events,
there are exactly k& — 1 binary classifiers directly related to this
type of event in all C7 binary classifiers. So the votes of the

winning event class should satisfies
&)

For an event which gets through the multi-classifier and gets
a classification result ¢ from Eq. 4, if it does not satisfy Eq.
5, ER considers the event as other driving behaviors, such as
shifting gear, pushing glasses, etc, which are not so dangerous
for drivers as inattentive driving events.

4) Setting up Gradient Model Forest for Early Recognition:
To approach the goal of recognizing inattentive driving events
as early as possible, we propose an early recognition method.

Considering an inattentive driving events set £ containing
k types of events, F = {e1, ez, - ,ex}. For a given event e
started at ¢y and finished at 1, the completion degree o of the
event e at time ¢ is

o t— t() - T
Cti—ty T
where 7 denotes the time duration of e at time ¢ and 7" denotes
the rotal length of e. Obviously, o, € [0, 1]. And when a, = 1,
the event e finishes. Eq. 6 shows that the goal to recognize a
inattentive driving event e as early as possible is equivalent to

Ve(e) =k —1.

t € [to, t1], (6)
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Fig. 7. The average amplitude of frequency bands
except the pilot frequency during a 20 seconds
driving containing a fetching forward event.

finish recognition when «. is as small as possible. As a result,
based on different « of inattentive driving events at different
T, we set up a bunch of classifiers for early recognition, i.e.
the gradient model forest.

For modeling the complete degree o at different time
duration 7 of inattentive driving events, the variation of the
total length 7" among all events should first be considered. For
different types of inattentive driving events, 1" varies because
of the nature differences of the events, thus we set different
models for different types of events. Moreover, for a specific
type of inattentive driving events, 7" also varies depending on
different drivers and driving situations. We also need to take
this variation into consideration when setting models.

According to statistics of the dataset established in Section
IV-B1, the total length T" for each type of inattentive driving
events approximately satisfies a Gaussian distribution. For
example, 1" of Fetching Forward events approximately satisfy
a Gaussian distribution of mean value p = 4.38s and standard
deviation 0 = 0.32s. Since two standard deviations from the
mean account for 95.45% data in Gaussian distribution, we can
think that about 95% of Fetching Forward events have T from
3.74s to 5.02s. As shown in Fig. 5, based on the completion
degree-time duration relations of Fetching Forward events
having T equals to 3.74s, 4.38s and 5.02s, a quadratic curve
is fit to model the relationship between o and 7 for Fetching
Forward event, which starts at the origin, goes through the
mid-point of the line 7" = 4.38s and ends at the end of the
line T = 5.02s. For any 7 > 5.02s, a = 1. The fitting carve
can thus represent most Fetching Forward events because it
closes to most Fetching Forward events at some time period
of completion degree-time duration relations. With the similar
analysis, ER models a relationship between o and 7 for each
type of inattentive driving events. Fig. 6 shows relationships
between « and 7 for all four types of inattentive driving events.

With the relationships between « and 7, for any given
time duration 7, ER can get a completion degree set A™
{a,ad, - ,a}}, which contains the completion degree for
each type of inattentive driving events at time duration T,
as shown in Fig. 6. According to A7, ER segments the
Doppler profiles of all types of inattentive driving events
X ={X;,Xs, -+, X} and then gets the new input dataset
X™={X7,X3, -, X[} Selecting n different 7 by gradient,



we form a n-element time duration set T = {71, 72, -+ ,Tn }.
ER then segments the Doppler profiles based on T and ends
up with a gradient dataset forest X = {X™ X7 ... X7n},
Afterwards, X is trained through the methods in Section
IV-B2 and Section IV-B3. Although for a specific dataset
X7, patterns for parts of inattentive driving events are not
guaranteed to be unique, ER can always get a multi-classifier
07. Based on the new input dataset X, a gradient model
forest © = {6™,0™, ... 0™} is set up, and each of
07 is a matrix containing all binary classifiers as 67 =
(D)5 (05)T5...5(07,)T), where m = C% for all different
pairwise inattentive driving events. Specially, the last multi-
classifier of the model forest, i.e. §™, is a multi-classifier
for recognizing inattentive driving events after they finished.
Finally, we obtain a gradient model forest ©, which could be
used to realize early recognition of inattentive driving events.

C. Recognizing Inattentive Driving Events at Online Stage

1) Segmenting Frames through Sliding Window: In order to
recognize current driving events, ER first needs to determine
the time duration by recognizing the beginning and the end of
the driving events.

As mentioned in Section III-B, all driving events occur
with positive and negative Doppler shifts in the frequency-
time Doppler profiles, i.e. energy fluctuation near the pilot
frequency (20kH z) as shown in Fig. 2. From analyzing the
traces collected in real driving environments, we find that when
events occur, the average amplitude of frequency bands beside
the pilot frequency keeps a relatively high value. Fig. 7 shows
the average amplitude of frequency bands beside the pilot
frequency during 20 seconds driving containing a fetching
forward event. From Fig. 7, it can be seen that the average
amplitude for events is much greater than that without events.

Based on patterns of the average amplitude, ER employs
the sliding window method to capture Doppler shifts caused
by driving events. ER keeps computing the average amplitude
within a window and compares with thresholds to determine
the start point and end point of an event. The window size
and thresholds can be learned from the collected data. When
the start point of an event is detected, ER segments a frame
from the start point to current point and sends the frame to go
through early recognition. ER keeps segmenting and sending
at short time intervals until a recognition result is output.

2) Detecting Inattentive Driving Events at Early Stage:
After getting a frame of a driving event, according to the
time duration of the frame, ER inputs the frame into the
corresponding classifier in the model forest © to recognize
the driving event. For frames with small time durations, the
recognition results may not be accurate because these frames
contains few information of the events. Thus, ER proposes a
mechanism to guarantee the validity of early recognition.

For a frame e of time duration 7 € [7;, 7;41], ER calls the
classifier #(7) and #("+1) to recognize the driving event. From
the two classifiers, ER gets the classification results ¢; and
cz. Only when c¢; = ¢y, ER admits the validity of the result
and temporarily stores it. After ER detects several continuous
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Fig. 8. The average amplitude of audio signals and readings from the
accelerator’s z-axis in 25-second driving containing a Fetching Forward event
and a driving condition that the vehicle goes across a speed bump.

valid results that denote the same inattentive driving event, an
alert is sent to the driver until ER detects the end of the event.
The number of continuous valid results which output the same
is defined as Convince Length. If ER does not output a result
before recognizing the end of an event, it uses the last classifier
of the model forest, §7, to finish the recognizing and get the
corresponding output. For each event, ER records the output
recognition result and the result from the classifier §™. The
proposed mechanism of ER can reduce mistaken recognition
and avoid disturbing drivers from false warning effectively .

V. SYSTEM IMPLEMENTATION

In the implementation of ER, we are facing several practical
issues as follows.

A. Allowing Inattentive Driving Events when Vehicle Stops

When driving in real environments, drivers may stop the
vehicles because of red traffic lights, heavy traffic conditions or
other temporary situations. In the conditions that the vehicles
are stopped, inattentive driving events are not so dangerous
and should be allowed to perform. However, ER can not
sense stops of vehicles based on audio signals. The work [19]
presents a result that the data patterns of the acceleration on
vehicle’s z-axis for stop is remarkably different from that for
moving. Specifically, the standard deviation of the acceleration
on z-axis is remarkably low while a vehicle stops. Therefore,
ER collects readings from the accelerometers on smartphones
to sense stops of vehicles in real time. Once ER detects that a
vehicle is stopped, it suspends analysis on audio signals until
the vehicle moves again.

B. Filtering Influence of Uneven Road

Uneven road may result in strong vibrations on smart-
phones, which could affect audio signals collected by the mi-
crophone and cause mistaken recognition of ER. It is necessary
to separate Doppler shifts caused by the uneven road from that
caused by driving events. Based on our observation from traces
collected in real driving environments, the strong vibration can
also be reflected on the acceleration on vehicle’s z-axis, so
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Fig. 9. The average amplitude of audio signals in 20 seconds driving
containing a Fetching Forward event and an event of fetching smartphones.
uneven road can be sensed by the readings from accelerator’s
z-axis. Fig. 8 plots the readings from the accelerator’s z-
axis and the average energy amplitude described in Fig. 7
in a 25 seconds driving which contains a Fetching Forward
event and a driving condition that the vehicle goes across a
speed bump. From Fig. 8, it can be seen that when a driver
performs an event, it brings Doppler shifts of audio signals
but does not influent the acceleration of z-axis, while the
condition of uneven road brings Doppler shifts along with
great jitter to the acceleration of z-axis. So ER could filter the
influence of vibrations by sensing uneven road and ignoring
the corresponding Doppler shifts.

C. Preventing Usage of Phone while Driving

Using smartphones, such as calling, texting messages,
browsing webpages, etc, is very dangerous when driving and
thus should be prohibited. Since the usage of smartphones may
greatly influent audio signals by changing the position and
post of smartphones over time, ER regards usage of phones
as a special type of inattentive driving events to recognize
and alert. Fig. 9 shows the average amplitude of audio signals
in 20 seconds driving which contains an Fetching Forward
event and an event of fetching smartphone. From Fig. 9, it
can be seen that when a driver fetches the smartphone, there
is a remarkable Doppler shift, where the average amplitude
is far greater than other driving events. Therefore, ER could
recognize usage of smartphones by detecting the events of
fetching smartphones. Once the average amplitude is greater
than a threshold h, ER regards the driving event as usage of
smartphone and sends an alert to driver.

VI. EVALUATION

In this section, we evaluate the performance of ER in real
driving environments. We implement ER as an Android App
and install it on smartphones. ER is running by 8 drivers
with distinct vehicles in real driving environments to collect
traces for evaluation. Drivers are not told about our purpose
so that they can drive in a natural way. Meanwhile, each car
is implemented with a camera for recording driver’s driving
behaviors and 5 experienced drivers are asked to recognize
inattentive driving events as the ground truth. After data
collection from March 11 to May 6, 2016 using method
described in Section IV-B1, we obtain a test set with 1473
inattentive driving events to evaluate the performance of ER.

A. Metrics

To evaluate the performance of ER, we define metrics as
follows.

Accuracy(%)

Fig. 10. The total accuracy of ER and classifier model §7~ over 8 drivers.

Accuracy: The probability that an event is correctly

identified for all type of events.

Precision: The probability that the identification for an

event A is exactly A in ground truth.

Recall: The probability that an event A in ground truth

is identified as A.

e False Positive Rate(FPR): The probability that an event
not of type A is identified as A.

o F'-Score: A metric that combines precision and recall (2 x

%m)' We use F-score as our major metric to

evaluate the recognition accuracy for specific types of

inattentive driving events in the following evaluation.

B. Overall Performance

Fig. 10 plots the recognition accuracy of ER and the clas-
sifier 8™ for 8 drivers, it can be seen that ER achieves a total
accuracy of 94.80% for recognizing all types of inattentive
driving events, while the total accuracy for 0™ is 84.78%.
Further, ER performs far better than ™ for any of the 8
drivers. The lowest accuracy for ER of the 8 drivers is 91.73%,
which validate the effectiveness and stability of ER in real
driving environments.

For different types of inattentive driving events, the preci-
sion, recall and F'-score for recognition is showed in Fig. 11.
It can be seen that these three metrics is high for every type
of inattentive driving events. Specifically, the precision is no
less than 89%, while the recall is above 91%, and the F-score
is more than 92%.

Moreover, for each of the 8 drivers, we evaluate the FPRs
of recognizing specific type of inattentive driving events. Fig.
12 shows the box-plot of the FPRs for each type of inattentive
driving events. We can observe from Fig. 12 that the highest
FPR is no more than 2.5% and the average FPR is as low
as 1.4% over the four events and 8 drivers. It shows that ER
could realize inattentive driving events recognition with few
false alarms, which is user-friendly for drivers.

We plot the CDF of recognition time for each type of
inattentive driving events and the CDF of all types of events
in Fig. 13. It can be seen from Fig. 13 that 50% of all
inattentive driving events are recognized by ER before 1.4s
and 80% can be recognized before 2.3s, while the average
total length of all events is around 4.6s. In another word, more
than 80% inattentive driving events can be recognized at the
time less than 50% of the average total length of all events.
For each specific type of events, The 80%-recognized time are
around 2s, 2.5s, 1.0s and 2.65s for Fetching Forward, Eating or
drinking, Turning Back and Picking Drops respectively. And
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Fig. 14. F-score under different convince length ~ Fig. 15. Average recognition time under different
convince length for all types of inattentive events.

for all types of inattentive events.
the corresponding average total length for the four events are
4.3s, 5.4s, 3.5s and 4.0s.

C. Impact on Convince Length

Convince length, as defined in Section IV-C2, is the requir-
ing number of continuous valid results of same value for ER
to output. Fig. 14 shows the recognition performance for dif-
ferent types of inattentive driving events at different convince
lengths. It can be seen that as convince length increases, F-
scores of all different types of inattentive driving events first
increase to peak value rapidly, then decrease slowly and finally
converge to some constants. According to the definition of
convince length, greater convince length brings more strictly
condition for ER to output the recognition results, so that the
output results is more accurate, which explains the increasing
of F-scores. However, as convince length keeps increasing,
the output condition becomes too strict for ER to output
recognition results before the end of events. As a result, more
events need to be recognized through classifier 07, which is
less accurate than ER according to Fig. 10. Fig. 15 shows
the average recognition time of different types of inattentive
driving events at different convince lengths. We can see that
the average recognition time of all different types of inattentive
driving events keeps increasing and finally converges to some
constants as convince length increases because it always takes
longer for a result to output when output condition is stricter.
ER chooses 5 as the convince length through empirical studies.

D. Impact on Training Set Size

According to Section IV-B1, we collect 3532 inattentive
driving events for training. Fig. 16 shows the impact of training

convince length

20 25 30 35 40 100 200 300 400 500 600
Size of Training Set

Fig. 16. F-score under different size of training

set for all types of inattentive events.

set size to the recognition performance of ER. From the
figure, it can be seen that the F-score rises as training set
size increases and goes stable after a certain size for each
inattentive driving events. Specifically, to get a stable F-score,
ER needs 220 training samples for Fetching Forward, 300
samples for Eating or Drinking, 340 samples for Turning Back
and 450 samples for Picking Drops. We use as much training
examples as we can get to guarantee the performance of ER.

E. Impact on Road Types and Traffic Conditions

Different road types and traffic conditions may influent
drivers’ driving behaviors and vehicle conditions, thus may
have an impact on the performance of ER. We analyze
the collected traces of different road types (local road and
highway) and different traffic conditions (during peak time and
off-peak time), respectively. Fig. 17 shows the result. It can
be seen that ER achieves fairly good F-scores for recognition
at any combination of road types and traffic conditions. In
addition, during peak time, the F-scores of ER is slightly
lower than the F-scores during off-peak time because heavy
traffic condition may bring more stops for vehicle and more
driving behaviors such as shifting gears, which may result in
more mistaken recognitions. Further, the F-scores of ER when
driving on highway is slightly higher than the F-scores on local
road since drivers are more concentrate when driving at high
speed and the road on highway is more smooth, which brings
less influence to ER.

F. Impact on Smartphone Placement

In our experiments, each driver place the smartphone
randomly on instrument panel (left side), instrument panel
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Fig. 18.

(middle part), panel near cab door and cup-holder, or in
driver’s pocket for daily driving. Fig. 18 shows that ER can
achieve fairly good F-scores for recognitions under different
smartphone placements. Specifically, smartphones placed on
instrument panel achieve best recognition results as the audio
devices of smartphones is directly face to drivers. And smart-
phones placed in drivers’ pockets achieves lower F-score than
others because the movement of drivers may bring influence
to ER. But the F-score for any smartphone placement and any
inattentive driving events is above 88%, which is acceptable
for using ER in real driving environments.

G. Evaluations for Implementation

In the implementation of ER, we solve several practical
issues by recognizing car stops, uneven road and the event of
fetching cell phones. Fig. 19 shows the recognition accuracy
for all three situations over the 8 drivers. It can be seen from
Fig. 19 that most of these situations are correctly recognized
by ER. Among these three situations, the event of fetching
cell phones has the recognition accuracy over 98% for all 8
drivers and thus ER can effectively prevent drivers from using
phones while driving. For recognizing car stops and uneven
road, the accuracy is above 96.5% and 94%, respectively.

VII. CONCLUSION

In this paper, we address the problem of recognizing inat-
tentive driving as early as possible to improve driving safety.
In particular, we propose an early recognition system, ER, to
recognize different inattentive driving events at the early stage
leveraging build-in audio devices on smartphones. To achieve
the recognition, ER first extracts effective features using PCA
based on the patterns of different inattentive driving events on
Doppler profiles of audio signals. Then ER leverages SVM
and a modified vote mechanism to form a multi-classifier and
set up a gradient model forest based on the multi-classifier
for early recognition. We train our gradient model forest
based on traces collected in real driving environments. The
extensive experiments in real driving environments show that
ER achieves high accuracy for inattentive driving recognition
and realizes recognizing events at early stage.
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