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Abstract—Wireless networks are vulnerable to identity-based
attacks, including spoofing and Sybil attacks, which allows for
many other forms of attacks on the networks. Although the iden-
tity of a node can be verified through cryptographic authenti-
cation, authentication is not always possible, because it requires
key management and additional infrastructural overhead. In this
paper, we propose a method for detecting both spoofing and Sybil
attacks by using the same set of techniques. We first propose a gen-
eralized attack-detection model that utilizes the spatial correlation
of received signal strength (RSS) inherited from wireless nodes.
We further provide a theoretical analysis of our approach. We then
derive the test statistics for detection of identity-based attacks by
using the K-means algorithm. Our attack detector is robust when
handling the situations of attackers that use different transmission
power levels to attack the detection scheme. We further describe
how we integrated our attack detector into a real-time indoor
localization system, which can also localize the positions of the
attackers. We show that the positions of the attackers can be
localized using either area- or point-based localization algorithms
with the same relative errors as in the normal case. We further
evaluated our methods through experimentation in two real office
buildings using both an IEEE 802.11 (WiFi) network and an IEEE
802.15.4 (ZigBee) network. Our results show that it is possible to
detect wireless identity-based attacks with both a high detection
rate and a low false-positive rate, thereby providing strong evi-
dence of the effectiveness of the attack detector utilizing the spatial
correlation of RSS and the attack localizer.

Index Terms—Identity-based attack, localization, received sig-
nal strength (RSS), sensor network, spoofing attack, Sybil attack,
transmission power, wireless network.

I. INTRODUCTION

A S MORE WIRELESS and sensor networks are deployed,
they will increasingly become tempting targets for mali-
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cious attacks. Due to the shared nature of the wireless medium,
attackers can gather useful identity information during passive
monitoring and further utilize the identity information to launch
identity-based attacks, in particular, the two most harmful but
easy to launch attacks: 1) spoofing attacks and 2) Sybil attacks.
In identity-based spoofing attacks, an attacker can forge its
identity to masquerade as another device or even create mul-
tiple illegitimate identities in the networks. For instance, in an
IEEE 802.11 network, it is easy for an attacker to modify its
Media Access Control (MAC) address of network interface card
(NIC) to another device through vendor-supplied NIC drivers
or open-source NIC drivers. In addition, by masquerading as an
authorized wireless access point (AP) or an authorized client,
an attacker can launch denial-of-service (DoS) attacks, bypass
access control mechanisms, or falsely advertise services to
wireless clients.

On the other hand, in Sybil attacks, a Sybil node can forge
different identities to trick the network with multiple fake
nodes. The Sybil attack can significantly reduce the network
performance by defeating group-based voting techniques and
fault-tolerant schemes (e.g., redundancy mechanisms [1], dis-
tributed storage [2], and multipath routing [3]).

Therefore, identity-based attacks will have a serious impact
to the normal operation of wireless and sensor networks. It is
thus desirable to detect the presence of identity-based attacks
and eliminate them from the network. The traditional approach
to address identity-based attacks is to apply cryptographic
authentication. However, authentication requires additional in-
frastructural overhead and computational power associated with
distributing and maintaining cryptographic keys. Due to the
limited power and resources available to the wireless devices
and sensor nodes, it is not always possible to deploy authen-
tication. In this paper, we take a different approach by using
the physical properties associated with wireless transmissions
to detect identity-based attacks. In particular, we utilize the
received signal strength (RSS) measured across a set of land-
marks (i.e., reference points with known locations) to perform
detection of identity-based attacks. We focus on static nodes,
which are common for most identity-based attacks scenarios
[4]. Our scheme can detect both spoofing and Sybil attacks by
using the same set of techniques and does not add any overhead
to the wireless devices and sensor nodes.

We formulate a generalized attack-detection model by us-
ing statistical significance testing. We then provide theoretical
analysis of exploiting the spatial correlation of the RSS inher-
ited from wireless nodes for attack detection. In our theoretical
analysis, we first derived the mathematical relationship between
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the distance of RSS in signal space and the node distance in
physical space. We then developed the analytical expression of
the detection rate, false-positive rate, and accuracy of determin-
ing whether two nodes reside at the same location based on
the RSS distance in signal space. In addition, we derived the
optimal threshold that can minimize the detection errors. The
theoretical analysis provides both the theoretical support for
detecting identity-based attacks by using the spatial correlation
of RSS and the analytic results on detection effectiveness.

Furthermore, by examining the clustering effects of RSS
over time in signal space, we found that the distance between
the centroids of clusters derived by the K-means algorithm in
signal space is a good test statistic for effective attack detec-
tion. In addition, we developed a mechanism called difference
of two (DoT), which utilizes the difference of RSS between
landmarks to help detect Sybil attacks launched by a Sybil
node that varies its transmission power levels to trick the attack-
detection scheme. Thus, our attack detector is robust to detect
identity-based attacks that use different transmission power
levels.

Detecting the presence of identity-based attacks in the net-
work provides first-order information toward defending against
attackers. Furthermore, learning the physical location of the
attackers allows the network administrators to further exploit
a wide range of defense strategies. We then explore how we can
find the positions of the adversaries by integrating our attack
detector into a real-time indoor localization system. Our cluster-
analysis-based attack detector is not specific to any RSS-based
localization algorithms and is thus general. For two kinds of
algorithms, area- and point-based algorithms, we show that
using the centroids of the clusters that are returned by the attack
detector in signal space as the input to the localization system,
the positions of the attackers can be localized with the same
relative estimation errors as under normal conditions.

Moreover, to evaluate the effectiveness of our attack detector,
we conducted experiments by using both an IEEE 802.11 net-
work and an IEEE 802.15.4 network in two real office building
environments. In particular, we have built an indoor localization
system that can localize any transmitting devices on the floor in
real time. We evaluated the performance of our attack detector
by using a detection rate and receiver operating characteristic
(ROC) curve. We found that the performance of the attack
detector is in line with the analytical results, suggesting that our
attack detector is highly effective with more than 95% detection
rates and less than 5% false-positive rates.

In addition, we observed that, when using the centroids
of clusters returned by the attack detector in signal space,
a broad family of localization algorithms achieve the similar
performance as when using the averaged RSS in traditional
localization attempts. In particular, for spoofing attacks, our ex-
perimental results show that the distance between the localized
results of the spoofing node and the original node is directly
proportional to the true distance between the two nodes, thereby
providing strong evidence of the effectiveness of both our
detection scheme and our approach of localizing the positions
of the adversaries.

The rest of this paper is organized as follows. In Section II,
we first study the feasibility and threats of identity-based at-

tacks and their impacts. In Section III, we then formulate the
detection problem of identity-based attacks, provide theoretical
analysis of using the spatial correlation of RSS for attack de-
tection, and propose our cluster-analysis-based attack detector
for both spoofing and Sybil attacks. We next describe our
evaluation metrics in Section IV and present our experimental
methodology in Section V. We present the performance eval-
uation of detecting spoofing and Sybil attacks in Sections VI
and VII, respectively. We introduce the real-time localization
system and present how we can find the positions of the
attackers in Section VIII. Section IX describes the previous
research in addressing spoofing and Sybil attacks. Finally, we
conclude our paper in Section X.

II. FEASIBILITY OF ATTACKS

In this section, we provide a brief overview of identity-based
attacks and their impact to the wireless and sensor networks.

A. Spoofing Attacks

Due to the shared nature of the wireless medium, attackers
can gather useful identity information during passive moni-
toring and utilize the identity information to launch identity-
based spoofing attacks in wireless and sensor networks. For
instance, in an 802.11 network, it is easy for a wireless device to
acquire a valid MAC address and masquerade as another device.
The IEEE 802.11 protocol suite provides insufficient identity
verification during message exchange, including most control
and management frames. Therefore, the adversary can utilize
this weakness and request various services as if it were another
user. Identity-based spoofing attacks are a serious threat in the
network, because they represent a form of identity compromise
and can facilitate a series of traffic injection attacks, including
spoofing-based DoS attacks.

For instance, an adversary can launch a deauthetication at-
tack. After a client chooses an AP for future communication,
it must authenticate itself to the AP before the communica-
tion session starts. Both the client and the AP are allowed
to explicitly request for deauthentication to void the existing
authentication relationship with each other. Unfortunately, this
deauthentication message is not authenticated. Therefore, an
attacker can spoof this deauthentication message, either on
behalf of the client or on behalf of the AP [5], [6]. The adversary
can persistently repeat this attack and completely prevent the
client from transmitting or receiving.

Furthermore, an attacker can utilize identity spoofing and
launch the rogue AP attack against the wireless network. In
the rogue AP attack, the adversary first sets up a rogue AP
with the same MAC address and service set identifier as the
legitimate AP but with a stronger signal. When a station enters
the coverage of the rogue AP, the default network configuration
will make the station automatically associate with the rogue AP,
which has a stronger signal. Then, the adversary can take ac-
tions to influence the communication. For example, it can direct
fake traffic to the associated station or drop the requests made
by the station. Aside from the basic packet-flooding attacks,
the adversary can make use of identity spoofing to perform
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more sophisticated flooding attacks on APs, such as probe
request, authentication request, and association request flooding
attacks [7].

B. Sybil Attacks

The term Sybil attack was first introduced in [8] to denote
an attack where the attacker, i.e., a Sybil node, tries to forge
multiple identities in the context of peer-to-peer distributed
systems. Sybil attacks are particularly easy to launch in wire-
less sensor networks where the communication medium is
open and broadcast. By broadcasting messages with multi-
ple identifications, a Sybil node can rig the vote on group-
based decisions and also severely disrupt network middleware
services [9].

Furthermore, by using a single node to present multiple
identities in the network, the Sybil attack can significantly
reduce the effectiveness of fault-tolerant schemes such as re-
dundancy mechanisms [1], distributed storage [2], dispersity
and multipath routing [3], and topology maintenance [10]. The
Sybil attack can defeat the redundancy mechanisms, storage
partitions, and routing algorithms by making the mechanisms
believe that they are using multiple nodes but are, in fact, using
a single Sybil node.

Therefore, the identity-based attacks, both spoofing and
Sybil attacks, will significantly impact the network perfor-
mance. The conventional approaches to address identity-based
attacks use authentication. However, the application of authen-
tication requires reliable key distribution, management, and
maintenance mechanisms. It is not always desirable to apply
authentication because of its infrastructural, computational, and
management overhead. Furthermore, cryptographic methods
are susceptible to node compromise, which is a serious concern,
because most wireless nodes are easily accessible, allowing
their memory to be easily scanned.

Thus, it is desirable to use properties that do not require
overheads and changes on nodes and cannot be undermined
even when nodes are compromised. We propose to use RSS,
a property that is associated with the transmission and recep-
tion of communication (and, hence, does not rely on cryp-
tography), as the basis for detecting identity-based attacks.
Employing RSS as a means of detecting spoofing and Sybil
attacks will not require any additional cost to the wireless
devices themselves—they will merely use their existing com-
munication methods, whereas the wireless network will use a
collection of APs to monitor RSS for the potential of identity-
based attacks. Our proposed techniques will handle the prob-
lem of the unreliable time-varying nature of RSS [11], [12].
These techniques will also address the issues when an attacker
varies its transmission power to launch attacks and trick the
system.

III. ATTACK DETECTOR

In this section, we present our attack detector. We first for-
mulate the attack-detection problem using significance testing.
We then provide a theoretical analysis on our RSS-based attack
detection. We next develop the test statistics for attack detection

and present the detection philosophy for spoofing and Sybil
attacks.

A. Formulation of Attack Detection

RSS is widely available in deployed wireless communication
networks, and its values are closely correlated with location
in physical space. In addition, RSS is a common physical
property used by a widely diverse set of localization algorithms
[13]–[16]. In spite of its several-meter-level localization accu-
racy, using RSS is an attractive approach, because it can reuse
the existing wireless infrastructure, and it is sufficient to meet
the accuracy requirement of most applications. For example,
during health care monitoring, a doctor may only need to know
in which room the tracked patient resides. We thus derive an at-
tack detector for identity-based attacks by utilizing properties of
the RSS.

We formulate attack detection as a statistical significance
testing problem, where the null hypothesis is

H0 : normal (no attack).

In significance testing, a test statistic T is used to evaluate
whether observed data belong to the null hypothesis. For a
particular significance level α (defined as the probability of
rejecting the hypothesis if it is true), there is a corresponding
acceptance region Ω such that we declare the null hypothesis
valid if an observed value of the test statistic Tobs ∈ Ω and
reject the null hypothesis if Tobs /∈ Ω (i.e., declare that an
attack is present if Tobs ∈ Ωc, where Ωc is the critical region
of the test). In our attack-detection problem, the region Ω and
decision rule are specified according to the form of the detection
statistic T (e.g., when using distance in signal strength space for
T, the decision rule is compared with a threshold), and rejection
of the null hypothesis corresponds to declaring the presence of
an attack.

B. Theoretical Analysis of the Spatial Correlation of RSS

Although affected by random noise, environmental bias, and
multipath effects, the RSS measured at a set of landmarks (i.e.,
reference points with known locations) is closely related to the
transmitter’s physical location and is governed by the distance
to the landmarks [17]. The RSS readings at different locations
in physical space are distinctive. Thus, the RSS readings present
strong spatial correlation characteristics.

According to the propagation model, the RSS at a landmark
from a wireless node is given by [18]

P (di) [dBm] = Pi(d0) [dBm] − 10γ log
(

di

d0

)
+ Si (1)

where i is the ith wireless node, Pi(d0) represents the transmit-
ting power of node i at the reference distance d0, di is the dis-
tance between the wireless node and the landmark, γ is the path
loss exponent, and Si is the shadow fading that follows zero-
mean Gaussian distribution with δ standard deviation [18], [19].
We assume that the wireless nodes have the same transmission
power. In Sections VI-B and VII-B, we will discuss how we
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Fig. 1. CDF of the distance in signal space when the distance between two nodes are 0, d, and 2d, respectively. The distance between the landmark and the
closer node is d. (a) δ = 2 dB. (b) δ = 3 dB.

can detect identity-based attacks when attackers use different
transmission power levels. Thus, the RSS distance between two
nodes in signal space at the landmark is given by

ΔP = 10γ log
(

d2

d1

)
+ ΔS (2)

where ΔS follows zero-mean Gaussian distribution with δ/
√

2
standard deviation.

We depict the cumulative distribution function (CDF) of
the RSS distance in signal space in Fig. 1 when the distance
between two nodes are 0, d, and 2d, respectively, whereas the
distance from the landmark to the closer node is d. The path
loss exponent is set to 2.5. In Fig. 1(a), the standard deviation
of shadowing is 2 dB, whereas it is 3 dB for Fig. 1(b). We
found that the curves shift to the right with the increasing
RSS distance when the physical distance between two nodes
increases. It is obvious that, when two nodes are at the same
location, the RSS distance is small, i.e., around 5 dB, which is
most likely caused by the variation of RSS under different σ.

Based on the key observation of the strong spatial correlation
of RSS, it is thus important to analyze how we can derive
a threshold under which the RSS distance can effectively be
exploited to perform attack detection with low false positives.
According to (2), when the two wireless nodes are at the same
location (i.e., d1 = d2), the RSS distance in signal space fol-
lows a normal distribution with zero mean and δ/

√
2 standard

deviation, whereas the distance follows a normal distribution
with 10γ log(d2/d1) mean and δ/

√
2 standard deviation if

these two nodes are at different locations. The probability den-
sity functions (PDFs) of the distance under these two different
conditions can be represented as follows:

fΔP (p | same location) =
1√
πδ

e
−p2

δ2 (3)

fΔP (p | different location) =
1√
πδ

e
−
(

p−10γ log
(

d2
d1

))2

δ2 . (4)

Fig. 2 depicts these two PDFs. The left side of the figure
fΔP (p | same location) describes the RSS distance when two
wireless nodes are at the same location, whereas the right side

Fig. 2. PDFs of RSS distance in signal space when two wireless nodes are at
the same location and at different locations, respectively.

of the figure fΔP (p | different location) corresponds to the RSS
distance when two nodes are at different locations.

Given the threshold τ in the signal space, the probability that
we can determine the two nodes are at different locations in 1-D
physical space (i.e., detection rate) based on the RSS distance
distribution is given by

DR = Prob(ΔP > τ | different locations)

= 1 − φ

⎛
⎝τ − 10γ log

(
d2
d1

)
σ√
2

⎞
⎠ (5)

and the corresponding false-positive rate is

FPR = Prob(ΔP > τ | same locations) = 1 − φ

(
τ
σ√
2

)
(6)

where φ(·) is the CDF of standard normal distribution. In
addition, the accuracy of classifying whether these two nodes
are at different locations is given by

Accuracy =
φ

(
τ
σ√
2

)
+ 1 − φ

(
τ−10γ log

(
d2
d1

)
σ√
2

)
2

. (7)

To analyze the feasibility of using RSS distance in signal
space to diagnose whether two nodes are at different locations
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Fig. 3. Detection accuracy for the optimal threshold τ = 5γ log(d2/d1)
when the standard deviation of shadowing is 2, 3, and 4 dB, respectively. The
path loss exponent is 2.5.

for attack detection, our objective is to select the value of
threshold τ that minimizes the average decision errors. In
Fig. 2, the probability of erroneously classifying the RSS
distance from the same physical location as the RSS distance
from different locations is

e1(τ) =

τ∫
−∞

fΔP (p | different location) ds. (8)

This is indicated as the shadowing area under the curve of
fΔP (p | different location) to the left of the threshold. Simi-
larly, the probability of erroneously classifying the RSS dis-
tance from different locations as the RSS distance from the
same location is

e2(τ) =

+∞∫
τ

fΔP (p | same location) ds (9)

which is indicated as the shadowing area under the curve of
fΔP (p | same location) to the right of τ . Then, the overall
probability of classification error can be obtained as

e(τ) = e1(τ) + e2(τ). (10)

To find the threshold value for which this error is minimal
requires differentiating e(τ) with respect to τ and equating the
result to 0, i.e.,

fΔP (τ | same location) − fΔP (τ | different location) = 0.
(11)

This equation is solved for τ to find the optimum threshold.
Substituting (3) and (4) into the aforementioned equation yields
the optimum threshold, i.e.,

τ = 5γ log
(

d2

d1

)
. (12)

Fig. 3 presents the numerical results of detection accuracy
under the optimal threshold τ = 5γ log(d2/d1) when the stan-
dard deviation of shadowing is 2, 3, and 4 dB, respectively. In

the figure, we observed that the farther away the two nodes
are separated, the better the accuracy we have. In addition,
we obtained better accuracy with lower standard deviation σ
of shadowing. It is encouraging that, under the theoretical
analysis, even with a single landmark in 1-D physical space, our
approach of utilizing the RSS distance can obtain an accuracy
of more than 90% when the two wireless nodes are separated by
the distance of 0.5d and beyond. When additional landmarks
are employed to calculate RSS distance in signal space, we
expect to obtain a better accuracy.

We next extend our theoretical model in the 1-D physical
space to the 2-D physical space. Suppose that there are n
landmarks that monitor the RSS of the wireless nodes. Each
RSS vector s = {s1, s2, . . . , sn} corresponds to a point in an
n-dimensional signal space [15]. Then, the RSS distance in
n-dimensional signal space is determined by

ΔD =
√

ΔP 2
1 + · · · + ΔP 2

n (13)

where ΔPi, with i = 1, 2, . . . , n, is the RSS distance at the ith
landmark and is given by (2).

Subject to (3), we know that, when these two wireless
nodes are at the same location, the distance (2/δ2)ΔD2 in n-
dimension signal space follows a chi-square distribution with n
degree of freedom [20], i.e.,

2
δ2

ΔD2 =
n∑

i=1

(
1√
2π

e−
1
2 p2

i

)2

∼ χ2
n,0. (14)

However, when these two wireless nodes are at different loca-
tions, (2/δ2)ΔD2 becomes a noncentral chi-square distribution
with a noncentrality parameter λ, i.e.,

2
δ2

ΔD2 =
n∑

i=1

(
1√
2π

e
− 1

2 (pi−10γ log
(

di2
di1

)2
)2

∼ χ2
n,λ (15)

where di1 and di2 are the distances from two wireless nodes to
the ith landmark, and

λ =
n∑

i=1

(
10γ log

(
di2

di1

)2
)

. (16)

Given the threshold τ , the probability that we can determine the
two nodes are at different locations in a 2-D physical space with
n landmarks (i.e., detection rate) is given by

DR=Prob(ΔD>τ | different locations)=1−Fχ2
n,λ

(
2
δ2

τ2

)
(17)

and the corresponding false-positive rate is

FPR=Prob(ΔD>τ | same locations)=1−Fχ2
n,0

(
2
δ2

τ2

)
(18)

where FX(·) is the CDF of the random variable X .
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Fig. 4. RSS readings from two physical locations.

C. Test Statistics for Detection of Identity-Based Attacks

The aforementioned analysis provides the theoretical support
of using the spatial correlation in RSS inherited from wireless
nodes to perform attack detection. It also showed that the
RSS readings from a wireless node over time fluctuate under
different σ and should cluster together. In particular, the RSS
readings from the same physical location over time will belong
to the same cluster points in the n-dimensional signal space,
whereas the RSS readings from different locations over time
should form different clusters in signal space, as shown in
Fig. 4, which presents RSS reading vectors of three landmarks
(i.e., n = 3) from two different physical locations. This obser-
vation suggests that we can conduct cluster analysis on top of
RSS readings to find out the distance in signal space in practice.
Furthermore, we can detect the identity-based attacks based on
the observed RSS distance between clusters.

We explore the K-means algorithm, which is one of the most
popular iterative descent clustering methods [21]. The squared
Euclidean distance is chosen as the dissimilarity measure. If
there are M RSS sample readings for a node, the K-means
clustering algorithm partitions M sample points into K disjoint
subsets Sj with Mj sample points to minimize the sum-of-
squares criterion. We have

Jmin =
K∑

j=1

∑
sm∈Sj

‖sm − μj‖2 (19)

where sm is an RSS vector that represents the mth sample
point, and μj is the geometric centroid of the sample points
for Sj in signal space. We further choose the distance between
two centroids as the test statistic T for identity-based attack
detection. We have

Dc = ‖μi − μj‖ (20)

with i, j ∈ {1, 2, . . . ,K}.

D. Detection Philosophy

1) Detecting Spoofing Attacks: Under normal conditions,
when examining the RSS stream from a node identity, the dis-
tance between the centroids from the K-means cluster analysis
in signal space should be close to each other, because there

is only one cluster from a single physical location. However,
under a spoofing attack, there is more than one node at different
physical locations, which claim the same node identity. As a
result, when examining the RSS stream over time from a node
identity, the RSS sample readings from the attacked node (i.e.,
the original node) will be mixed with RSS readings from at
least one different location. Thus, more than one clusters will
be formed in the signal space, and the distance between the
centroids is larger (i.e., Tobs > τ ) as the centroids are derived
from the different RSS clusters associated with different loca-
tions (the original node plus spoofing nodes) in physical space.
When the RSS reading vectors, as shown in Fig. 4, is from
one wireless node identity, we observed that two RSS clusters
are formed, and the distance between two centroids is large.
This result clearly indicates that the RSS readings come from
two different physical locations and thus declares the presence
of a spoofing attack. Furthermore, based on our analysis in
Section III-B, the farther the attacker is from the original
node, the more the likelihood that their RSS patterns signifi-
cantly differ, and the higher the accuracy that the detector can
achieve.

2) Detecting Sybil Attacks: Similarly, the basic idea behind
using the K-means cluster analysis to detect Sybil attacks relies
on the RSS correlation in the physical locations of nodes. When
examining the RSS readings from two nodes with different
identities over time, we can apply the K-means cluster analysis
to the mixture of these two RSS streams. Under normal con-
ditions without a Sybil attack, the observed value of the test
statistic Tobs (i.e., Dobs

c ) should be large, because there are
two different RSS clusters from two physical locations, whereas
when a Sybil attack is present, the Tobs is small and satisfies
Tobs < τ , because the RSS readings originated in one physical
location (i.e., the location of a Sybil node), and thus, there is
only one cluster in the signal space.

IV. METRICS

In this section, we present our metrics for evaluating the per-
formance of our attack detector by using spatial correlation of
RSS based on the K-means cluster analysis in real experiments.

Detection Rate and False-Positive Rate: An identity-based
attack will cause the significance test to reject H0. We are
thus interested in the statistical characterization of the attack-
detection attempts over all the possible attacks on the floor. The
detection rate is defined as the percentage of attack attempts that
are determined to be under attack. Note that, when the attack
is present, the detection rate corresponds to the probability of
detection Pd, whereas under normal (nonattack) conditions, it
corresponds to the probability of declaring a false positive Pfa.
The detection rate and false-positive rate vary under different
thresholds.

ROC Curve: To evaluate an attack detection scheme, we
want to study both the false-positive rate Pfa and the probabil-
ity of detection Pd. The ROC curve is a plot of attack detection
accuracy compared to the false-positive rate. It can be obtained
by varying the detection thresholds. The ROC curve provides a
direct means of measuring the tradeoff between false positives
and correct detections.
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Fig. 5. Landmark setups and testing locations in two networks within two
office buildings. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Distance Between Wireless Nodes: In a spoofing attack,
when a spoofing node is close to an original node, the resulting
test statistic Dobs

c will not be large and may affect the deci-
sion of attack detection, whereas in a Sybil attack, when two
wireless nodes are close to each other, a small test statistic
Dobs

c will be obtained. This condition may mislead our attack
detector to determine the presence of a Sybil attack. Hence, we
are interested in studying how the distance between two nodes
affects the performance of our attack detector.

V. EXPERIMENTAL METHODOLOGY

To evaluate the effectiveness of our mechanisms in detecting
identity-based attacks, we conducted experiments using two
networks: 1) an IEEE 802.11 (WiFi) network at the Wireless
Information Network Laboratory (WINLAB) and 2) an IEEE
802.15.4 (ZigBee) network in the Department of Computer
Science, Rutgers, The State University of New Jersey. The
size of these two floors are 219 × 169 ft and 200 × 80 ft,
respectively. Fig. 5(a) shows the 802.11 network, with five
landmarks shown in red stars, which are deployed to maximize
signal strength coverage in the yellow-shaded experimental
area. Meanwhile, the 802.15.4 network is presented in Fig. 5(b),
with four landmarks distributed in a squared setup to achieve
optimal landmark placement [17], as shown in red triangles.

The small dots in floor maps are the locations used for
testing. For the 802.11 network, there are 101 locations, and

we collected 300 packet-level RSS samples at each location,
whereas for the 802.15.4 network, there are 94 locations, and
300 packet-level RSS samples are collected at each location.

In addition, we built a real-time localization system to local-
ize the positions of attackers. We use the leave-one-out method
in localization algorithms, which means that we choose one
location as the testing node, whereas the rest of the locations
are chosen as training data. For the 802.11 network, the size
of the training data is 100 locations, whereas for the 802.15.4
network, the size of the training data is 73 locations. The
detailed description of our localization system is presented in
Section VIII.

To test our approach’s ability to detect identity-based attacks,
for spoofing attacks, we randomly chose a point pair on the floor
and treated one point as the position of the original node and
the other point as the position of the spoofing node, whereas for
Sybil attacks, we randomly chose a location, split the collected
RSS samples, and applied with multiple node identities.

We ran the identity-based attack detection test through all
the possible combinations of point pairs on the floor by using
all the testing locations in both networks. There are a total
of 5050 pairs for the 802.11 network and 4371 pairs for the
802.15.4 network. The experimental results will be presented
in the following sections for the attack detector and the attack
localizer.

VI. EXPERIMENTAL EVALUATION OF DETECTING

SPOOFING ATTACKS

In this section, we focus on detecting spoofing attacks. We
first describe how we can determine the threshold of test
statistics and detect attacks when adversaries use different
transmission power levels. The experimental results are then
presented to evaluate the effectiveness of detecting spoofing
attacks.

A. Determining the Threshold of Test Statistics

Based on the analysis in Section III-B, it is important to
choose the appropriate threshold τ , which will allow the attack
detector to be robust to false detections. The thresholds define
the critical region for the significance testing. In our experi-
ments, the threshold is obtained through empirical training of
the K-means algorithm. Fig. 6 shows the results of the CDF
of the Dc in signal space for both the 802.11 and 802.15.4
networks. We found that the curve of Dc greatly shifted to the
right under spoofing attacks, which is in line with our analytical
results in Section III-B, thereby suggesting that using Dc as a
test statistic is an effective way of detecting spoofing attacks.
We will examine the performance of the attack detector under
various τ .

B. Detecting Attacks Using Different Transmission
Power Levels

If an attacker sends packets at a transmission power level
that is different from the original node with the same identity,
there will be two distinct RSS clusters in signal space. The
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Fig. 6. Spoofing attack detection: CDF of the test statistic Dc in the signal space. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE I
SPOOFING ATTACK DETECTION: DETECTION RATE AND

FALSE-POSITIVE RATE IN TWO NETWORKS

spoofing attack will thus be detected based on the test statistics
of Dc, obtained from the RSS clusters. Therefore, our K-means
detector is robust when an attacker launches a spoofing attack
from different transmission power levels.

C. Detection Results

In this section, we present the evaluation of the effectiveness
of the attack detector in detecting spoofing attacks.

1) Effectiveness of Attack Detector: Table I presents the
detection rate and false-positive rate for both the 802.11 and
802.15.4 networks under different threshold settings. The cor-
responding ROC curves are displayed in Fig. 7. The results are
encouraging, showing that for false-positive rates less than 5%,
the detection rates are more than 95%. Even when the false-
positive rate goes to zero, the detection rate is still more than
92% for both the 802.11 and 802.15.4 networks.

Table II presents the detection rate and false-positive rate
for the 802.11 network when the spoofing attacker varies its
transmission power level to launch attacks. In our experiments,
the attacker used transmission power of 10 dB to send packets,
whereas the original node used 15 dB of transmission power.
Compared with Table I, Table II shows that we can achieve
a higher detection rate when the attacker uses different trans-
mission power levels. Thus, our attack detector can effectively
detect the spoofing attacks that are launched by using different
transmission power levels.

2) Impact of the Distance Between the Spoofing Node and
the Original Node: Our analytical results in Section III-B show
that the distance between the spoofing node and the original
node will affect the detection accuracy. We further study how

likely a spoofing node can be detected by our attack detector
when it is at varying distances from the original node in
physical space. Fig. 8 presents the detection rate as a function of
the distance between the spoofing node Pspoof and the original
node Porg. We found that the farther away Pspoof is from Porg,
the higher the detection rate becomes. For the 802.11 network,
the detection rate goes to more than 90% when Pspoof is about
23 ft away from Porg under τ equal to 8 dB. On the other hand,
for the 802.15.4 network, the detection rate is more than 90%
when the distance between Pspoof and Porg is about 20 ft by
setting threshold τ to 9 dB. This result is in line with the average
localization-estimation errors using RSS [15], which are about
15 ft. When the nodes are less than 15 ft apart, they have a high
likelihood of generating similar RSS readings, and thus, the
spoofing-detection rate falls below 90% but is still greater than
55%. However, when Pspoof moves closer to Porg, the attacker
also increases the probability to expose itself. The detection rate
goes to 100% when the spoofing node is about 45–50 ft away
from the original node.

VII. EXPERIMENTAL EVALUATION OF DETECTING

SYBIL ATTACKS

In this section, we first describe how we can determine the
threshold of test statistics for detecting Sybil attacks and then
develop the DoT mechanism to handle attacks launched by
Sybil nodes that use different transmission power levels to
create different identities. Finally, the experimental results are
presented to evaluate the effectiveness of detecting Sybil attacks
that use our attack detector.

A. Determining the Threshold of Test Statistics

Similar to detecting spoofing attacks, the thresholds define
the critical region for the significance testing. In detecting Sybil
attacks, we show how we determine the thresholds through
empirical training for our attack detector. During the offline
phase, we collected the RSS readings across a set of locations
over the experimental area and obtained the distance between
two centroids in signal space for each node. We then use
the distribution of the training information to determine the
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Fig. 7. Spoofing-attack detection: ROC curves over all the testing points across the experimental floor. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE II
SPOOFING-ATTACK DETECTION WHEN THE ATTACKER VARIES ITS

TRANSMISSION POWER LEVEL: DETECTION RATE AND FALSE-POSITIVE

RATE WHEN THE ATTACKER USES 10-dB TRANSMISSION POWER

LEVEL, WHEREAS THE ORIGINAL NODE USES 15 dB

threshold τ . At runtime, based on the RSS sample readings
for each node pair (i.e., the mixture of two RSS streams
from different identities), we can calculate the observed value
Dobs

c . Our condition for declaring the presence of a Sybil
attack is

Dobs
c < τ. (21)

Fig. 9 presents the CDF of the Dc in signal space for both
the 802.11 and 802.15.4 networks. We found that the value of
Dc is small under Sybil attacks, whereas the value of Dc is
large under normal situations. This observation clearly indicates
that using Dc as a test statistic is effective for detecting Sybil
attacks.

B. DoT Mechanism

An adversary may vary the transmission power levels to
create different identities to trick the system. In our analysis,
different signal strength clusters will then be formed in the
signal space due to different transmission power levels used,
although they are from the same physical location.

We examine the pass loss part of the signal propagation that
models the received power as a function of the distance to the
landmark. We have

P (d) [dBm] = P (d0) [dBm] − 10γ log
(

d

d0

)
(22)

where P (d0) represents the transmitting power of a node at the
reference distance d0, d is the distance between the transmit-
ting node and the landmark, and γ is the path-loss exponent.

Furthermore, we can express the difference of the received
power between two landmarks i and j as

Pi(d) − Pj(d) = 10γi log
(

di

d0

)
− 10γj log

(
dj

d0

)
. (23)

Based on (23), we found that the difference of the correspond-
ing received power between two different landmarks is inde-
pendent of the transmission power. Hence, when a Sybil node
that resides at a physical location varies its transmission power
to create different identities, the difference of the RSS readings
between two different landmarks from forged identities is a
constant, because the RSS readings are obtained from a single
physical location.

We thus developed the DoT mechanism, which utilizes the
difference of the centroid vectors in signal space obtained
from cluster analysis and further applies the difference on the
obtained difference of the centroids to detect Sybil attacks
that are launched by using different power levels. We use an
example to illustrate how DoT helps detect the presence of a
Sybil attack. When there are four landmarks deployed in the
area of interest, we study the input RSS streams from two node
identities and denote the two centroid vectors that are returned
from the K-means algorithm as μ1 = {μ1

1, μ
2
1, μ

3
1, μ

4
1} and

μ2 = {μ1
2, μ

2
2, μ

3
2, μ

4
2}. DoT then calculates the difference of

the difference between the corresponding centroid components
from landmark 1 to the others as follows:

⎧⎨
⎩
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1

)
−

(
μ1
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2

)
e13 =
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−
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1 − μ4
1) −

(
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2 − μ4
2

)
.

(24)

Due to random noise, environmental bias, and multipath effects,
the difference e fluctuates around zero. We define a confidence
level α. Assuming that the centroid from each landmark is in-
dependent, when

∏K
i�=j,i,j=1 eij < 1 − α, with K =

(
N
2

)
, DoT

concludes the presence of a Sybil attack, and the two node
identities under study is, in fact, one physical node. Empirically,
we found that choosing three independent equations out of K
is enough to perform attack detection.
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Fig. 8. Spoofing-attack detection: Detection rate as a function of the distance between the spoofing and original nodes. (a) IEEE 802.11 network. (b) IEEE
802.15.4 network.

Fig. 9. Sybil-attack detection: CDF of the test statistic Dc in the signal space. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE III
SYBIL-ATTACK DETECTION: DETECTION RATE AND FALSE-POSITIVE

RATE IN TWO NETWORKS

C. Detection Results

In this section, we present the evaluation of the effectiveness
of the attack detector in detecting Sybil attacks.

1) Effectiveness of Attack Detector: Table III presents the
detection rate and false-positive rate for both the 802.11 and
802.15.4 networks under different threshold (τ) settings. The
corresponding ROC curves are displayed in Fig. 10. We found
that the attack detector can achieve a detection rate of more
than 95% with less than a 10% false-positive rate. Even when
the detection rate reaches 100%, the false-positive rate is only
7.4% for the 802.11 network and 4.1% for the 802.15.4 net-

work, respectively. In addition, in Table III, we observed that
the similar thresholds are achieved for both networks under
detection rates of 90%, 95%, and 100%. These results indicate
that our attack detector is generic across different networks and
is highly effective in performing attack detection.

2) Evaluation of DoT: Fig. 11 presents the ROC curve by
using DoT under the situation that an adversary varies the
transmission power level from 10 dB to 15 dB to launch a Sybil
attack. We observed that DoT can achieve a 100% detection
rate when the corresponding false-positive rate is about 9.5%.
This result is encouraging, because it shows that our attack-
detection approach is robust to detect adversaries that use
different transmission power levels to launch Sybil attacks.

3) Impact of Distance Between Wireless Nodes: We further
study how the Sybil attack detection rate and the false-positive
rate are affected by the distance between two wireless nodes in
a network. We define a distance threshold Dmin, which is the
minimum distance between two nodes within one experimental
setting. Fig. 12 shows the ROC curves under different thresh-
olds of Dmin for both the 802.11 and 802.15.4 networks. We
note that each ROC curve is generated by using those distances
between two nodes larger than the corresponding Dmin in an
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Fig. 10. Sybil-attack detection. ROC curves over all the testing points across the experimental floor: (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 11. DoT: ROC curve when an adversary varies transmission power levels
to launch a Sybil attack.

experimental setting. We found that the ROC curves shift to
the upper left when we increase the threshold Dmin. This result
indicates that the farther away two nodes are from each other,
the higher the detection rate, and the lower the false-positive
rate achieved.

If two wireless nodes are close to each other, the resulting test
statistic Dobs

c will be small and may be less than the threshold
(i.e., Dobs

c < τ ). Consequently, the attack detector will claim a
false positive (i.e., declaring the presence of a Sybil attack).
Thus, we further examine how likely the false-positive rate
of our detector can be reduced by varying the node distance
threshold Dmin. Fig. 13 presents the false-positive rate as a
function of Dmin under different detection rates for both the
802.11 and 802.15.4 networks. First, the curves of false-positive
rate show that a higher detection rate usually results in a higher
false-positive rate, which is in line with our observation when
using ROC curves. Second, the results indicate that the false-
positive rate decreases as the Dmin increases. For instance, by
examining the curve under a detection rate of 95%, the false-
positive rate decreases from 3.66% to 0.85% in the 802.11
network and from 2.53% to 0.49% in the 802.15.4 network,
respectively, when Dmin increases from 10 ft to 30 ft. In
addition, we observed that the detector can achieve a 100%
detection rate with a 0% false-positive rate when Dmin reaches

68 ft in the 802.11 network and 56 ft in the 802.15.4 network,
respectively.

VIII. LOCALIZING ADVERSARIES

If an identity-based attack is determined to be present by
the attack detector, we want to localize the adversaries and to
eliminate the attackers from the network. In this section, we
present a real-time localization system that can be used to locate
the positions of the attackers. We then describe the localization
algorithms for estimating the adversaries’ position. The experi-
mental results are presented to evaluate the effectiveness of our
approach.

A. Localization System

We have developed a general-purpose localization system to
perform real-time indoor positioning. This system is designed
with fully distributed functionality and easy-to-plug-in local-
ization algorithms. It is built around four logical components:
1) Transmitter; 2) Landmark; 3) Server; and 4) Solver. The
system architecture is shown in Fig. 14.

Transmitter: Any device that transmits packets can be lo-
calized. Oftentimes, the application code does not need to be
altered on a sensor node to localize it.

Landmark: The Landmark component listens to the packet
traffic and extracts the RSS reading for each transmitter. It then
forwards the RSS information to the Server component. The
Landmark component is stateless and is usually deployed on
each landmark or AP with known locations.

Server: A centralized server collects RSS information from
all the Landmark components. The identity-based detection is
performed at the Server component. The Server component
summarizes RSS information such as averaging or clustering
and then forwards the information to the Solver component for
localization estimation.

Solver: The Solver component takes the input from the
Server component, performs the localization task by utilizing
the localization algorithms that are plugged in, and returns the
localization results back to the Server component. There are
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Fig. 12. Sybil-attack detection: ROC curves when varying the node distance threshold Dmin. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 13. Sybil-attack detection: False-positive rate as a function of the node distance threshold Dmin. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 14. Localization system architecture.

multiple Solver instances available, and each Solver instance
can simultaneously localize multiple transmitters.

During the localization process, the following steps will take
place:

1) A Transmitter sends a packet. Some numbers of Land-
marks observe the packet and record the RSS.

2) Each Landmark forwards the observed RSS from the
transmitter to the Server.

3) The Server collects the complete RSS vector for the
transmitter and sends the information to a Solver instance
for location estimation.

4) The Solver instance performs localization and returns the
coordinates of the transmitter back to the Server.

If there is a need to localize hundreds of transmitters at the
same time, the server can perform load balancing among differ-
ent solver instances. This centralized localization solution also
makes enforcing contracts and privacy policies more tractable.

B. Attack Localizer

When our detector has identified an attack for a node identity,
the centroids returned by the K-means clustering analysis in
signal space can be used by the Server and sent to the Solver
for location estimation. In particular, in spoofing attacks, the re-
turned positions should be the location estimate for the original
node and the spoofing nodes in physical space. Fig. 15 shows
an example of the relationship among the original node Porg,
the location estimation of the original node Lorg, the spoofing
node Pspoof , and the localized spoofing node position Lspoof .
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Fig. 15. Relationships among the original node, the spoofing node, and their
location estimation returned by the localization system.

To show the generality of our localization system in locat-
ing the adversarial nodes, we have chosen two representative
localization algorithms that use signal strength from point- and
area-based algorithms.

RADAR: Point-based methods return an estimated point as
a localization result. One primary example of a point-based
method is the RADAR scheme [13]. In RADAR, during the
offline phase, a mobile transmitter with known position peri-
odically broadcasts beacons, and the RSS readings are mea-
sured at a set of landmarks. Collecting together the averaged
RSS readings from each of the landmarks for a set of known
locations provides a radio map. At runtime, localization is
performed by measuring a transmitter’s RSS at each landmark,
and the vector of RSS values is compared with the radio map.
The record in the radio map whose signal strength vector is
closest, in the Euclidean sense, to the observed RSS vector is
declared to correspond to the location of the transmitter. In this
paper, instead of using the averaged RSS in the traditional ap-
proach, we use the RSS centroids obtained from the K-means
clustering algorithm as the observed RSS vector for localizing
a node.

Area-Based Probability (ABP): Area-based algorithms re-
turn the most likely area in which the true location resides.
Compared with point-based methods, one major advantage of
area-based methods is that they return a region, which has an
increased chance of capturing the transmitter’s true location.
ABP returns an area, i.e., a set of tiles on the floor, bounded by a
probability that the transmitter is within the returned area [17].
ABP assumes that the distribution of RSS for each landmark
follows a Gaussian distribution. The Gaussian random variable
from each landmark is independent. ABP then computes the
probability that the transmitter is at each tile Li on the floor by
using Bayes’ rule, i.e.,

P (Li | s) =
P (s | Li) × P (Li)

P (s)
. (25)

Given that the transmitter resides at exactly one tile, satisfy-
ing

∑L
i=1 P (Li | s) = 1, ABP normalizes the probability and

returns the most likely tiles up to its confidence α.
Both RADAR and ABP are employed in our experiments to

localize the positions of the attackers.

C. Experimental Evaluation

1) Localization Metrics: To evaluate the effectiveness of
our localization system in finding the locations of the attackers,
we are interested in the following performance metrics.

Localization error CDF. We obtain the CDF of the location-
estimation error from all the localization attempts of adver-
saries. For area-based algorithms, we also report CDFs of
the minimum and maximum errors. For a given localization
attempt, these are points in the returned area that are closest
to and furthest from the true location.

Relationship between the true and estimated distances. For
spoofing attacks, the relationship between the true distance
of the spoofing node to the original node ‖Porg − Pspoof‖
and the distance of the location estimate of the spoofing
node to that of the original node ‖Lorg − Lspoof‖ evaluates
how accurate our attack localizer can report the positions
of both the original node and the attackers.

2) Experimental Results: We first present the statistical
characterization of the location-estimation errors. Fig. 16
presents the localization error CDF of the original nodes
and the spoofing nodes for both RADAR and ABP in the
802.11 and 802.15.4 networks. For the area-based algorithm,
we present the median tile error ABP − med and the min-
imum and maximum tile errors ABP − min and ABP −
max, respectively. We found that the location-estimation errors
from using the RSS centroids in signal space are about the
same as using averaged RSS as the input for localization
algorithms [15]. Furthermore, we observed that the localiza-
tion performance in the 802.11 network is similar to that in
the 802.15.4 network. Due to space limitations, we did not
present the localization results of Sybil nodes. We note that
we observed similar localization performance when localizing
Sybil nodes.

More importantly, we observed that the localization per-
formance of the original nodes is qualitatively the same as
that of the spoofing nodes. This result is very encouraging,
because the similar performance is strong evidence that using
the centroids from the K-means cluster analysis is effective in
both identifying the identity-based attacks and localizing the
attackers.

In spoofing attacks, the challenge in localizing the posi-
tions of spoofing nodes arises, because the system does not
know the positions of either the original or the spoofing node.
Thus, we would like to examine how accurate the localization
system can estimate the distance between Porg and Pspoofing.
Fig. 17 displays the relationship between ‖Lorg − Lspoofing‖
and ‖Porg − Pspoofing‖ across different localization algorithms
and networks. The blue dots represent the cases of the detected
spoofing attacks, whereas the red crosses indicate the spoofing
attacks have not been detected by the K-means attack detector.
Comparing with Fig. 8, i.e., the detection rate as a function
of the distance between Porg and Pspoofing, the results of the
undetected spoofing attack cases represented by the red crosses
are in line with the results in Fig. 8. The spoofing attacks are
100% detected when ‖Porg − Pspoofing‖ is equal to or is greater
than about 50 ft.
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Fig. 16. Localization error CDF across localization algorithms and networks when localizing both original and spoofing nodes in spoofing attacks. (a) IEEE
802.11 network. (b) IEEE 802.15.4 network.

Fig. 17. Relationship between the true distance and the estimated distance for the original and spoofing nodes across localization algorithms and networks in
spoofing attacks. (a) IEEE 802.11: RADAR, τ = 10 dB. (b) IEEE 802.11: ABP, τ = 10 dB. (c) IEEE 802.15.4: RADAR, τ = 9 dB. (d) IEEE 802.15.4: ABP,
τ = 9 dB.

Furthermore, the relationship between ‖Lorg − Lspoof‖ and
‖Porg − Pspoof‖ is along the 45◦ straight line. This result
means that ‖Lorg − Lspoof‖ is directly proportional to ‖Porg −
Pspoof‖ and indicates that our localization system is highly
effective for localizing the attackers. At a fixed distance value
of ‖Porg − Pspoof‖, the values of ‖Lorg − Lspoof‖ fluctuate

around the true distance value. The fluctuation reflects the
localization errors of both Porg and Pspoof . The larger the
‖Porg − Pspoof‖ is, the smaller the fluctuation of ‖Lorg −
Lspoof‖ becomes, at about 10-ft maximum. This result means
that, if the spoofing node is farther away from the original
node, it is extremely likely that the K-means attack detector can
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detect it. In addition, our attack localizer can find the attacker’s
position and estimate the distance from the original node to the
spoofing node at a maximum error of about 10–20 ft.

IX. RELATED WORK

There has been active research that addresses identity-based
attacks. We cannot cover the entire body of works in this sec-
tion. Rather, we give a short overview of traditional approaches
and several new methods. We then describe the related research
in localization.

Detection of Spoofing Attacks: The traditional security ap-
proach to cope with identity fraud is to use cryptographic
authentication. An authentication framework for hierarchical
ad hoc sensor networks is proposed in [22], and a hop-by-
hop authentication protocol is presented in [23]. The work in
[24] has introduced a secure and efficient key management
(SEKM) framework. The authors of [25] implemented a key
management mechanism with periodic key refresh and host
revocation to prevent the compromise of authentication keys.
In addition, binding approaches are employed by cryptographi-
cally generated addresses (CGA) to defend against the network
identity spoofing [26].

It is not always desirable to use authentication due to lim-
ited resources on nodes and infrastructural overhead involved;
therefore, new approaches have recently been proposed to
detect spoofing attacks that use physical properties associated
with wireless transmission. The work in [27] has introduced
a security layer that is separate from conventional network-
authentication methods. The authors of [28] utilized properties
of the wireless channel at the physical layer to support high-
level security objectives. The most closely related works to our
paper are [4] and [29], in which one work proposed the use of
matching rules of signal prints for spoofing detection, whereas
the other work modeled the RSS readings using a Gaussian
mixture model. However, they did not address how they can
localize attackers.

Detection of Sybil Attacks: Employing cryptographic-
related methods [30]–[32] are the traditional approaches to
prevent Sybil attacks. To address the issues of computational
constraints on wireless and sensor nodes, [1] proposed schemes
based on symmetric key cryptography to satisfy the resource
requirements, and [33] used unique random pairwise key estab-
lishment schemes based on t-degree polynomials.

Furthermore, radio resource testing and registration ap-
proaches are two methods that deviate from the conventional
security approaches. However, the radio-resource testing [32]
process may consume much battery power, whereas registration
alone cannot prevent Sybil attacks, because a malicious attacker
may get multiple identities by nontechnical means such as
stealing. In addition, [9] employed RSS to detect wireless Sybil
attacks. However, it did not study how the Sybil nodes can be
localized.

Wireless Localization: The localization techniques can be
categorized along several dimensions. Based on localization
infrastructure, [34] used infrared methods, and [35] employed
ultrasound to perform localization. Both of them need to deploy
specialized infrastructure for localization. On the other hand, in

spite of its several-meter-level accuracy [12], using RSS [13],
[17], the work in [36] is an attractive approach, because it can
reuse the existing wireless infrastructure.

Dealing with ranging methodology, range-based algorithms
involve distance estimation to landmarks by using the mea-
surement of various physical properties [37] such as RSS
[13], [15], time of arrival (TOA) [38], and time difference
of arrival (TDOA) [35]. Range-free algorithms [39]–[41] use
coarser metrics to place bounds on candidate positions. Another
method of classification describes the strategy for mapping a
node to a location. Lateration approaches [38], [41], [42] use
distances to landmarks, whereas angulation uses the angles
from landmarks. Fingerprint-matching strategies [13]–[15] use
a function that maps observed radio properties to locations
on a preconstructed radio map. Finally, another dimension of
classification extends to aggregate [39] or singular algorithms.

Our paper differs from the aforementioned research in sev-
eral ways. First, there is little work that can detect both spoofing
and Sybil attacks using the same set of techniques. Further-
more, our approach is robust to attackers that use different trans-
mission power levels to launch attacks. Finally, much of the
aforementioned work focuses on attack detection only, whereas
our paper can perform both attack detection and localize the
adversaries’ positions.

X. CONCLUSION

In this paper, we have proposed a method for detecting
identity-based attacks, including spoofing and Sybil attacks,
and localizing the adversaries in wireless and sensor networks.
In contrast to traditional identity-oriented authentication meth-
ods, our RSS-based approach does not add additional overhead
to the wireless devices and sensor nodes. We formulated the
identity-based detection problem as a statistical-significance-
testing problem. We then provided theoretical analysis of ex-
ploiting the spatial correlation of RSS inherited from wireless
nodes for attack detection. We further utilized the K-means
cluster analysis to derive the test statistic. Our attack detector is
robust to detect attacks that are launched by adversaries that use
different transmission power levels. In addition, we have built
a real-time localization system and integrated our K-means
attack detector into the system to locate the positions of the
attackers and, as a result, to eliminate the adversaries from the
network.

We studied the effectiveness and generality of our attack
detector and attacker localizer in both the 802.11 and 802.15.4
networks in two real office building environments. The perfor-
mance of the K-means attack detector is evaluated in terms
of detection rates and ROC curves. Our attack detector has
achieved high detection rates, i.e., more than 95%, and low
false-positive rates, i.e., less than 5%. Moreover, our DoT
mechanism is highly effective in detecting a Sybil attack that
uses different transmission power levels.

When locating the positions of the attackers, we have utilized
both the point- and area-based algorithms in our real-time
localization system. We found that the performance of the
system, when localizing the adversaries that use the results of
the K-means cluster analysis, are about the same as localizing
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under normal conditions. In particular, in spoofing attacks, the
distance between the spoofing node and the original node can
be estimated with a median error of 10 ft. Our method is
generic across different localization algorithms and networks.
Therefore, our experimental results provide strong evidence of
the effectiveness of our approach in detecting identity-based
attacks and localizing the positions of the adversaries.
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