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Abstract—Wireless localization using the received signal strength (RSS) can have tremendous savings over using specialized
positioning infrastructures. In this work, we explore improving RSS localization performance in multipath environments by varying the
transmitter’s signal power and frequency. We first derive and analyze the Cramér-Rao Lower Bound (CRLB) of RSS-based
localization based on the frequency dependent path loss propagation model that considers the transmitter’s signal power and
frequency. The derived CRLB shows the feasibility of improving localization performance by applying frequency and power level
selection for RSS-based localization. Using this analysis, we develop two new selection metrics based on the observed standard
deviations of RSS as well as residuals. We then show a set of selection methods that attempt to select the combinations of power and
frequencies which minimize the localization error in a representative class of localization algorithms. Our simulation results confirm
the proposed selection methods can improve the localization accuracy under CRLB. Additionally, using active RFID tags, we
experimentally characterize the effect of using multiple signal powers and frequencies on a wide spectrum of RSS-based algorithms.
We found that the performance of all the algorithms improves when leveraging on multiple power levels and frequencies, although
different algorithms present different sensitivity in terms of localization accuracy under different selection methods.

Index Terms—Wireless localization, received signal strength, multiple frequency, multiple power level
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1 INTRODUCTION

USING wireless devices to provide location is an
emerging area that will impact a diverse set of

applications including those in asset tracking, workflow
management, geographic routing, and physical security.
Given that wireless devices are carried by many people and
objects, and all modern radio chipsets include the hardware
necessary to measure the received signal strength (RSS) of
transmitted packets, there is a tremendous cost and
deployment advantage to re-using the existing RSS infra-
structure of the communication network for localization.

The basic strategy of most RSS-based localization follows a
typical pattern: a transmitter or receiver, called the device,
measures the RSS to a number of landmarks with known
positions. The resulting collection of RSS values, or fingerprint, is
then used to position the device. A wide range of algorithmic
strategies have been tried, ranging from minimization of least
squares methods to machine learning approaches.

However, multipath effects are key challenge to wireless
localization using RSS. These effects include shadowing, i.e.,
blocking a signal, reflection, i.e., waves bouncing off an
object, diffraction, i.e., waves spreading in response to
obstacles, and refraction, i.e., waves bending as they pass
through different mediums. These effects impact the RSS,
and properly accounting for all of them in complex indoor
environments is a difficult task. Typically, the average
localization errors are around 10 ft and maximum errors are
often 30 ft or more.

In this paper we explore one approach of improving RSS
localization performance in face of multipath effects. Our
strategy is for the transmitter to vary its signal frequency
and power level, thus generating multiple RSS values
between the device and each landmark. The resulting
distinct RSS values for each frequency and power level
combination create a larger fingerprint than is typical with
a single frequency and power level. We call each frequency
and power level combination a dimension of the fingerprint.
We then apply a selection algorithm that attempts to create
a fingerprint that minimizes the localization error.

We first analyze the performance of RSS-based locali-
zation by deriving the Cramér-Rao Lower Bound (CRLB)
based on the frequency dependent path loss propagation
model that considers the transmitter’s signal power and
frequency. Our analysis forms a general view of localiza-
tion accuracy by selecting RSS measurements from multi-
ple frequencies and power levels. The analysis shows the
feasibility of improving localization performance by
applying selection on RSS measurements from multiple
frequencies and power levels.

We use two metrics to help select the higher-quality
signal strength fingerprint based on the theoretical analysis:
deviation of RSS readings and residual. We further develop
three selection strategies: 1) Whole Dimension, whereby all
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dimensions of frequency and power level are used for
localization; 2) Matching Characteristic, whereby a fingerprint
is constructed with all landmarks using the same frequency
and power level combination; and 3) Constrained Landmark,
whereby all landmarks are enforced to be used, but allowing
any dimension to be chosen for a landmark.

We apply our approach to a broad class of localization
algorithms with a range of mathematical foundations, from
lateration based, to fingerprint matching, to probabilistic
based, and Bayesian Networks. Our first step analysis
centers on the Linear Least Squares (LLS) algorithm; we
theoretically show that selection should improve perfor-
mance, and the selection should take the dimensions with
the minimum variance within a dimension. We next
evaluate our proposed selection strategies through a
simulated indoor environment by comparing the theoret-
ical CRLB and the RMS (Root Mean Square) error. We
observe that the simulation results of localization algo-
rithms are bounded by the theoretical CRLB values.

Furthermore, by leveraging a real localization testbed,
we programmed RFID transmitters with varying frequency
and power level. We are able to vary the frequency at two
levels, 400 MHz and 900 MHz as well as simultaneously
vary the power by 3 levels, 10, 5, and 0 dBm, resulting in
6 additional dimensions of RSS between a device and a
landmark. We then use a trace-driven approach to
evaluate the impact of our selection strategies on this
broad class of localization algorithms.

We find that using multiple frequencies and power
levels improved the performance of all the algorithms. An
interesting effect common across all the algorithms is that
median errors are substantially reduced. Examining a
cumulative distribution function (CDF) of localization
errors, the median errors improve over 40 percent for all
the algorithms using multiple frequencies and power
levels, whereas the improvement of 90th percentile errors
varies from 32 percent to 58 percent depending on the
algorithm. We further find that different algorithms react
differently to the selection strategies. Selection is necessary
to improve performance and reduce computational cost
compared to using Whole Dimension selection, although
each algorithm required a slightly different selection
strategy. We summarize our main contributions as follows:

. We theoretically analyze the performance of RSS-
based localization by deriving the Cramér-Rao
Lower Bound (CRLB) based on the frequency
dependent path loss propagation model that con-
siders the transmitter’s signal power and frequency.
The analysis shows the feasibility of improving
localization accuracy by applying frequency and
power level selection to RSS-based localization.

. We design two selection metrics: the deviation of RSS
readings and the residual to characterize the impact of
multiple frequencies and power levels on wireless
localization. We design three selection strategies:
Whole Dimension, Matching Characteristic, and Con-
strained Landmark to help select the higher-quality
fingerprint.

. We study a broad class of localization algorithms
including lateration based, fingerprint matching,

probabilistic based, and Bayesian Networks algo-
rithms. The results show that our approach is
generic enough to apply to any RSS-based localiza-
tion algorithms.

. We conduct extensive simulation and real experi-
ments to validate our approaches. Both simulation
and experimental results are consistent with our
theoretical analysis, and show that using multiple
frequencies and power levels can improve the
performance of all the algorithms under study.

The remainder of our paper is organized as follows. We
first derive the CRLB of localization using RSS measure-
ments in Section 2 of both the main paper and the
supplementary file which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/281. We then develop our selection metrics
and describe the broad class of localization algorithms in
Section 3 of both the main paper and the supplementary file
available online. Next, we present our selection strategies of
multiple frequencies and power levels for localization and
perform simulation study on different localization algo-
rithms to compare with the theoretical bounds in Section 4 of
the main paper. In Section 5 of the main paper and Section 4
of the supplementary file available online, we describe our
testbed and present experimental results. Finally, Section 6
concludes our work. The related work is discussed in
Section 1 of the supplementary file available online.

2 THEORETICAL ANALYSIS ON LOCALIZATION
PERFORMANCE

In this section, we study the performance of RSS-based
localization by deriving the Cramér-Rao Lower Bound
(CRLB) based on the frequency dependent path loss
propagation model. We first introduce a frequency depen-
dent path loss propagation model that considers the
transmitter’s signal power and frequency. Then, the
CRLB of RSS-based localization is derived based on
the frequency dependent path loss propagation model.
We investigate the feasibility of improving localization
performance by applying frequency and power level
selection for RSS-based localization. More details of the
derivation and discussions are presented in Section 2 of the
supplementary file available online.

2.1 Frequency and Power Dependent Path Loss
Propagation Model

The path loss propagation model [16] can be described as,
P ðdÞ ¼ P ðd0Þ � 10� logð dd0

Þ þX�, where � is the path loss
exponent, X� represents the shadowing effect parameter
with variance �2 ðX� � Nð0; �2ÞÞ. P ðdÞ is the received power
of a wireless device at a certain location with distance d to
the landmark. P ðd0Þ can be considered as a power loss in
free space, where d0 is usually defined as 1 meter.

The transmission power P ðd0Þ usually depends on the
frequency used for transmitting packets. Therefore, P ðd0Þ
can be written as a transmission frequency dependent
parameter [1], [7], P ðd0Þ ¼ ð20 logðfÞðMHzÞ � �Þ, where � is
a constant environmental parameter (empirically set to 27.
56 in [1]).
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And the path loss exponent � depicts the rate of RSS
varying with distance, which tends to increase when the
device operates on higher transmission frequency [1], [10].
This indicates that path loss exponent is proportional to the
transmission frequency: � / fðMHzÞ. Furthermore, a recent
work proposes a calibration method to tune the parameters
of the propagation model including the path loss exponent
� to improve the localization performance [3].

Finally, the shadowing, X�, is the effect that the received
signal power fluctuates due to obstacles in the propagation
paths. It has been shown experimentally that the shadow-
ing is dependent on the transmitting frequency and power
level [11].

Based on the path loss propagation model, the joint
probability density function of the RSS measurements
collected from N ði ¼ 1; 2; . . . ; NÞ landmarks independent-
ly, can be written as:

f�ðP Þ ¼
YN
i¼1

10

log 10
ffiffiffiffiffiffi
2�
p

�i

1

Pi
exp � �i

8
log

d2
i

d̂i
2

 !2
2
4

3
5; (1)

where P ¼ ½P1 . . .PN � is a vector of the received power of N
landmarks, �i ¼ ð 10�i

�i log 10Þ
2 and d̂i ¼ d0ðP ðd0Þ

Pi
Þ

1
�i is the estimate

of distance di to the ith landmark. And � ¼ ðx; yÞ is the
unknown location of the wireless device to be estimated
from RSS measurements. Note that the parameter �i
containing the path loss exponent �i and the variation of
the shadowing �i is dependent on transmission frequency
and power level of landmark i. We will discuss its impact
on localization performance in the next section.

The path loss propagation model indicates that the
received signal strength is affected by the transmission
frequency and power level. We focus on characterizing the
impact of transmission frequency and power level on RSS-
based localization. We next derive the Cramér-Rao Lower
Bound (CRLB) of the localization error by taking into
consideration of the transmission frequency and power level.

2.2 CRLB of RSS-Based Localization
CRLB sets a lower limit for the variance (or covariance
matrix) of any unbiased estimates of an unknown param-
eter, which is widely used to analyze the localization
performance [14], [9], [15]. We next derive the CRLB of RSS-
based localization based on the frequency dependent path
loss propagation model.

The CRLB under different transmission frequencies and
power levels can be derived:

Varð�̂Þ ¼

PN
i¼1

�i
d2
iPN

i¼1

PN
j¼1;j6¼i

�i�jCij

; (2)

where Cij ¼ ðcos’i sin’j
didj

� cos’j sin’i
djdi

Þ2, and �i ¼ ð 10�i
�i log 10Þ

2. The
detailed derivation of Equation (2) is presented in Section 2
of the supplementary file available online.

According to (2), for a particular location, CRLB is
affected by the parameter �i, which is composed of
shadowing variation �i and path loss exponent �i from
each landmark i ¼ 1 . . .N . As shown in Section 2.1,

�i ¼ ð 10�i
�i log 10Þ

2 is dependent on the transmission frequency
and power level of the wireless device. In order to achieve a
lower CRLB, selecting appropriate frequency and power
level to form a high-quality signal strength fingerprint for
localization is critical. Thus, to achieve higher localization
accuracy, we need to develop a selection strategy on
transmission frequency and power level to generate high-
quality RSS fingerprints.

We define the impact factor as R ¼ ð 10�
� log 10Þ

2, where
R ¼ ½�1 . . . �N � is a 1�N vector and N is the number of
landmarks. The element of the impact factor�i can be
considered as, �i ¼6 Lf�1

i . . . �
Lp
i g, where f1 . . .Lpg are possi-

ble transmission frequencies and power levels measured at
the ith landmark. We call Lp the dimension of landmark i.
6 Lf�g is a possible selection strategy, and �i is the selected set
of frequencies and power levels for landmark i after applying
the selection strategy 6 Lf�g. For example, at landmark 1, we
have Lp ¼ 6 dimensions representing 6 different transmis-
sion frequencies and power levels including the combina-
tions between two frequencies (900 MHz, 400 MHz) and three
power levels (0 dBm, 5 dBm and 10 dBm). �1 ¼6 Lf�1

1 . . . �6
1g,

which is selected from the 6 dimensions based on the
selection strategy 6 Lf�g. After applying the selection strategy,
the resulting �1 is a subset of the original possible transmis-
sion frequencies and power levels, e.g., �1 ¼ f900 MHz;
5 dBmg. More discussions are presented in Section 2 of the
supplementary file available online.

The analysis of CRLB shows the feasibility of improving
localization accuracy by selecting transmission frequency
and power level to generate high-quality signal fingerprint
for RSS-based localization. The localization accuracy is
bounded by key parameters including distance to land-
marks, path loss exponent, and variance of shadowing. In
order to capture the impact of these parameters on
localization accuracy, we focus on designing selection
metrics and strategies that can quantify the impact of these
parameters on localization performance.

3 SELECTION METRICS ON LOCALIZATION
ALGORITHMS

Based on our theoretical analysis, we design selection
metrics to improve the localization performance under
different frequencies and power levels. We develop two
selection metrics deviation and residual, which are used to
select higher-quality RSS fingerprints. We then describe a
broad class of localization algorithms that can benefit from
the selection metrics. It ranges from lateration based, to
fingerprint matching, to probabilistic based, and to
Bayesian Networks. We further provide a theoretical
analysis on how the linear least squares method benefits
from the proposed selection metrics in Section 3 of the
supplementary file available online.

3.1 Terminology
We use the following definitions and terms to introduce the
localization algorithms and selection metrics. The finger-
prints (i.e., RSS readings) are generated at multiple
locations. For a targeting device at location j, the finger-
print is represented as a vector ððxj; yjÞ; SjÞ with ðxj; yjÞ as
the location j where the RSS vector is collected. For
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example, Sj ¼ ðsL1

1j ; . . . ; s
Lq
1j ; . . . ; sL1

ij ; . . . ; s
Lq
ij . . . ; sL1

nj ; . . . ; s
Lq
njÞ

represent the RSS vector from n landmarks with Lq
dimensions: element s

Lp
ij represents the RSS reading of a

targeting device at location j from the ith ði ¼ 1 . . .nÞ
landmark on the Lpth ðLp ¼ L1 . . .LqÞ dimension. In this
work, a dimension represents each frequency and power level
combination at a landmark. We note that certain localization
algorithms need training data to build signal maps during the
offline phase, which is used for the online real-time
localization. We use the fingerprints collected from multiple
locations to form the training data and denote T as the
training set with multiple vectors ððxj; yjÞ; SjÞ for j ¼ 1 . . .m,
and m is the number of locations used for training.

3.2 Selection Metrics
Choosing the best fingerprint among the many possible
combinations requires a characterization of the input RSS
values. In this section we describe the two metrics we use
for selection; the deviation of RSS readings and residual. A
given combination of RSS values can be evaluated accord-
ing to these metrics, and the best one is selected as input to
the localization algorithm.

Deviation of RSS Readings
We define the deviation of RSS readings as the measure-
ment of the Root Mean Square Error (RMSE) when fitting
the RSS readings to the signal propagation model for each
individual dimension under one landmark. Thus, for a
targeting device at location j in the Lpth dimension of
landmark i, the deviation of RSS readings can be
represented as the RMSE of the estimated RSS ŝ

Lp
ij from

the fitted signal propagation model with respect to the
observed RSS s

Lp
ij :

RMSE Ŝ
Lp
i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
j¼1

ŝ
Lp
ij � s

Lp
ij

� �2

vuut ; (3)

where there are m fingerprints, and ŝ
Lp
ij is estimated by the

signal to distance propagation model based on our prior
work [17], and s

Lp
ij is the observed RSS of the Lpth

dimension in landmark i for j ¼ 1 . . .m locations.

Residual
The residual is represented as an error during the interme-
diate step of the localization process, which affects the final
localization accuracy. Due to different localization princi-
ples, various algorithms have different residuals that are the
leading factors contributing to the localization error. We next
present our definition of residual for each algorithm together
with the algorithm description in the following.

3.3 Localization Algorithms

3.3.1 Lateration Based
Localization using the lateration based approach is popular
[8], [12], [13] and involves 2 steps: ranging and lateration.

3.3.2 Ranging Step
The purpose of the ranging step is to estimate the distance
di from the position of the targeting device � ¼ ðx; yÞ to the
ith landmark Li ¼ ðxi; yiÞ, which is represented as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xÞ2 þ ðyi � yÞ2

q
. A variety of physical modalities

can be used to perform the ranging step such as Received
Signal Strength (RSS), Time Of Arrival (TOA), Time
Difference Of Arrival (TDOA) and hop count. In this
work, we employ RSS to perform ranging. In particular, we
use the linear regression approach in our prior work [17] to
obtain the estimated distance d̂i.

Lateration Step
There are two popular methods, Nonlinear Least Squares
(NLS) and Linear Least Squares (LLS), to get the estimated
position of the target device �̂ ¼ ðx̂; ŷÞ. In NLS, from the
estimated distance d̂i and known positions Li ¼ ðxi; yiÞ of
the landmarks, the position ðx; yÞ of the target device can be
estimated by finding ðx̂; ŷÞ satisfying:

ðx̂; ŷÞ ¼ argminx;y
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xÞ2 þ ðyi � yÞ2

q
� d̂i

� �2

; (4)

where i ¼ 1 . . .n for n total number of landmarks. NLS
usually requires high computational complexity and is
difficult to analyze.

NLS can be approximated by solving a set of linear
equations [6] as A�̂ ¼ b, where:

A ¼
x1 � 1

n

Pn
i¼1 xi xn � 1

n

Pn
i¼1 xi

..

. ..
.
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1
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i
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: (6)

A is described by the coordinates of landmarks, and b is
composed of estimated distances to the landmarks and the
coordinates of landmarks. We call the above formulation of
the problem Linear Least Squares(LLS). The position
estimation of the targeting device is done by solving
�̂ ¼ ðATAÞ�1ATb.

Residual
We define the residual R of the lateration method as the
averaged difference between the estimated distance to each
landmark d̂i and the distance of the localized position to
each landmark k�̂� Lik. The residual is represented as

R ¼ 1

n

Xn
i¼1

d̂i � k�̂� Lik
� �2

: (7)

Intuitively, we expect the smaller residual can lead to better
localization accuracy. The analysis of the relationship
between the residual and the localization error is presented
in Section 3 of the supplementary file available online.

3.3.3 Fingerprint Matching
The Radar algorithm [2] is a classic machine learning
method based on fingerprint matching, which requires
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building a signal map consisting of RSS fingerprints with
known ðx; yÞ locations. On top of the basic fingerprints in
RADAR, Gridded Radar (GR) uses the IMG (Interpolated
Map Grid) to build an interpolated signal map. GR
builds a regular grid of tiles over the localization area
that describes the expected fingerprint for the area
described by each tile. Given a RSS fingerprint of a
targeting device, GR returns the position ðx; yÞ of the
closest fingerprint in the interpolated signal map to the
one of the targeting device as the location estimation,
where closest means the Euclidean distance of the
fingerprints in the signal space.

Residual
Given the observed fingerprint of a targeting device at
location j, the residual of Gridded Radar is defined as the
Euclidean distance of the fingerprint from the targeting
device to the interpolated signal map in signal space:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

XcolM
col¼1

XrowM
row¼1

s
Lp
ij � SG

Lp
i ðrow; colÞ

			 			2

vuut (8)

where n is the number of landmarks, s
Lp
ij is the RSS

reading of the targeting device at location j in the Lpth
dimension of the ith landmark where Lp ¼ L1 . . .Lq with
q as the total number of dimensions under that landmark,
and SG

Lp
i represents the interpolated RSS matrix of the

Lpth dimension for the ith landmark, where row is the
total number of rows in the interpolated RSS matrix with
row ¼ 1 . . . rowM and col is the total number of columns
in the interpolated RSS matrix with col ¼ 1 . . . colM . We
note that for different landmark i, dimension Lp can be
different.

3.3.4 Probabilistic Based
In this work, we choose to study Area Based Probability
(ABP) [8], which is a representative method based on the
statistical Bayes’ Rule to perform location estimation. ABP
also uses the interpolated signal map as in GR and
computes the likelihood of the observed fingerprint of a
targeting device matching a fingerprint of each tile in the
interpolated signal map. It returns the top probability tile
set whose sum matches the desired confidence level �. In

particular, by using Bayes’ rule, ABP computes the
probability of being at each tile Tj on the floor given the
fingerprint of the targeting device ST :

P ðTjjST Þ ¼
P ðST jTjÞ � P ðTjÞ

P ðST Þ
(9)

Residual
Since the number of tiles in the returned tile set represents
how well the algorithm captures the true location of the
targeting device, the less the number of returned tiles
indicates the better the probabilistic matching is found. We
thus define the residual of ABP as the number of tiles
returned based on the confidence level �.

3.3.5 Bayesian Networks
Bayesian Networks [8] utilizes the Bayesian Graphical
Model to compute the distribution of the position ðx; yÞ of a
targeting device. In particular, Bayesian Networks encodes
the relationship between the RSS readings and the location
based on the signal-distance propagation model. The initial
parameters of the model are unknown, and the training set
collected from multiple known locations is used to adjust
the parameters of the model according to the relationships
encoded in the network.

Fig. 1 depicts the basic Bayesian Graphical Model The
random variables si, i ¼ 1 . . .n denotes the expected
signal strength of the corresponding dimension (e.g., a
combination of frequency and power level) in the
landmark i. The values of these random variables depend
on the Euclidean distance di between the landmark’s
location ðxi; yiÞ, and the location where the signal si is
measured ðx; yÞ. The baseline expected value of si follows
a signal propagation model si ¼ b0i þ b1i logðdiÞ, where
b0i; b1i are the parameters specific to each i. The distance

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2

q
in return depends on the

location ðx; yÞ of the measured signal. The network
models noise and outliers by modeling the expected
value, si, as a t-distribution around the above propaga-
tion model, with variance �i, si � tðb0i þ b1i log di; �i; 2Þ.
Using the training fingerprints T , the network can learn
the specific values for all the unknown parameters
b0i; b1i; �i and the joint distribution of ðx; yÞ location of
the targeting device.

In general, there is no closed form solution for the
returned joint distribution of the ðx; yÞ location. Therefore,
we use a Markov Chain Monte Carlo (MCMC) simulation
approach to draw samples from the joint density, and then
pick the samples that give a 95 percent confidence on the
density. Finally, we approximate the returned area by the
tiles where those samples fall.

Residual
When computing the joint distribution of the location of the
targeting device, we define the residual as: R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x þ �2

y

q
,

where �x and �y are the standard deviation of the position
variable x and y, which represents how stable the estimated
position distribution is. Intuitively, the more stable the
distribution of the estimated position is, we expect better
localization accuracy.

Fig. 1. Bayesian graphical model in our study.
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4 SELECTION STRATEGY AND SIMULATION
RESULTS

In this section, we first present our dimension selection
strategies and selection procedures to characterize the
impact of multiple frequencies and multiple power levels
on performing localization. To validate our proposed
approaches, we then simulate a wireless indoor environ-
ment, and compare the theoretical CRLB with simulation
results.

4.1 Selection Strategies
We next develop three selection methods, namely Whole
Dimension, Matching Characteristic, and Constrained Landmark,
which utilize different combination of multiple frequencies
and multiple power levels to perform localization.

Whole Dimension
This is a straightforward selection method. Each combination
of a frequency and a power level from an individual
landmark is treated as one dimension. Given there are
5 landmarks and 6 possible combinations from each landmark
in our experimental setup, there are total 30 dimensions. In
this selection method, all the dimensions are used to construct
a fingerprint. For instance,S ¼ ½s1

1; . . . ; s6
1; . . . ; s1

i ; . . . ; s6
i ; . . . s1

5;
. . . ; s6

5� is the fingerprint for a testing point when the Whole
Dimension selection method is used. This method may incur
high computational cost for certain algorithms such as BN
since it needs to compute the joint position distribution across
high dimensions.

Matching Characteristic
In our experiments, each dimension has a fixed frequency
and power level, which we call a signal characteristic. In
contrary to the Whole Dimension method, the Matching
Characteristic method tries to keep the number of dimen-
sions as the same as the number of landmarks when
selecting RSS fingerprints. In the Matching Characteristic
selection method, we request the same characteristic to be
chosen from the 6 dimensions for each landmark, that is,
during one selection process for localization, the combina-
tion of the frequency and power level selected should be
the same across all landmarks. Based on this selection
metric, there are total 6 possible combinations of frequency
and power level. To perform localization, Matching Char-
acteristic will use our selection metrics to determine what is
the appropriate combination of the frequency and power
level to be chosen as the characteristic for each testing point
in our experiments.

When Matching Characteristic selection is applied using
RMSE, RMSE will be calculated for each combination of
the frequency and power level and compare across all the
6 possible combinations. Within each combination, we

can first calculate RMSE
Lp
i ðŜÞ for dimension Lp of

landmark i based on Equation (3). We then calculate
the RMSE for this combination over all the landmarks as

RMSELpðŜÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 RMSE
LpðŜÞ2
i

q
with Lp ¼ 1 . . . 6. The

RSS fingerprints from the frequency and power level
combination that produces the minimum value of RMSE

RMSEmin ¼ minLpðRMSELpðŜÞÞ over all the combinations

will be selected as the appropriate characteristic for
performing localization.

On the other hand, When Matching Characteristic selec-
tion is applied using residual, the residual is calculated for
all the frequency and power level combinations. We choose
the frequency and power level combination that produces
the minimum residual as characteristic to perform locali-
zation for each algorithm. For different testing points, the
selected characteristic may be different, because it is
possible that different testing points have different combi-
nations of frequency and power level that produces the
minimum residual.

Constrained Landmark
Instead of using the full dimension of the data, the
objective of the Constrained Landmark takes advantage of
using multiple frequencies and multiple power levels, but
without increasing the dimension for algorithm compu-
tation and without fixing the characteristics across land-
marks. ‘Constrained’ means that the RSS fingerprint must
be constructed by selecting from different landmarks.
However, the dimension chosen in each landmark could
be different from different landmarks. Particularly, the
constructed RSS fingerprint is composed of element S

Lp
i

with i ¼ 1 . . . 5 in our experiments, and for each landmark
i, the dimension Lp can be selected differently
corresponding to different combinations of frequency
and power level. Therefore, there can be total 65 ¼ 7776
different combinations when applying Constrained Land-
mark selection in our experiments. The computational cost
of using Constrained Landmark is higher than using
Matching Characteristic.

This selection method will be used together with our
selection metrics to perform localization by each algorithm.
When the Constrained Landmark selection method is applied
by using RMSE, the same calculation of RMSE will be
performed as described in the Matching Characteristic
selection to search for the frequency and power level
combination with the minimum RMSE, however, there are
total 65 combinations. Likewise, when the Constrained
Landmark selection method is applied by using residual,
the same computation of residual will be performed as
presented in Matching Characteristic. The combination of
the frequency and power level that produces the minimum
residual across the 65 combinations will be selected.

4.2 Simulation Methodology
We conduct simulations to validate our proposed ap-
proaches by comparing the theoretical CRLB with simula-
tion results. In the simulation, the RSS measurements are
collected from the wireless device placed at 100 uniformly
distributed locations in a 100 feet by 100 feet area. The
landmarks are deployed at four corners of the area of
interest. In order to simulate the indoor signal propagation,
the path loss propagation model discussed in Section 2 is
utilized. We perform localization on the wireless device for
200 times when the device is placed at each position. We
then calculate the CRLB and the average Root Mean Square
(RMS) error of location estimates. Two selection metrics (in
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Section 3.2) and three selection strategies (in Section 4.1) are
applied to each localization attempt.

Dimensions
Each dimension is a unique combination of one frequency
and one power level. Different dimensions have different �

�

(the impact factor � ¼ ð 10�
� log 10Þ

2 / ð��Þ) or P ðd0Þ (dBm) values
[1], [7] as discussed in Section 2. The parameters of �

� and
P ðd0Þ used in simulation are summarized in Table 1. To
study how the number of dimensions involved in the
selection strategy affect the localization performance, three
different scenarios are tested: 1) Dim 1� 6 are involved in
selection; 2) Dim 1� 4 are involved in selection; and 3) only
Dim 1 and Dim 2 are involved in selection. For each
scenario, the Whole Dimension means that all dimensions
are used to perform localization, i.e., six, four, and two
dimensions are used in these three scenarios respectively.

4.3 Simulation Results

Metrics
The localization performance of the proposed mechanisms is
evaluated by average location RMS error, which is the
averaged root mean square (RMS) of location error for all
100 locations over 200 localization attempts at each location.

Localization Accuracy Under Different Number of
Dimensions
We evaluate the average location RMS error over different
number of dimensions with three selection strategies and
two selection metrics, and compare it with the theoretical
CRLB. Fig. 2 shows the CRLB bounds the localization error
of the two algorithms, lateration based and fingerprint
matching. CRLB is a lower bound for unbiased estimators.
The lateration based algorithm (linear least square algo-
rithm) is unbiased, while the fingerprint matching algo-
rithm may be biased due to the limited number of training
points that the locations are matched to [4]. Therefore, the
localization error for lateration method is more approach-
ing to CRLB. We observe that the derived CRLB bounds the
performance of both localization algorithms for lateration
based and fingerprint matching algorithms. Particularly,
for lateration based method, as shown in Figs. 2a and 2b,
the theoretical CRLB is lower than the simulation results

TABLE 1
Parameter Setup for Simulation

Fig. 2. Average location RMS error vs. Number of dimensions involved in selection. (a) LLS, residual based selection. (b) LLS, RMSE based
selection. (c) GR, residual based selection. (d) GR, RMSE based selection.
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under all the scenarios for both selection metrics including
residual and RMSE.

Furthermore, with more dimensions involved in the
selection, lower average location RMS error can be achieved
as shown in Fig. 2. This is because more dimensions bring
higher possibilities for our selection based approach to
choose higher quality fingerprint. Particularly, for lateration
based method as shown in Figs. 2a and 2b, the average error
improvement is around 50 percent (from 8 ft to 4 ft under
6 dimensions scenario); while for fingerprint matching
method as shown in Figs. 2c and 2d, we observe around
20 percent improvement in averaged error (from 6 ft to 5 ft
under 6 dimensions scenario). We find that the lateration
based algorithm benefits more from our selection strategies
than fingerprint matching algorithm. Further, the finger-
print matching algorithm is more robust than lateration
based algorithm. In addition, we observe that the localiza-
tion performance of our proposed selection based methods
outperforms that of without selection substantially. For
these two selection metrics, RMSE based selection metric
slightly outperforms the residual based metric. For our
selection strategies: Constrained Landmarks and Matching
Characteristic, they show similar trend on improving
localization performance. As described in Section 3, choos-
ing between the selection strategies has a tradeoff between
accuracy and computational cost.

5 EXPERIMENTAL METHODOLOGY AND
EVALUATION RESULTS

We next evaluate our approach in practice. In this section,
we first describe our experimental methodology by pre-
senting the testbed infrastructure and the data collection
process. We then experimentally evaluate the impact of
multiple frequencies and multiple power levels on the
performance of localization algorithms.

5.1 Testbed Infrastructure and Data Collection
RSS measurements are conducted using a localization
testbed [5] with active RFID tags and readers from InPoint

[18]. We collect experimental data on the second floor of
Buchard building at Stevens Institute of Technology, which
is a 70 ft� 80 ft area as shown in Fig. 3. This is a large lab area
containing office wall dividers and furniture, such as desks,
shelves and chairs. There are many electronic devices and
lab equipment in our experimental area, e.g., desktops,
laptops, smart phones, and spectrum analyzers. We deploy
5 landmarks and collect RSS fingerprints for 51 testing
points. Landmarks and testing positions are shown as stars
and dots respectively. We program the RFID tag to transmit
between two frequencies, 400 MHz and 900 MHz, alterna-
tively. Data collection is then repeated for 3 transmission
power levels (0 dBm, 5 dBm, and 10 dBm) at 2 frequencies
(400 MHz and 900 MHz) by placing three transmitters at the
same testing location, which approximates a system with
6 different dimensions (power level and frequency combina-
tions). Given the number of testing points and the dimension
of each testing point, the total number of fingerprints in our
experimental dataset is 51� 30 ¼ 1530. More details of our
experimental methodology are presented in Section 4 of the
supplementary file available online.

5.2 Performance Baseline
Based on our data collection using multiple frequencies (i.e.,
400 MHz and 900 MHz) and multiple power levels (i.e.,
0 dBm, 5 dBm, and 10 dBm), we have total 6 single dimension
RSS readings for each landmark. We can perform localization
by using each individual dimension, which has a fixed
frequency and a fixed power level (e.g., 900 MHz and 0 dBm).
We use the localization performance from running these
6 single dimension data sets to report baseline results, which
will be used to compare with those from different combina-
tion of frequency and power level through selection.

5.3 Results
We study all the algorithms described in Section 3.3 and
evaluation is conducted using both selection metrics
(RMSE and Residual) and all three selection strategies
(Whole Dimension, Constrained Landmark, and Matching
Characteristic).

Fig. 3. Burchard 2nd floor map.
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In all our studies, localization performance is character-
ized by the Accuracy metric, which is the Euclidean
distance between the estimated location from the algorithm
and the device’s actual location.

Lateration Based Algorithms
Fig. 4 presents the localization accuracy Cumulative
Distributed Function (CDF) for lateration based algorithms
under different selection strategies. Results are included
for both LLS and NLS algorithms, and for both residual and
RMSE based selection metrics. Performance for each single
dimension is also plotted as our baseline for comparison.

Firstly, we notice that the accuracy CDFs from all 6 single
dimensions are similar to each other. This indicates that
simply changing the dimension characteristics, for example
from using one transmitting frequency to another, is unlikely
to offer much accuracy improvements. Secondly, contrary to
our initial expectations, although using Whole Dimension
achieves a performance close to the best among all the single
dimensions, the additional information does not bring
significant accuracy improvements for lateration based
algorithms. This actually is directly related to how this set
of algorithms is designed. For lateration based algorithms,
path loss signal propagation model is enforced for distance
estimation with a low accommodation of the noise from the
collected data. Noisy RSS information thus directly translates

to uncertainty in the lateration phase. By increasing the
number of dimensions in this selection approach, the
distance estimation adds more uncertainties during the
lateration phase, however no further geometrical constraints
are added to help reduce the error. Thus, simple least
squares metric is not sufficient to cope with the additional
uncertainty.

Finally, compliant to our CRLB analysis and simulation
results, the intelligent selection strategies based on both
metrics successfully achieve better localization accuracy for
lateration based algorithms. For example, using Constrained
Landmark with residual metric, LLS’s median error de-
creases from 12 ft to 5 ft (58 percent improvement) and the
90th percentile error changes from 22 ft to 10 ft (54 percent
improvement). Similarly, using Matching Characteristics
with RMSE metric, LLS’s median error decreases from 12 ft
to 7 ft (42 percent improvement) and the 90th percentile
error changes from 22 ft to 15 ft (32 percent improvement).
We also notice that Constrained Landmark significantly
outperforms Matching Characteristics and always performs
the best among all the selection strategies. Such accuracy
gain however, as pointed in Section 3, comes with
significantly more computational cost.

In summary, for lateration based algorithms, it is not
sufficient to simply deploy multi-frequency and multi-
power levels and expect performance improvements.

Fig. 4. Lateration based algorithms: Localization accuracy CDF under different selection strategies. (a) LLS, Residual based selection. (b) LLS,
RMSE based selection. (c) NLS, Residual based selection. (d) NLS, RMSE based selection.
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Intelligent selection strategies are required to prune the RSS
measurements to better utilize the additional dimensions.

Fingerprint Matching Algorithm (GR)
Fig. 5 shows the localization accuracy CDFs of Gridded
Radar algorithm while using residual and RMSE as metric
under different selection strategies. We again observe that
performance for single dimension consistently agrees with
each other, indicating no improvement by simply changing
transmission power or frequency. Whole Dimension, howev-
er, outperforms single dimensions. Specifically, the median
error decreases from 8 ft to 6 ft (20 percent improvement) and
the 90th percentile error shrinks from 25 ft to 13 ft (48 percent
improvement). This is because GR is a machine learning
based matching algorithm which straightforwardly benefits
from a more precise signal map generated by adding more
dimensions.

Furthermore, the intelligent selection strategies, Con-
strained Landmark and Matching Characteristic, tend to
improve the performance over single dimensions. Although
they do not necessarily offer much more accuracy advantage
over using full dimension directly, the lower computational
cost, especially for Matching Characteristic, compared to
Whole Dimension makes them attractive for achieving better
localization than using single dimensions only. We also
notice that RMSE based selection strategies perform better
than residual based selection strategies. Overall, for GR
algorithm, deploying multi-frequency and multi-power can
bring around significant performance improvements. There
is also a tradeoff between localization accuracy and compu-
tational cost when deciding on different selection strategies.
The results of probabilistic based algorithm (ABP) and
Bayesian Networks (BN), together with a study on the dis-
tribution of selection metrics and strategies are presented in
Section 4 of the supplementary file available online.

6 CONCLUSION

In this paper, we explore improving wireless localization
performance in face of multipath effects by utilizing
multiple frequencies and transmission powers. By study-
ing the Cramér-Rao lower Bound of localization using RSS

measurements, we investigate the feasibility of applying
selection from multiple frequencies and power levels to
improve localization accuracy. Based on the theoretical
analysis through CRLB, we study a broad range of
algorithms employing received signal strength (RSS) to
perform localization including lateration based, fingerprint
matching, probabilistic based, and Bayesian Networks. We
develop three selection strategies, Whole Dimension, Match-
ing Characteristic, and Constrained Landmark. Our selection
strategies work with selection metrics, e.g., deviation of RSS
readings and residual, to form high quality RSS fingerprints
out of multiple dimensions resulting from the use of multi-
frequency and multi-power.

We perform both theoretical analysis as well as valida-
tion of our approach on localization algorithms using sim-
ulation and real experiments. Our analysis on the Linear
Least Squares (LLS) algorithm show that selection should
improve the localization performance. Our simulation re-
sults in indoor environments confirm the effectiveness of
our proposed approach. Furthermore, our experimental
study on a localization testbed with RFID transmitters vary-
ing the frequency and power showed that using multiple
frequencies and power levels improve the performance of all
the algorithms under study. We also find that different al-
gorithms react differently to the selection strategies. Latera-
tion based algorithms are the most sensitive to selection,
whereas algorithms rooted in machine learning are much
more robust to adding dimensions. In addition, we observe
there is a tradeoff between improving performance and re-
ducing computational cost through intelligent selection.
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