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Abstract—The two-factor authentication (2FA) has drawn in-
creasingly attention as the mobile devices become more prevalent.
For example, the user’s possession of the enrolled phone could
be used by the 2FA system as the second proof to protect his/her
online accounts. Existing 2FA solutions mainly require some
form of user-device interaction, which may severely affect user
experience and creates extra burdens to users. In this work,
we propose Proximity-Echo, a secure 2FA system utilizing the
proximity of a user’s enrolled phone and the login device as
the second proof without requiring the user’s interactions or
pre-constructed device fingerprints. The basic idea of Proximity-
Echo is to derive location signatures based on acoustic beep
signals emitted alternately by both devices and sensing the echoes
with microphones, and compare the extracted signatures for
proximity detection. Given the received beep signal, our system
designs a period selection scheme to identify two sound segments
accurately: the chirp period is the sound segment propagating
directly from the speaker to the microphone whereas the echo
period is the sound segment reflected back by surrounding
objects. To achieve an accurate proximity detection, we develop
a new energy loss compensation extraction scheme by utilizing
the extracted chirp periods to estimate the intrinsic differences
of energy loss between microphones of the enrolled phone
and the login device. Our proximity detection component then
conducts the similarity comparison between the identified two
echo periods after the energy loss compensation to effectively
determine whether the enrolled phone and the login device are
in proximity for 2FA. Our experimental results show that our
Proximity-Echo is accurate in providing 2FA and robust to both
man-in-the-middle (MiM) and co-located attacks across different
scenarios and device models.

I. INTRODUCTION

The mobile two-factor authentication (2FA) becomes in-

creasingly critical as mobile devices (e.g., smartphones, tablet-

s, wearables) are used extensively in our daily lives. In mobile

2FA, a user logs into the system from a login device, which

can be an arbitrary networked device such as a laptop, a

smartphone, a tablet or even a public computer using his/her

username and password. Such system then further utilizes the

user’s enrolled phone or other enrolled mobile devices (e.g.,

tablets) as the second security proof to protect the online

accounts as using passwords alone is vulnerable to spidering or

steal attacks [1]. For instance, when a user tries to log into an

online bank account which employs mobile 2FA, the system

verifies the user’s possession of his/her enrolled smartphone

after he/she enters the username and password. So in such

systems, the smartphone serves as a second proof of the user’s

identity and the system can still keep safe even if the username

and password have been leaked.

In these 2FA solutions, active interactions between a user

and his/her phone is usually required. For example, com-

mercial 2FA systems such as Duo Mobile App and Google

2-step Verification [2], [3], which can be integrated with

various online systems, either send a random passcode to

the enrolled device for the user to input on the interface or

call a pre-registered phone for the user’s answer to finish

the login process. These 2FA techniques need users’ active

participation and could be cumbersome for user experience or

even add additional burdens to senior citizens and people with

disabilities.

Some studies have been proposed to improve the usability

of mobile 2FA by eliminating the explicit user interaction.

For instance, recent studies demonstrated that the ambient

sound can be utilized to detect the proximity of the enrolled

phone and login device [4] without user interaction for 2FA.

However, this scheme may become invalid if the adversary

can guess or generate very similar ambient sound at the login

device’s end [5]. Han et al. [6] shows the initial success of

mobile 2FA via the acoustic ranging. However, this technique

requires each device to pre-construct an acoustic fingerprint

to thwart the man-in-the-middle (MiM) attack, which makes

it less suitable for large-scale deployment.

When the enrolled phone and the login device are in

close proximity, they should share highly similar surrounding

environments. Such similarity, if captured, could be utilized for

the proximity detection of two devices. (It is worth noting that

here we assume the enrolled phone and the login device are

two distinct devices, otherwise it can be easily detected by the

system server when sending the request messages, and in this

case, the login request will be accepted directly. The details

of the system flow are presented in Section III-C). These

observations trigger our idea from acoustic sensing [7]–[10] to

use the reflected beep sound, which contains rich information

of surrounding objects, as the proximity proof of two devices

for 2FA. Specifically, in this paper, we proposed Proximity-

Echo, a mobile 2FA system that uses the acoustic location

signatures, which are derived from both devices by emitting

acoustic beep signals with their speakers and sensing the

echoes with their microphones, as the second authentication

factor.

However, several unique challenges need to be addressed

when developing such a system: First, due to different elec-

tronic features or manufacturing imperfections, the energy

loss (i.e., the energy gain or attenuation measurement at each

frequency) of microphones on the enrolled phone and the login
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device may vary significantly, making it hard to compare the

echoes received by two devices directly for accurate proximity

detection. Second, the received beep signal can be significantly

affected by the distance between the devices’ speaker and

microphone or the relative position of objects in the surround-

ing environment, making it hard to identify the segment of

reflected sound from the received signal accurately. Third, the

2FA process should be able to complete at the minimal efforts

without the involvement of users’ extra interactions or pre-

constructed device fingerprints. Last but not least, an attacker

can relay the beep signal between the enrolled phone and the

login device or be physically co-located with the victim in an

attempt to pass the 2FA. Our system should be resilient to

such MiM attack or co-located attack attempts.

To cope with these challenges, our proposed Proximity-

Echo consists of three main components: Period Selection,

Energy Loss Compensation Extraction and Proximity Detec-
tion. Given the input microphone samplings, Period Selection
is first performed to identify two sound segments named the

chirp period and the echo period from the received beep

signal accurately, which correspond to the sound segment

that propagates directly from the speaker to the microphone

and the sound segment reflected back by surrounding objects,

respectively. Energy Loss Compensation Extraction is the core

component that derives the compensation which estimates the

intrinsic difference of energy loss between microphones of

the enrolled phone and the login device using the energy

spectrum of chirp periods. Such compensation is only tie to

the microphone-microphone pair and it remains invariant even

if the distance between two devices varies. During Proximity
Detection, after the energy loss compensation, the similarity

comparison is performed between echo periods extracted by

two devices to determine whether the enrolled phone and the

login device are in proximity for 2FA. We summarize our main

contributions as follows:

• We design Proximity-Echo, a new mobile 2FA system

which utilizes the proximity between the enrolled phone

and the login device as the second proof.

• We propose to use acoustic location signatures, which are

derived from devices by emitting a pre-designed acoustic

beep signal and sensing its echoes, as the proximity proof

for 2FA.

• We design a period selection scheme to identify the

chirp period and the echo period from the received signal

accurately by exploiting the inherent correlation between

the original beep signal and the received beep signal.

• To achieve an accurate proximity detection, we develop

a new energy loss compensation extraction scheme to

estimate the intrinsic differences of energy loss between

microphones of the enrolled phone and the login device

using the energy spectrum of the identified chirp periods.

• We show that our Proximity-Echo is robust to adversarial

behaviors of relaying signals between the enrolled phone

and a remote adversarial login device, or being physically

co-located with the victim in an attempt to pass the 2FA.

• Our extensive experimental results show that our pro-

posed Proximity-Echo is accurate and robust across dif-

ferent device models under various real world scenarios.

II. RELATED WORK

Traditional software based authentication mechanisms such

as Duo Mobile App and Google 2-step Verification [2], [3]

have been developed for 2FA. Such systems send a passcode to

the enrolled device for the user to input on an interface to finish

the login process. The main advantage of these mechanisms

is that they can be easily integrated with online systems.

However, they require the user to interact with his/her device

explicitly and it can severely affect the user experience and

bring extra burdens to him/her.

Some recent studies have been developed to improve the

usability of 2FA mechanism by eliminating the need of

user interaction. Some technique [11] designs a challenge-

response based protocol between the login device and the

enrolled phone for 2FA without user interaction. However,

the Bluetooth function is required in this scheme and such

function is not always available on login devices. In addition,

Sound-Proof [4] utilizes the ambient sound as the proximity

proof between devices for 2FA. However, this technique may

become invalid if the adversary can generate the same ambient

sound at the login device’s end [5]. Listening Watch [12]

addresses the limitation of Sound-Proof by populating a short

random number encoded into sound to defeat the attacker

unless it is extremely close to the device. However, such

scheme still requires an extra smart watch equipped with a

low sensitivity microphone to pick up nearby sounds.

There are also recent works dedicated for acoustic sensing.

In these techniques, a device’s speaker emits a pre-designed

signal and then uses its microphone to capture the echoes to

identify or distinguish the surrounding environment. Tung et
al. [7] and Song et al. [8] propose to recognize indoor locations

by transmitting a sound signal and sensing its reflected signal

with the phone’s microphone. Pradhan et al. [9] develop a

smartphone-based indoor space mapping system that enables

a user quickly map the indoor space via acoustic sensing.

The most similar work to our own is by [6]. They propose

a technique to extract fingerprints for the speaker and the

microphone on each device from the acoustic signal for 2FA.

However, such system requires to pre-construct a legitimate

acoustic fingerprint for each device, which may bring extra

burden to users. Unlike the aforementioned work, we aim to

develop a 2FA mechanism by using the proximity of the user’s

enrolled phone and the login device as the second authenti-

cation factor via acoustic sensing. Our proposed system does

not need the user’s explicit participation and is also easy-to-use

without requiring any dedicated hardware or pre-constructed

device fingerprints.

III. FRAMEWORK OVERVIEW

In this section, we first describe the design goals of our 2FA

system. We then introduce the adversary model and provide

an overview of our proposed system.

2
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Fig. 1. 2FA system model.

A. Design Goals

We consider a mobile 2FA system which uses the proximity

of the enrolled phone and the login device as the second proof.

Specifically, our system derives acoustic location signatures

from both devices through sensing the reflected sound of the

beep signal emitted by speakers, and uses such signatures as

proximity proof for 2FA. In particular, our system is designed

to meet following requirements:

Robust to Energy Loss Variations. The energy loss of

microphones on the login device and the enrolled phone may

vary significantly due to their different electronic features or

manufacturing imperfections, making the direct comparison

between echoes received by two devices be a challenging task.

Our system should be able to estimate and compensate such

difference between microphones on two devices to achieve an

accurate proximity detection.

Robust to Different Environments and Device Distances.
The received beep signal can be easily affected by the relative

position of surrounding objects and the distance between

speaker-microphone pairs from devices. Our system should

be able to identify the segment for reflected sound from the

received beep signal accurately for proximity detection.

Easy to Use. Our system should be able to complete the

2FA process with minimal efforts: no explicit user interaction

or pre-constructed device fingerprints are needed as it may

bring extra burdens to users.

Secure Against to Various Attacks. An adversary can

obtain the victim’s username and password via the leakage

of the password database or phishing [4] and try to pass our

2FA system by launching attacks. Our system should be secure

to various attacks on our mobile 2FA schemes, including the

MiM attack and the co-located attack.

B. Adversary Model

An adversary has compromised the victim’s username and

password in an attempt to pass the 2FA on behalf of the victim.

The attack is successful if the adversary can convince the

system that he/she holds the second authentication factor of the
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Fig. 2. System flow of our Proximity-Echo.

victim. For instance, in this work, such factor is the proximity

between the login device and the enrolled phone associated

with the victim’s username. As prior works [4], [6], [13], we

also adopt assumptions as follows: First, the adversary cannot

compromise the victim’s phone, otherwise the security of the

2FA system reduces to the security of a regular password based

authentication system. Second, the communication channel

between the server and the login device (or the enrolled phone)

is secured using the TLS-like mechanisms. Based on these

assumptions, we consider two possible adversarial behaviors

as described below:
• Man-in-the-middle Attack: The adversary is far away

from the victim and his/her enrolled phone. However, the

adversary puts an eavesdropping device near the victim’s

enrolled phone and sets up an invisible channel with high

speed between the enrolled phone and the adversarial

login device. When the adversary tries to login, the

triggered beep sounds emitted by two devices will be

relayed to each other in real time via the adversarial

channel.

• Co-located Attack: In this case, the adversary is phys-

ically co-located with the victim in some public places

such as libraries, restaurants or cafeterias. The adversary’s

attempts to login the system triggers the adversarial

login device and the victim’s enrolled phone to emit

beep signals alternatively for 2FA, which can be directly

received by both devices’ microphones.

C. System Overview

As prior works [4], [5], we consider a mobile 2FA system

model in which a user has his/her username and password

for login and the core 2FA mechanism has been implemented

on the user’s enrolled phone. As shown in Figure 1, the

user logs into the system from a login device, which could

3
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be any networked device such as a laptop, a smartphone,

a tablet or even a public computer. When he/she attempts

to login, the username and password are required to input

on the interface of the login device, which is relayed to

the server via a secure channel. The server then verifies

the validity of the password and sends request messages to

the login device and the enrolled phone (or other enrolled

mobile devices such as tablets) which is associated with the

username to validate the second authentication factor (i.e., the

proximity of two devices). Specifically, probing beep signals

are emitted out by the login device and the enrolled phone

alternatively, and they are then received by both devices’

microphones. The login device then encrypts the recorded

microphone samplings using the public key and sends them

to the enrolled phone using the server as a proxy. The phone

then decrypts these received samplings and uses them together

with the microphone samplings recorded locally to perform

our proposed 2FA. If the authentication process passes, the

enrolled phone concludes that it is in proximity with the device

from which the user is logging in and informs the server to

accept the login process.

As shown in Figure 2, our Proximity-Echo consists of three

major components: Period Selection, Energy Loss Compen-
sation Extraction and Proximity Detection. The system takes

as input the recorded microphone samplings from both the

enrolled phone and the login device. In the period selection

phase, to deal with variations caused by the distances between

the speaker and the microphone or the relative positions of

surrounding objects, a correlation based technique is proposed

to accurately identify the chirp period and the echo period

from the received beep signal, which correspond to the sound

segment that propagates directly from the speaker to the mi-

crophone and the sound segment reflected back by surrounding

objects, respectively. The energy loss compensation extraction

is conducted to capture the differences of energy loss between

microphones of two devices from the energy spectrum of iden-

tified chirp periods. Such extracted compensation is usually

only tie to the microphone-microphone pair and it remains

invariant even if the distance between two devices changes.

After the energy loss compensation, the proximity detection

is performed by calculating a correlation value between echo

periods extracted from the enrolled phone and the login device

respectively. Based on the correlation value, our system makes

decision on whether to accept or reject the login request.

IV. TWO-FACTOR AUTHENTICATION (2FA) SYSTEM

In this section, we present the detailed system implementa-

tion of our Proximity-Echo.

A. Beep Design

When designing the probing beep signal played through

the speaker for proximity detection, we mainly consider three

factors: frequency band, length and time interval.

Frequency Band. Studies show that human can hear a-

coustic signals of frequency up to 20 kHz [7]. Thus, it may

be desirable to set the frequency above 20 kHz to make the

emitted sound inaudible (to avoid annoyance) to users. Howev-

er, due to the hardware’s imperfection, the frequency response

of most mobile devices decays quickly when the frequency is

beyond 20 kHz [10]. On the other hand, the frequency below

11 kHz may not be used since it contains most environmental

noises of human activities [14]. In summary, given the trade-

off of all factors, our system adopts the 14 kHz to 15 kHz

bandwidth beep acoustic signal. Even though this frequency

selection makes the beep signal audible to humans, the impact

is not obvious because our 2FA triggers the authentication

process infrequently.

Length. The length of beep signal also impacts the accuracy

and reliability of our 2FA system. The speaker and microphone

on mobile devices cannot generate or pick up too short beep

signals. Thus, it seems best to set a longer length of the beep

signal since more energy at each frequency could be collected.

However, a too long duration of the emitted beep signal could

cause severe multipath distortions since reflections which are

from far away objects will also be collected during this long

sensing process [7]. Therefore, in this work, we empirically set

the length of the beep signal as 0.02s. This selection reduces

the multipath distortions but keeps enough energy at each

frequency for proximity detection.

Time Interval. The last parameter we consider is the time

interval between two consecutive beep signals. This parameter

is related to the sensing speed of our system: a larger time

interval results in a longer time our system needs to take for

2FA. On the other hand, a short interval causes detection errors

since the reflected signals might accidentally overlap with each

other. Based on our observations, the reflected sound could still

exist even after 0.2s to 0.4s from the beep sound. Therefore

we set the interval to be 0.5s in this work.

B. Period Selection

The basic idea underlying our Proximity-Echo is to use

the reflected beep sounds, which contains rich information

of surrounding patterns, as the proximity proof for 2FA.

However, the received beep signal not only contains the

sound segment which reflects back from surrounding objects

(named the echo period) but also includes the sound segment

which directly propagates from the speaker to the microphone

(named the chirp period). Identifying both the chirp period and

the echo period from the received beep signal accurately is a

challenging task because such received signal can be easily

affected by the distance between the speaker and microphone

or the relative positions of reflective objects in the surrounding

environment. In the commonly used period identification tech-

niques [7], [8], the chirp period and echo period are determined

by truncating acoustic data out from the received beep signal

using fixed windows. The problem of these schemes is that

the beginning points of these periods may vary significantly

and such techniques cannot adapt to these changes.

To solve this problem, in this paper, we propose a corre-

lation based technique for period selection by utilizing the

fact that the original beep signal should have a good match

with the received copies of the beep sound embedded in the

4
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received signal. The basic idea of our scheme is to evaluate

the correlations between the received signal and the original

beep sound, and the peaks in the correlation sequence allow us

to detect the beginning points of the chirp period and the echo

period accurately. Specifically, the received beep signal is first

sampled with a frequency of 48 kHz and a bandpass filter with

lower and upper cutoff frequencies, which are 14 kHz and 15
kHz respectively, is applied to remove environmental noises

and extract signal components which fall into the frequency

range of the beep signal. We assume that el(t) represents the

received signal for the l-th beep signal (1 ≤ l ≤ L) after

filtering and let s(t) be the original beep signal. Thus, to

conduct the period selection, the original signal s(t) is slid

across the acoustic readings of el(t) with a moving window

and the correlation is calculated based on the matched filter

as follows:

Cl(t) =

+∞∫
−∞

el(τ)h(t− τ)dτ (1)

where h(t) denotes the conjugated and time-reversed version

of the original beep signal s(t) (i.e., h(t) = s∗(−t)). To

capture the overall trend changes of Cl(t), we identify the

envelope of Cl(t) using the envelope detection schemes pro-

posed in [15] and denote it as El(t). Thus, the periodical

peaks within envelope El(t) can be used as candidates to

identify the beginning points of the chirp period and echo

period, respectively.

To identify these peaks, we search for a set of local

maximums from El(t) by varying t and denote it as MaxSet
which consists of W local maximum points: MaxSet =
{τk | 1 ≤ k ≤ W}. For each τk ∈ MaxSet, it satisfies

that El(τk) > El(t) for any t ∈ (τk − d, τk + d) and

El(τk) > th, where d is a pre-defined small distance and

th is a threshold. Ideally, the first local maximum point τ1 in

MaxSet should therefore correspond to the reception of sound

traveled directly from the speaker to the microphone (i.e., the

possible beginning point of chirp period) and the subsequent

local maximum points τ2, ...τW represent the reception of the

reflected sounds (i.e., the possible beginning points of echo

period).

However, although the local maximum points are roughly

identified, it is still not applicable for accurate period selection

due to that the detected local maximums in MaxSet could be

affected by the noise existed in the received signal. More im-

portantly, the local maximums in MaxSet that correspond to

reflections from insignificant obstacles should be filtered out,

and adjacent local maximums that correspond to reflections

from close objects should also be merged. For these reasons,

we utilize the fact that the direct received signal or signal

reflections from significant obstacles should have a higher

similarity value with the original beep signal. Thus, the ‘im-

portant’ local maximums that corresponds to them should hold

a relatively higher value than other nearby local maximum

points. So it is quite natural for us to think about whether

we could use a sliding window to remove the ‘unimportant’

local maximums with relatively smaller values. In addition,

another benefit of using the sliding window is that it could also

help us to merge peaks corresponding to very close objects

as one peak. Specifically, given the window length P and

Ej,l = {El(t) | t ∈ [j, j + P ]}, for all local maximums in

Ej,l, we only keep the local maximum with the largest value

and remove all other local maximums from the set MaxSet.
The detailed algorithm of local maximum removal is provided

in Algorithm 1.

Algorithm 1 Local Maximum Removal

INPUT:
El(t); The envelope of Cl(t)
MaxSet = {τk | 1 ≤ k ≤ W}; W local maximum of El(t)
P ; Length of the sliding window
Tmax; The maximum search range

PROCEDURES:
for All j ∈ [0, Tmax − P ] do

Ej,l = {El(t) | t ∈ [j, j + P ]} ;
for All k ∈ [1,W ] do

if τk ∈ [j, j + P ]&El(τk) < max(Ej,l) then
delete τk from MaxSet

end if
end for

end for
Return MaxSet

Provided with the knowledge about the environmental in-

formation, we can then determine suitable values for P and

Tmax. In this work, we deem that the two local maximums

of two objects which are within about 1.5 meters should be

merged. In addition, as the purpose of our work is to sense

the surroundings for proximity detection, it is unnecessary

to collect reflections from far-away objects (say roughly 30
meters away) in an indoor environment. Thus, in this work,

given the sampling frequency of 48 kHz, we empirically set

the Tmax as 9600 samples and the P as 480 samples in

Algorithm 1, respectively.
After the removal process, the 0.025s period (i.e., 0.02s

chirp length plus 0.005s safeguard region) of the received

signal after the first local maximum τ1 derived from the

matched filter, which corresponds to the sound which traveled

directly from the device’s speaker to the microphone, will

be detected as chirp period and we denote it as rl(t). Its

corresponding energy spectrum can thus be denoted as Rl(f)
via the fast Fourier transform (FFT). Next, the first identified

local maximum τk (k ∈ [2,W ]) after the chirp period will

then be identified as the beginning point of the reception of

signal reflections. Specifically, the 0.1s period after such τk
will be detected as the echo period and we represent it as

r′l(t). Similarly, its corresponding energy spectrum is denoted

as R′
l(f).

Example. Figure 3 shows an example on how the chirp

period and echo period are selected using correlation values

from a real experiment. Specifically, the original beep signal is

slide across the acoustic readings with a moving window and

the correlation values based on matched filter are calculated.

The local maximum removal process has also been conducted

to remove the ’unimportant’ local maximums from the set

MaxSet. From Figure 3(a), we can observe that the 0.025s

period of the received beep signal after the first peak τ1 is
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(a) (b)

Fig. 3. Illustration of (a) chirp period selection and (b) echo period selection
using peaks within correlation values derived from a matched filter.

identified as the chirp period. During this period, the acoustic

signal propagates directly from the speaker to the microphone.

Figure 3(b) shows the zoom-in view of the correlation values

and we can observe that the first peak after the identified chirp

period (i.e., τ3) is detected as the beginning point of the echo

period. Thus, the 0.1s period of the received beep signal after

τ3 can then be identified as the echo period. Such encouraging

result confirms the feasibility of using our proposed scheme

for the chirp and echo period selection.

C. Energy Loss Compensation Extraction using Chirp Periods

Due to different electronic features and manufacturing im-

perfections, the energy loss (i.e., the energy gain or attenuation

measurement at each frequency) of microphones on the login

device and the enrolled phone may vary significantly, making

it hard to conduct a direct comparison between echo periods of

the received beep signals for accurate proximity detection. Ex-

isting works [7]–[9] did not discuss on how to cope with such

differences in acoustic sensing. However, from Section IV-B,

we notice that the identified chirp periods actually contain

information about the energy loss of microphones on two

devices. Inspired by this observation, in this part, we design a

new energy loss compensation extraction scheme to estimate

the differences between microphones by utilizing chirp periods

to achieve an accurate proximity detection for 2FA.

To simplify the description of our proposed algorithm, we

first use A and B to denote the login device and the en-

rolled phone, respectively. We then use Rl,AB(f) to represent

the energy spectrum of chirp period extracted from the l-
th received beep signal emitted by device A and received

by device B, and similar expressions can also be derived

for Rl,BA(f), Rl,AA(f) and Rl,BB(f). Thus, we have the

following equations by adopting the direct sound propagation

model proposed in [6], [16]:

Rl,AA(f) = Pl,A(f)SA(f)MA(f)e
λ(xAA) (2)

Rl,BB(f) = Pl,B(f)SB(f)MB(f)e
λ(xBB) (3)

Rl,AB(f) = Pl,A(f)SA(f)MB(f)e
λ(xAB) (4)

Rl,BA(f) = Pl,B(f)SB(f)MA(f)e
λ(xBA) (5)

where Pl,A(f) denotes device A’s transmission energy at

frequency f for the l-th beep signal (similar expressions can be

derived for Pl,B(f)), SA(f) and MA(f) represent the energy
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Fig. 4. An illustration of acoustic propagation model for the chirp period of
the beep signal.

loss at frequency f of device A’s speaker and the microphone

respectively (similar expressions can be derived for SB(f)
and MB(f)), xAB denotes the distance between device A’s

speaker and device B’s microphone (similar expressions can

be derived for xAA, xBB and xBA ) and λ(x) is a function

of distance x that can be derived by fitting the experimental

data. Figure 4 shows such propagation model for clarity.
Direct deriving the relationship between MA(f) and MB(f)

for energy loss compensation from above equations involves

getting accurate values of SA(f), SB(f), Pl,A(f), Pl,B(f),
xAA, xBB , xAB and xBA, which is very difficult. Thus, we

propose a new method to derive such relationships without

involving exact value estimation. In particular, we divide

Equation (2) by Equation (4) and we can get:

Rl,AA(f)

Rl,AB(f)
=

Pl,A(f)SA(f)MA(f)e
λ(xAA)

Pl,A(f)SA(f)MB(f)eλ(xAB)
=

MA(f)e
λ(xAA)

MB(f)eλ(xAB)

(6)
Similarly, we divide Equation (3) by Equation (5):

Rl,BB(f)

Rl,BA(f)
=

Pl,B(f)SB(f)MB(f)e
λ(xBB)

Pl,B(f)SB(f)MA(f)eλ(xBA)
=

MB(f)e
λ(xBB)

MA(f)eλ(xBA)

(7)
Because sizes of devices are usually comparable, so we

roughly have: xAA ≈ xBB . In addition, it is also obvious

that xAB ≈ xBA. So from Equation (6) we have:

eλ(xBB)

eλ(xBA)
≈ eλ(xAA)

eλ(xAB)
=

Rl,AA(f)

Rl,AB(f)

MB(f)

MA(f)
(8)

We then put Equation (8) into Equation (7):

Rl,BB(f)
Rl,BA(f) ≈ MB(f)

MA(f)
Rl,AA(f)
Rl,AB(f)

MB(f)
MA(f)

=
Rl,AA(f)
Rl,AB(f) (

MB(f)
MA(f) )

2
(9)

We then have the compensation between MB(f) and MA(f)
as follows:

MB(f) ≈
√

Rl,BB(f)

Rl,BA(f)

Rl,AB(f)

Rl,AA(f)
MA(f) (10)

As described in Section III-C, the login device will encrypt

its recorded microphone samplings using the public key and

send them to the enroll phone. Thus, from Equation (10),

the enrolled phone can estimate such compensation using

its derived energy spectrums Rl,BB(f) and Rl,AB(f) along

with energy spectrums Rl,BA(f) and Rl,AA(f) extracted

from the login device’s microphone samplings for energy loss

compensation after the data decryption.

6

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2021 at 19:51:48 UTC from IEEE Xplore.  Restrictions apply. 



�
���
�� ���
+�� ���
�,

!��
����
�"
��
+�� ���
-,

����.��

����
�"
��

����.��

����
�"
��

1�������

1������� 1�������

Fig. 5. An illustration of acoustic propagation model for the echo period of
the beep signal.

D. Proximity Detection using Echo Periods

The energy spectrum of the echo period is characterized

by uneven attenuations occurring at different frequencies.

There are two main causes of this uneven attenuation: First,

when the emitted beep sound reaches the surrounding objects,

the surface material absorbs the signal at some frequencies

and different materials have different absorption properties.

Second, the combination of reflections makes the received

signal constructive at some frequencies and destructive at other

frequencies. This phenomena is also akin to the frequency

selective fading in wireless communication. Thus, such energy

spectrum contains rich information of the surrounding envi-

ronment and the similarity between energy spectrums of echo

periods derived from the login device and the enrolled phone

could represent their proximity information. To capture this

observation in a quantitative way, we propose to first conduct

the energy loss compensation for microphones of two devices

using the compensation estimation derived from Equation (10),

and then compare the energy spectrums of echo periods using

the correlation coefficient for accurate proximity detection.

1) Energy Loss Compensation: We let R′
l,AB(f) denote

the energy spectrum of the echo period derived from the l-th
received beep signal emitted by the login device (i.e., device

A) and received by the enrolled phone (i.e., device B) (similar

expressions for R′
l,AA(f), R′

l,BB(f) and R′
l,BA(f)). Thus,

they can be represented as:

R′
l,AA(f) = F ′

l,AA(f)MA(f) (11)

R′
l,BB(f) = F ′

l,BB(f)MB(f) (12)

R′
l,AB(f) = F ′

l,AB(f)MB(f) (13)

R′
l,BA(f) = F ′

l,BA(f)MA(f) (14)

where the F ′
l,AB(f) represents the energy spectrum of the

reflected beep signal which is emitted by device A and just

arrives the microphone of device B (similar expressions for

F ′
l,AA(f), F

′
l,BB(f) and F ′

l,BA(f)) and the detailed propaga-

tion model is shown in Figure 5.

Note that the basic idea of our scheme is to conduct the

similarity comparison between F ′
l,AA(f) and F ′

l,AB(f) for

proximity detection if the beep signal is emitted by device

A. Ideally, from the relationships derived from Equation (11)

and (13), this comparison could be conducted via comparing

known energy spectrums R′
l,AA(f) and R′

l,AB(f) if MA(f) ≈
MB(f). However, due to MA(f) and MB(f) are unknown,
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Fig. 6. An illustration of energy loss compensation for the login device (i.e.,
device A) and the enrolled phone (i.e., device B).

making it impossible for us to make accurate comparisons.

Thus, we adopt the compensation between MB(f) and MA(f)
derived from Equation (10) and reformulate the equation as:

R′
l,AA(f) = F ′

l,AA(f)MA(f) (15)

R′′
l,AB(f) =

R′
l,AB(f)√

Rl,BB(f)
Rl,BA(f)

Rl,AB(f)
Rl,AA(f)

≈ F ′
l,AB(f)MA(f) (16)

Note that the cubic spline interpolation [17] has been per-

formed on the compensation to make its frequency resolution

consistent with R′
l,AB(f). From the above equations, we can

observe that the similarity comparison between F ′
l,AA(f) and

F ′
l,AB(f) can be conducted via comparing R′

l,AA(f) and

R′′
l,AB(f) because they are multiplied by the same energy

loss MA(f). Thus, this new comparison compensates the

difference between the energy loss MA(f) and MB(f) using

the compensation estimated in Equation (10). We further refer

to R′
l,AA(f) and R′′

l,AB(f) as location signatures and repeat

such compensation procedure to derive location signatures

R′
l,BB(f) and R′′

l,BA(f) when the beep signal is emitted by

device B. To capture the pattern of all the beep signals, we

further average all location signatures over L beep signals

to derive the average location signatures: R̄′
AA(f), R̄

′′
AB(f),

R̄′
BB(f) and R̄′′

BA(f).
2) Similarity Comparison: We propose to use the Pearson

correlation coefficient [18] to conduct the similarity compari-

son between location signatures for proximity detection. How-

ever, the presence of random noise may add small variations

to location signatures, making such comparison inaccurate. To

cope with this problem, we propose to use an average filter to

remove such small variations. Specifically, we set the number

of frequency points in the average filter as 20 and compute the

Pearson correlation coefficient cA between the filtered average

location signatures R̄′
AA(f) and R̄′′

AB(f) (cB for R̄′
BB(f) and

R̄′′
BA(f), resp) for proximity detection. If the average value

of cA and cB is higher than a pre-defined threshold cth, the

system will declare that two devices are in close proximity

and the login request will be accepted.

Feasibility Study. We provide a feasibility study on how

the energy spectrum changes before and after the energy

loss compensation for device A and device B. Specifically,

we place two smartphones in close proximity, use them as

device A and B respectively and collect 10 beep periods

for energy loss compensation purpose. The average energy

spectrums R̄′
AA(f), R̄

′
AB(f) and R̄′′

AB(f) over 10 beep sig-

nals are then derived from the received signal and presented
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in Figure 6. Before the energy loss compensation, due to

the energy loss of microphones (i.e., MA(f) and MB(f))
differs significantly, R̄′

AA(f) and R̄′
AB(f) varies and their

corresponding correlation value is only 0.42. However, after

the energy loss compensation process, the energy spectrums

R̄′
AA(f) and R̄′′

AB(f) become very similar and such corre-

lation value increases significantly (i.e., from 0.42 to 0.91).

These observations strongly confirm the feasibility of using

our proposed energy loss compensation scheme to conduct an

accurate proximity detection.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the

performance of our 2FA system over a period of six months.

A. Experimental Setup

We use a ThinkPad X280 laptop along with four smart-

phones including Samsung Galaxy s7, Huawei Mate 10,

Huawei Mate 30 and Honor 10 for evaluations. These devices

differ in both RAM sizes or processors and the detailed

information of each device is shown in Table I. During the

experiment, we set the bandwidth of the beep signal as 14 to

15 kHz with a length of 0.02s as described in Section IV-A.

We conduct our experiments under three representative en-

vironments: the medium sized conference room with some

chairs and tables (i.e., conference room), the spacious office

room with a large number of cubicles or desks (i.e., office)

and the long hallway with few tables (i.e., hallway). Unless

otherwise specified, the results presented in this work are using

the acoustic data collected from the conference room. We

then develop applications to collect the acoustic data which

is written into a sound file stored in the smartphone or laptop

during the authentication process.

1) Evaluation Scenarios: We evaluate our system under

three scenarios including one regular authentication scenario

and two representative attack scenarios.

Regular Authentication: A legitimate user is told to place

his enrolled phone besides the login device and tries to pass the

2FA process after inputting his own username and password.

In this scenario, we use the X280 laptop as the login device

and other smartphones as enrolled phones.

Man-in-the-middle (MiM) Attack: A remote adversary

sets up a high-speed channel between the victim’s enrolled

phone and the adversarial login device and relay probing

beep signals between them in attempt to pass our proposed

2FA. More specifically, in this scenario, we use one Mate

30 smartphone as the enrolled phone and two iPhone 6s

smartphones as relay devices to launch the MiM attack.

Co-located Attack: An adversary is physically co-located

with the victim. The adversary’s login attempts triggers both

Device Processor Memory OS
Galaxy s7 Exynos 8890 Octa 4 GB Android 6.0
Mate 10 Kirin 970 4 GB Android 8.0
Mate 30 Kirin 990 6 GB Android 10
Honor 10 Kirin 970 6 GB Android 8.1

X280 i7− 8650U 8 GB Win 10

TABLE I
SUMMARY OF EXPERIMENTAL DEVICES.
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Fig. 7. The 1 − TAR and FAR as a function of the threshold cth. The
EER is about 0.043 at cth = 0.78.

the login device and the victim’s enrolled phone to emit prob-

ing beep signals for 2FA, which can be directly received by

both devices’ microphones. More specifically, in this scenario,

we use one Mate 10 smartphone as the adversary login device

and one Mate 30 smartphone as the victim’s enrolled phone

to perform the co-located attack.

2) Metrics: We use the following metrics to evaluate the

effectiveness of our 2FA system.

True Acceptance Rate (TAR): the ratio of the number of

legitimate login attempts accepted by our system to the total

number of legitimate login attempts.

False Acceptance Rate (FAR): the ratio of the number of

fraudulent login attempts accepted by our system to the total

number of fraudulent login attempts.

Equal Error Rate (EER): it is defined as the rate at which

the FAR is equal to one minus TAR (i.e., FAR = 1−TAR).

The EER shows the trade-off between two error types and it

can help us to choose the value of threshold cth via a statistical

study.

B. Impact of Threshold Settings

In the first set of experiments, we evaluate the effectiveness

of our Proximity-Echo by adopting different threshold values

for user authentication. Specifically, we evaluate the system

performance by varying the threshold cth from 0.6 to 0.9.

Figure 7 plots the 1 − TAR and FAR when varying the

value of threshold cth. The TAR and FAR are calculated

from correlation values derived from the regular authentication

scenario and attack scenarios, respectively. We observe that the

1− TAR increases whereas the FAR decreases as the value

of threshold increases. This is because with a higher detection

threshold, fewer login attempts (regardless of legitimate or

fraudulent attempts) could be accepted by our system. In

addition, the crossing point of 1 − TAR and FAR shows

that our system has around 0.043 EER when the threshold is

set as about 0.78, which shows a good trade-off between TAR
and FAR. Thus, unless otherwise specified, we choose 0.78
as the threshold cth in this work.

C. Robustness to Experimental Environments

We next study the robustness of Proximity-Echo for the reg-

ular authentication scenario when experiments are conducted

under different environments. In this study, four smartphones

including Galaxy s7, Mate 10, Mate 30 and Honor 10 are used

as enrolled phones and the number of beep signals is set as

20.
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(a) Conference room (b) Office (c) Hallway

Fig. 8. Robustness study under different experimental environments.
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Fig. 9. Performance study under different attacks.

Figure 8 (a) to (c) display the distribution of correlation

values when the experiments are conducted under different

environments. We observe that most correlation values remain

higher than the threshold cth (i.e., 0.78 as the green dot line

shown in the figure) across all environments and enrolled

phone usages. In addition, these figures demonstrate that our

system can achieve a satisfactory TAR (i.e., over 0.88) in

all scenarios. These observations illustrate that our system is

effective in 2FA and robust across different environments.

D. Performance Evaluation Under the MiM Attack

We further evaluate our Proximity-Echo under MiM attacks.

Specifically, without loss of generality, we choose one Mate

30 smartphone as the victim enrolled phone and two iPhone 6s

smartphones as relay devices to conduct the MiM attack. The

victim’s enrolled phone is also placed under three experimental

environments and the adversary login device is placed in a

separate room which is far away from the enrolled phone.

Figure 9(a) presents the FAR of MiM attacks under different

environments. We observe that the overall FAR remains less

than about 0.05 across all scenarios. Further, this figure also

shows that the performances from different scenarios are

comparable, indicating our system operating 2FA is robust

to MiM attacks under different experimental environments

and phone models. This is due to the fact that the login

device would obtain the environmental characteristics of the

adversary’s location instead of the victim’s location via the

reflected beep signal under MiM attacks. Such illegitimate en-

vironmental patterns differ significantly from the victim’s real

environmental patterns and it cannot pass the 2FA. Therefore,

the MiM attack can be thwarted effectively.

E. Performance Evaluation Under the Co-located Attack

Finally, we study the performance of our Proximity-Echo

under co-located attacks. In this study, we use one Mate 30

smartphone as the victim enrolled phone and one Mate 10
smartphone as the adversary login device to launch the co-

located attack. We vary the distance between two devices from

0 to 1 meters with a step length of 0.1 meters and run the 2FA

for each distance.

Figure 9(b) presents the FAR under co-located attacks

when the distance between the victim enrolled phone and the

adversary login device increases from 0 to 1 meter. We observe

that the FAR remains higher than 0.9 when the distance is less

than 0.1 meters. However, the FAR drops significantly as the

distance increases and it remains lower than 0.1 when the

distance is larger than 0.8 meters. It indicates that a distance

of 0.8 meters is sufficient to thwart the co-located attack and

almost none of the login attempts can pass the authentication

process. Further, we observe that a slightly higher FAR is

achieved when experiments are conducted in the hallway.

This is because the reflected acoustic signal contains less

information of the surrounding characteristics in an indoor

environment with a smaller number of obstacles. These results

show that our system is secure against the co-located attacks.

VI. CONCLUSION

In this paper, we present Proximity-Echo, a secure system

leveraging the proximity of a user’s enrolled phone and the

login device as the second proof for 2FA. The proposed system

extracts location signatures by emitting acoustic beep signals

alternately by both devices with speakers and sensing the

reflections with microphones, and compares the extracted sig-

natures for proximity detection. Our designed period selection

scheme identifies two sound segments named the chirp period

and the echo period accurately from the received beep signal.

To achieve an accurate proximity detection, our system further

develops a new energy loss compensation extraction scheme

by using the identified chirp periods to estimate the intrinsic

differences of energy loss between microphones of the enrolled

phone and the login device. Moreover, our proximity detection

component conducts the similarity comparison between the

identified echo periods to determine whether two devices are

in proximity for 2FA. Extensive experiments are conducted to

show that our proposed system is accurate in providing 2FA

and robust to both man-in-the-middle (MiM) and co-located

attacks across different scenarios and device models.

Acknowledgments: This work is supported in part by

National Natural Science Foundation of China under Grants

61802051, 62020106013, Sichuan Science and Technology

Program under Grants 2020JDTD0007 and 2020Y FG0298.

9

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2021 at 19:51:48 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “How Hackers Steal Passwords,” https://cybriant.com/heres-how-
hackers-steal-passwords/, 2020.

[2] “Duo Mobile App,” https://duo.com/product/multi-factor-authentication-
mfa/duo-mobile-app, 2020.

[3] “Google 2-step Verification,” https://www.google.com/landing/2step/,
2020.

[4] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun, “Sound-
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