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ABSTRACT

Jamming attacks are a class of network denial of service attacks that
can easily be carried out in wireless networks. In order to beable
to repair a network in the presence of such attacks, it is desirable to
identify the location of jammed nodes and the congested areathat
is affected by the jammer. In this paper, we propose the design of
a Q-learning based attack-localization algorithm that is integrated
with the OLSR routing protocol. Our Q-learning attack-localization
algorithm is distributed, asynchronous and can identify the location
of the jammer in run-time as the attack takes place. We examine the
performance of our approach using NS3 network simulations under
two different network topologies, and for both naive and intelligent
attack scenarios.

Index Terms— Q-learning, jammer location, distributed, asyn-
chronous, peer-to-peer networks

1. INTRODUCTION

Wireless communications are easily be subjected to interference at-
tacks that reduce the effectiveness of the network and its protocols
to reliably deliver data from a source to a destination. Interference
attacks can be performed in many different ways, ranging from emit-
ting a high energy interference signal, which degrades physical layer
capabilities to decode modulated information, to the intentional use
of MAC-layer congestion that prevents nodes from transmitting or
receiving [1]. One of the challenges that must be addressed to ensure
that networks can survive in the presence of malicious interference
or congestion is to locate the jamming source [2, 3]. Once thelo-
cation of the adversary has been determined, then remedies may be
applied to ensure the network can operate reliably. For example, the
location of an adversary may be fed to network layer (e.g. routing)
functions and used to alter routes in the network, or the location of
an adversary may be used to adjust power or channel allocations for
network nodes near the adversary.

Localizing a moderately high-power interference source isa
problem that has been relatively well-studied [4–9]. It must be re-
alized, however, that an attacker need not apply large amounts of
power to adversely impact the network’s performance. In fact, a
small amount of transmit power being employed by a congestion-
style interference source, which continually emits format-compliant
packets, can be quite effective at shutting down the MAC-layer
functionality of neighboring nodes in a network. The implication of
this observation is that simple schemes, such as those that employ
received signal strength (RSS), have limited ability to locate an
attacker. For such attacks, it is necessary to analyze the collection
of network statisticsacross the entire network in order to locate the

adversary. These network statistics are dynamicsignals associated
with the network’s graph that provide forensic evidence regarding
the adversary’s presence and must be cleverly leveraged in order to
locate the adversary.

In this paper, our goal is to localize the legitimate network
node(s) that are closest to the source of congestion, i.e. the at-
tacker. Our approach operates in a distributed fashion, andinvolves
an online learning algorithm that has been tailored to locating a
congestion-style adversary in run-time. Specifically, we have modi-
fied the well-known Q-learning algorithm, and the advantages of our
method are: (1) the algorithm is distributed (Q-learning runs locally
at each network node, each node only needs to know network statis-
tics for itself and its one-hop neighbors); and (2) the algorithm is
asynchronous and can converge even if some data available ismiss-
ing or old (as long as the obsolete information eventually vanishes
with time).

The paper is organized as follows: In Section 2, we provide an
overview of our problem and the network scenario. In Section3,
we briefly overview Q-learning and then describe how Q-learning
was integrated with a routing protocol to support network forensics,
including detection and isolation of the jamming attack. Wenext
analyze the performance of our jamming localization algorithm in
Section 4 through simulations involving different attacker models.
In Section 5 we summarize related work, and conclude the paper in
Section 6.

2. PROBLEM OVERVIEW

In this section, we describe the basic problem that we are considering
by introducing the network scenario and the adversary’s characteris-
tics. We consider a network that consists of nodes that communicate
via wireless communications with each other. Depending on pa-
rameters, such as transmission power and modulation format, each
node might only be able to observe communications from a limited
amount of the full set of nodes. Our network, thus, will be arranged
as a graph where the vertices correspond to wireless nodes, and the
edges correspond to wireless links connecting nodes that are within
radio range of each other. In our study, we have used two different
motivating topologies: a regular grid deployment, and a deployment
where the nodes are randomly placed. We illustrate these twotopolo-
gies in Figure 1.

Complementing the topological configuration of the network,
it is necessary to employ an appropriate networking protocol that
manages the routing of communication between nodes in the net-
work. In our study, we have chosen to use the OLSR routing pro-
tocol [10] at the network layer, while we employed an 802.11 MAC
with RTS/CTS turned off.



Fig. 1. Grid and random topologies, red nodes are legitimate mem-
bers. Green is the attacker, which broadcasts valid packetsto sur-
roundings.

Our objective is to develop a network forensics tool that locates
of a “jamming” node that is attacking the network. Specifically, our
attacker is a congestion-style jammer thatcontinuously broadcasts
format-compliant packets, which results in the loss of legitimate traf-
fic (packets from other nodes). In particular, for victim nodes (i.e.
nodes near the jammer), the attack has two immediate consequences:
(1) the drop of legitimate packets at the physical and/or MAClayer
of a legitimate node; (2) the increased proportion of total control
messages to data packets in the network as the routing protocol must
send out more control messages to maintain its connectivity. In this
study, we assume that the malicious attacker is targeting a specific le-
gitimate node, and hence that node will experience more degradation
than other nodes. In this study, we will also consider two variations
of this attacker: a naive jammer who simply injects blockingpack-
ets, and an intelligent jammer who has infiltrated the network and
sends blocking packets as well as false information into theattack
localization algorithm. For the intelligent jammer, the attacker is an
insider to the network and can announce format-compliant messages
that will be interpreted as if he is a legitimate member of thenetwork.

Detecting and isolating the attacker will require forensics upon
signals being created at each node that are associated with network
traffic statistics. We have adopted the use of Packet Loss Rate (PLR),
which captures the proportion of packets at a receiving nodeto total
packets arriving at a receiving node. The calculation of PLRis based
on all packets transmitted by the network, including control and data
packets. PLR is a readily available network statistic, but we note that
other network statistics, such as delay, may also be appropriate.

3. ATTACKER LOCALIZATION IN A NETWORK VIA
Q-LEARNING

3.1. Q-learning Preliminaries

Our approach to localizing an adversary in a network uses a modi-
fied version of Q-learning. The standard discounted Q-learning was
proposed by Watkins in [11], and an asynchronous and distributed
version presented in [12]. In Q-learning, the agent learns an opti-
mal policy from past experience by minimizing or maximizingthe
expected total discounted reward. The agent first randomly chooses
an available action from its action set, then it obtains an immediate
reward or penalty. This reward/penalty value will factor into cal-
culating the newQ value for the current state and action pair. The
optimal action for the current state is collected by finding the action
which achieves the minimum/maximum ofQ value among all the
state-action pairs. We use the Q learning formulas given in [12]:

1. Calculating Q value (policy evaluation)

Q̃t+1(s, a) = (1−αt+1)Qt(s, a)+αt+1[R(s, a, s′)+γt+1Vt(s
′)]
(1)

if Q̃t+1(s, a) ≤ Vt(s)

Qt+1(s, a) = Q̃t+1(s, a) (2)

else

Qt+1(s, a) = αt+1Q̃t+1(s, a) + (1− αt+1)Vt(s) (3)

2. Calculating V value (policy improvement)

Vt+1(s) = min
a

Qt+1(s, a) (4)

aoptimal = argmin
a

Qt+1(s, a) (5)

In our scheme, each wireless node will run its own Q-learning
algorithm, and the Q-values at a particular node will correspond to
the packet loss rates associated with the links between thatnode
and each of its neighbors. The internal state within each node’s Q-
learning algorithm will be an assessment as towhich of its neighbors
that node believes to be in the direction of the attacker. With each
node in the network running its own Q-learning algorithm, the col-
lection of assessments can be thought of as a collection of fingers
pointing in the direction of the adversary, and thus the finalstage of
the attacker localization algorithm is to collectively examine these
assessments to infer where the adversary is located. Beforeproceed-
ing to the specifics of our proposed Q-learning algorithm, wenote
that one of the advantages for using the Q-learning approachis that
the Q-value within the algorithm is a discounted, expected value of
the PLR, and hence naturally incorporates data smoothing tomiti-
gate bursty PLR fluctuations that naturally arise in the operation of a
network.

3.2. Q-learning Integrated with Routing Protocol

Our approach to identifying the jammer location integratesQ-
learning with the underlying routing protocol. Routing protocols,
such as OLSR, include unused message fields in broadcast control
messages that may be utilized to convey additional information be-
tween nodes. Specifically, in order to support the dynamic operation
of Q-learning at each node, we need the following information to be
exchanged: a node’s ID; the time slot for aQ value; the time slot
for a V value;V (self ID); PLR; and the optimal action (i.e. a
decision as to which neighbor is in the direction of the jammer).

Using the distributed Q-learning framework of [12], we inte-
grated Q-learning related messages into the routing protocol by at-
taching them tohello messages. These messages are propagated
to all one hop neighbors. When its neighbor receives those mes-
sages, it detaches the Q-learning messages and stores them in a cor-
respondingV table in reverse time order for the calculation of future
Q values. For each time slot, the calculation function ofQ learning
is called, which searches the oldQ value andV table to decide the
optimal action (i.e. decision) for next time slot. Pseudocode for the
procedure running on each node is as follows:

The receiving node stores the above information intoV and
PLR lists. The newQ value was calculated iteratively by equa-
tions (1), (2) and (3) until it converged in each node. Based on our
simulation experience, this process takesO(N) rounds, whereN
is the total number of nodes in the networks, and we are currently
working on a proof for this conjecture. The asynchronous feature
of the form of Q-learning we employ is well-suited for congestion



Algorithm 1 function Q-learning
initializeQ0, V0

get neighbors N from routing table
calculate newγt, αt

/*policy evaluation*/
for all N in time slot t do

searchQt−1(s, a) in selfQNTable

repeat
search availableV in neighborV CTable

until find one
calculateQt(s, a)
selfQNTable.push back(Qt(s, a))
if Qt(s, a) < minQ then

minQ = Qt(s, a)
end if
recalculate cost (packet loss ratio)

end for
/*policy improvement*/
if every k time slotsthen

Vt = minQ

at,optimal = argminaQ

end if

cases as it allows the old neighborV value in equation (1) to re-
main (though obsolete) in case there is a loss of informationduring
transmission. Obsolete information can fade out with time due to the
discount factorγ. As long as the attacked node can receive and send
a little information out, other legitimate nodes can utilize this to find
the node nearest to the jammer.

Algorithm 2 function Sendpacket

if selfQNTable is not emptythen
send{selfVt, PLRt, ID, time stamp}
sendat,optimal

end if

Algorithm 3 function Receivepacket

neighborV CTable.push back(Vt, PLRt)
if neighbour’sat,optimal is self idand self’s at,optimal is neigh-
bor id then

if self’sVt < neighbor’sVt then
mark self as the target node

end if
end if

4. SIMULATION

We evaluated our algorithm using the NS3 simulator with two 25-
node networks as presented in Fig. 1. We employed the OLSR
routing protocol with an 802.11 MAC where RTS/CTS was turned
off in MAC layer. In our simulations, the nodes were static. The
duration for each simulation was 100 time units. In all cases, the
attacker begins to broadcast packets starting at time 20 andcontinu-
ing until the end of the simulation. The attacker’s traffic pattern was
created to follow a Poisson distribution with inter-arrival time, 0.09
time units, and the length of the attacker’s blocking packetwas 95

bytes. In each time slot, thePLR was estimated and used to calcu-
late the internal rewards in our Q-function, while the actual Q-values
were updated every 2 time units and were estimated in a distributed
fashion by each node. Every 6 time units, theV values were updated
in a distributed manner. The learning rate was set to be less than 1
and decreased with time. We conducted simulations under different
scenarios: (1) there was no attack; (2) there was a naive attacker; (3)
there was an intelligent attacker that introduced largeV andQ val-
ues; and (4) there was an intelligent attacker who introduced small
V andQ values. These four scenarios were examined both in the
grid and random topologies.
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(b) attack without dirtyV
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(c) attack with large dirtyV
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(d) attack with small dirtyV

Fig. 2. Jamming localization in the grid topology. Bold double-
arrow link indicates network belief that the jammer is between the
arrow endpoint nodes.

Fig. 2 provides the final optimal policies for each node in thegrid
network under the four scenarios mentioned above. For each node
in the figure, there is an arrow that points to the neighbor that node
believes is in the direction of the attacker. We see that in all cases our
Q-learning jammer-locator algorithm was able to find the attacker,
or the closest node to the attacker. One interesting phenomena that
we observed is that the distribution ofV -values exhibits increased
variance when the network is under attack, which intuitively occurs
because the attack disrupts the behavioral balance associated with
nodes in the network. We also examined the case of the random
topology. The results in Fig. 3 exhibit similar behavior to the case of
the grid topology.

Lastly, we note, as with any such detection scheme, our ap-
proach will experience difficulty in differentiating between benign
causes of congestion (such as the convergence of many high-traffic
flows) and the congestion introduced by an intentional jammer. In
particular, it is possible to construct high-traffic flow cases converg-
ing at a specific node that will lead to significant packet loss, in
which case our algorithm identifies the network node closestto the
worst region of benign congestion. Further, the ability of our scheme
to identify and locate a jammer is tied to the inter-arrival time be-
tween the jammer’s emitted packets, and a jammer can avoid detec-
tion by increasing its inter-arrival time. Nonetheless, inour experi-
ments, we have witnessed that even so, our Q-learning approach lo-
cates theregion around the jammer. One approach we are exploring
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Fig. 3. Jamming localization in the random topology.

integrating into our algorithm is a traffic-control method whereby
nodes in the network adjust their outgoing traffic rate when the net-
work suspects there is a jammer present. Such adjustment would re-
duce the likelihood of congestion being falsely declared asjamming
by our forensics algorithms.

5. RELATED WORK

To find the location of an attacker, or the node under attack, is im-
portant and can serve as the basis for repairing the network [13–15].
Previous work on finding the area that is jammed [16–18] can be
classified into three categories. The first category involves measur-
ing the received signal strength and using propagation modeling to
estimate distance. For example, [19] utilized the variation of the
hearing range of a node under attack and its affected neighbors to
formulate equations from which the jammer can be localized.The
second category obtain the jammer’s location by utilizing informa-
tion about the geometric location of affected nodes. The typical
examples for this category are the conventional Centroid Location
(CL) [20], Weighted Centroid Localization (WCL) [21] and its im-
proved versions, Virtual Force Iterative Localization (VFIL) [3] and
Double Circle Localization (DCL) [22]. Unfortunately, both the first
and second categories require the exact locations of neighbor nodes.
The third category, however, uses therelative position of nodes in
the network, and one example of this category is [23], which uses
gradient descent to find the node with minimum Packet Delivery Ra-
tio (PDR). One unfortunate behavior of such an approach is that it
may be trapped in local minima during the searching process.The
approach presented in this paper belongs to the third category. Com-
pared to [23], our scheme is distributed and can be executed in run-
time during an attack. Our algorithm can adapt to environmental
changes because nodes with historically large PLR can be revisited
when their PLR becomes small. In particular, ourQ-learning ap-
proach bases its decision on the expected PLR and sum of its dis-
counted histories instead of instantaneous values, thus the optimal
decision is not easily subjected to the bursty nature of network statis-
tics, and consequently exhibits algorithmic stability.

6. CONCLUSION

In this paper, we examined the problem of locating the sourceof a
jamming or congestion attack against a wireless network. Wepro-
posed integrating reinforcement learning (specifically, the popular
Q-learning algorithm), with a network routing protocol to arrive at a
distributed forensics algorithm that processes signals associated with
network statistics to infer the location of a jamming event.The net-
work signals we utilized were local estimates of packet lossrates
as made by each node in a network. Our algorithm was validated
through NS3 simulations under two different network topologies,
and for both naive and intelligent attack scenarios. In particular,
we found that our algorithm could reliably identify the location of
an intelligent insider-attacker who both emits blocking packets and
introduces false Q-learning information into the network.As part
of our ongoing work, we intend to explore adaptively tuning our at-
tack localization algorithm according to dynamic conditions within
the network, such as node mobility (both the network and attacker’s
mobility) as well as under varying network traffic conditions.
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