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Abstract—The focus of this paper is an information-theoretic
study of retransmission protocols for reliable packet commu-
nication under a secrecy constraint. The hybrid automatic
retransmission request (HARQ) protocol is revisited for a block-
fading wire-tap channel. Here, two legitimate users communicate
over a block-fading channel in the presence of a passive eaves-
dropper who intercepts the transmissions through an indepen-
dent block-fading channel. In this model, the transmitter obtains
a 1-bit ACK/NACK feedback from the legitimate receiver via an
error-free public channel. Both reliability and confidentiality of
secure HARQ protocols are studied by the joint consideration
of channel coding, secrecy coding, and retransmission protocols.
In particular, the error and secrecy performance of repetition
time diversity (RTD) and incremental redundancy (INR) protocols
are investigated based on Wyner code sequences. These protocols
ensure that the confidential message is decoded successfully by the
legitimate receiver and is kept completely secret from the eaves-
dropper for a set of channel realizations. This paper illustrates
that there exists a rate-compatible Wyner code family which
ensures a secure INR protocol. Next, it also defines two types
of outage probabilities, connection outage and secrecy outage
probabilities to characterize the tradeoff between the reliability
of the legitimate communication link and the confidentiality with
respect to the eavesdropper’s link. For a given connection/secrecy
outage probability pair, an achievable throughput of secure
HARQ protocols is derived for block-fading channels. Finally,
both asymptotic analysis and numerical calculations demonstrate
the benefits of HARQ protocols to throughput and secrecy.

Index Terms—Information-theoretic secrecy, HARQ, block-
fading, rate compatible punctured codes, incremental redun-
dancy, time diversity.

I. INTRODUCTION

RELIABLE communication is essential in applications
of wireless packet-oriented data networks. A class of

special coding schemes, the so-called hybrid automatic retrans-
mission request (HARQ) protocols, combine powerful channel
coding with retransmission protocols to enhance the reliability
of communication links. Among currently available HARQ
protocols, the most elementary form is the repetition-coding-
based HARQ which combines several noisy observations of
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the same packet by using a suitable diversity technique at
the receiver. A more powerful HARQ scheme is the so-
called incremental redundancy HARQ, which achieves higher
throughput efficiency by adapting its error correcting code re-
dundancy to fluctuating channel conditions. In an incremental
redundancy scheme, the message is encoded at the transmitter
by a “mother” code. Initially, only a selected number of
coded symbols are transmitted. The selected number of coded
symbols form a codeword of a punctured code. If a retrans-
mission is requested, additional redundancy symbols are sent
under possibly different channel conditions. An information-
theoretic analysis of the throughput performance of HARQ
protocols over block-fading Gaussian collision channels is
found in [1]. Another line of recent research on HARQ
focusing on the analysis of mother codes and their puncturing
can be found in [2]–[8].

Confidentiality is a further basic requirement for secure
communication over wireless networks. We note that the
broadcast nature of the wireless medium gives rise to a number
of security issues. In particular, wireless transmission is very
susceptible to eavesdropping since anyone within the commu-
nication range can listen to the traffic and possibly extract
information. Traditionally, confidentiality has been provided
by using cryptographic methods, which rely heavily on secret
keys. However, the distribution and maintenance of secret keys
are still open issues for large wireless networks. Fortunately,
confidential communication is possible without sharing a se-
cret key between legitimate users. This was shown by Wyner
in his seminal paper [9]. In the discrete memoryless wire-
tap channel model proposed by Wyner, the communication
between two legitimate users is eavesdropped upon via a
degraded channel (the eavesdropper channel). The level of
ignorance of the eavesdropper with respect to the confidential
message is measured by the equivocation rate. Perfect secrecy
requires that the equivocation rate should be asymptotically
equal to the message entropy rate. Wyner showed that perfect
secrecy can be achieved via a stochastic code, referred to
as the Wyner secrecy code. Csiszár and Körner generalized
this result and determined the secrecy capacity region of
the broadcast channel with confidential messages in [10].
Recent research investigates multi-user communication with
confidential messages, e.g., multiple access channels with
confidential messages [11], [12], multiple access wire-tap
channels [13], [14], and interference channels with confidential
messages [15]. The effect of fading on secure communication
was studied in [16]–[19]. More specifically, assuming that all
communicating parties have perfect channel state information
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(CSI) prior to the message transmission, [16] studied the delay
limited secrecy capacity of wireless channels, while [17]–[19]
studied the secrecy capacity of ergodic fading channels. [19]
also considered the ergodic scenario in which the transmitter
has no CSI about the eavesdropper channel.

In this paper, we investigate secure packet communication
based on HARQ protocols. The challenge of this problem is
twofold: first, the encoder at the transmitter needs to provide
sufficient redundancy for the legitimate receiver to decode its
message successfully; on the other hand, too much redun-
dancy may help adversarial eavesdropping. As an example,
retransmission is an effective way to enhance reliability, but
nevertheless it may also compromise confidentiality. These
considerations motivate the joint consideration of channel
coding, secrecy coding, and retransmission protocols.

In Section II, we describe the system model and prelim-
inaries. We consider a frequency-flat block-fading Gaussian
wire-tap model, in which a transmitter sends confidential
messages to a legitimate receiver via a block-fading channel
in the presence of a passive eavesdropper who intercepts the
transmission through an independent block-fading channel. We
assume that the transmitter has no perfect CSI, but receives a
1-bit ACK/NACK feedback from the legitimate receiver via a
reliable public channel. Under this setting, we study the secure
HARQ protocols from an information theoretic point of view.
In particular, the error and secrecy performance of repetition
time diversity (RTD) and incremental redundancy (INR) pro-
tocols are investigated based on Wyner code sequences, which
ensure that the confidential message is decoded successfully
by the legitimate receiver and is kept completely secret from
the eavesdropper for a given set of channel realizations.

In Section III, we show that there exists a rate-compatible
Wyner code family which suits the secure INR protocol. Due
to the absence of instantaneous CSI, the transmitter cannot
adapt its code rate or power level to channel conditions.
Instead, for a given mother code, we consider the outage
performance of secure HARQ protocols. More specifically,
we define the connection outage and the secrecy outage.
The outage probabilities are used to characterize the tradeoff
between the reliability of the legitimate communication link
and the confidentiality with respect to the eavesdropper’s link.
These results are applied to the INR and RTD protocols in
Section IV.

In Section V, we evaluate the achievable throughput of
HARQ protocols under the constraints on the two outage
probabilities. An asymptotic analysis of the secrecy throughput
is given in Section VI. In Section VII, we compare the secrecy
throughput of two protocols through numerical computations,
and illustrate the benefit of HARQ schemes to information
secrecy.

Finally, we give conclusions and some interesting directions
for future research in Section VIII, The proofs of the results
are provided in Appendices.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model
As shown in Fig. 1, we consider a model in which a

transmitter sends confidential messages to a destination via a
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Fig. 1. System model: hybrid ARQ protocols for the block-fading channel
in the presence of a passive eavesdropper. Both the main and eavesdropper
channels are block-fading. The ACK/NACK feedback channel is public and
error-free.

source-destination channel (the main channel) in the presence
of a passive eavesdropper which listens to the transmis-
sion through a source-eavesdropper channel (the eavesdropper
channel). Both the main channel and the eavesdropper channel
experience M -block fading, in which the channel gain is
constant within a block while varying independently from
block to block [20], [21]. We assume that each block is
associated with a time slot of duration T and bandwidth W ;
that is, the transmitter can send N = b2WT c real symbols in
each slot. Additionally, we assume that the number of channel
uses within each slot (i.e., N ) is large enough to allow for
invoking random coding arguments.1

At the transmitter, a confidential message w ∈ W is encoded
into a codeword xMN , which is then divided into M blocks
[xN

1 , xN
2 , . . . , xN

M ], each of length N . The codeword xMN

occupies M slots; that is, for i = 1, . . . ,M , the i-th block xN
i

is sent in slot i and received by the legitimate receiver through
the channel gain hi and by the eavesdropper through the
channel gain gi. A discrete time baseband-equivalent block-
fading wire-tap channel model can be expressed as follows:

y(t) =
√

hix(t) + v(t)
and z(t) =

√
gix(t) + u(t), (1)

for t = 1, . . . , MN, i = dt/Ne, where x(t) denotes the
input signal, y(t) and z(t) denote the output signals at the
legitimate receiver and the eavesdropper, respectively, at time
t (t = 1, . . . , MN ); {v(t)} and {u(t)} are independent
and identically distributed (i.i.d.) N (0, 1) random variable
sequences; hi and gi, for i = 1, . . . ,M , denote the normalized
(real) channel gains of the main channel and the eavesdropper
channel, respectively. Furthermore, we assume that the average
energy per symbol of the signal x(t) has the constraint that

E[|x(t)|2] ≤ P̄ , for t = 1, . . . , MN. (2)

Let h = [h1, . . . , hM ] and g = [g1, . . . , gM ] denote
vectors whose elements are the main channel gains and the
eavesdropper channel gains, respectively. We refer to (h,g) as
a channel pair and assume that the legitimate receiver knows
its channel h, while the eavesdropper knows its channel g.

1For example, in a 64 kb/s down-link reference data channel for universal
mobile telecommunications system (UMTS) data-transmission modes, each
slot can contain up to N ≈ 10000 dimensions [22].
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B. Wyner Codes

In this subsection, we consider a single-block transmission,
i.e., M = 1 and introduce Wyner codes [9], which form the
basis of our secure HARQ protocols.

Let C(R0, Rs, N) denote a Wyner code of size 2NR0 to
convey a confidential message set W = {1, 2, . . . , 2NRs},
where R0 ≥ Rs and N is the codeword length. The basic idea
of Wyner codes is to use a stochastic encoder to increase the
secrecy level [9], [10]. Hence, there are two rate parameters
associated with the Wyner code: the main channel code rate
R0 and the secrecy information rate Rs.2 The Wyner code
C(R0, Rs, N) is constructed based on random binning [9]
as follows. We generate 2NR0 codewords xN (w, v), where
w = 1, 2, . . . , 2NRs , and v = 1, 2, . . . , 2N(R0−Rs), by choos-
ing the N2NR0 symbols xi(w, v) independently at random
according to the input distribution p(x). A Wyner code en-
semble C(R0, Rs, N) is the set of all possible Wyner codes
of length N , each corresponding to a specific generation and
a specific labeling.

The stochastic encoder of C(R0, Rs, N) is described by a
matrix of conditional probabilities so that, given w ∈ W , we
randomly and uniformly select v from {1, 2, . . . , 2N(R0−Rs)}
and transmit xN = xN (w, v). We assume that the legitimate
receiver employs a typical-set decoder. Given yN , the legiti-
mate receiver tries to find a pair (w̃, ṽ) so that xN (w̃, ṽ) and
yN are jointly typical [23], i.e.,

{xN (w̃, ṽ), yN} ∈ TN
ε (PXY ),

where TN
ε (PXY ) represents the set of jointly typical sequences

with respect to a distribution PXY . If there is no such jointly
typical pair, then the decoder claims failure.

Assume that signals yN and zN are received at the legiti-
mate receiver and the eavesdropper, respectively, via a channel
pair (h, g). The average error probability is defined as

Pe(h) =
∑

w∈W
Pr

{
φ
(
Y N (w)

) 6= w|h,w sent
}

Pr(w), (3)

where φ
(
Y N (w)

)
is the output of the decoder at the legitimate

receiver and Pr(w) is the prior probability that message w ∈
W is sent.

The secrecy level, i.e., the degree to which the eavesdropper
is confused, is measured by the equivocation rate at the
eavesdropper. Perfect secrecy is achieved if for all ε > 0 the
equivocation rate satisfies

1
N

H(W |g, ZN ) ≥ 1
N

H(W )− ε. (4)

For conciseness, we make the following definition.

Definition 1. A code C of length N is good for a wire-tap
channel with the channel pair (h, g) if Pe(h) ≤ ε and the
perfect secrecy requirement (4) can be achieved, for all ε > 0
and sufficiently large N .

2We call R0 − Rs the secrecy gap, i.e. the rate sacrificed to ensure the
secrecy requirement.

C. Secure HARQ Protocols

We first consider a general secure HARQ protocol for an
M-block fading wire-tap channel. The transmitter encodes the
confidential information (and cyclic redundancy check (CRC)
bits) by using a mother code of length MN . The obtained
codeword xMN is partitioned into M blocks represented as
[xN

1 , xN
2 , . . . , xN

M ]. At the first transmission, the transmitter
sends the block xN

1 under the channel gain pair (h1, g1).
Decoding of this code is performed at the intended receiver,
while the secrecy level is measured at the eavesdropper. If
no error is detected, the receiver sends back an acknowledge-
ment (ACK) to stop the transmission; otherwise a negative
acknowledgement (NACK) is sent to request retransmission,
and the transmitter sends the block xN

2 under the channel gain
pair (h2, g2). Now, decoding and equivocation calculation are
attempted at the receiver and eavesdropper by combining the
previous block xN

1 with the new block xN
2 . The procedure

is repeated after each subsequent retransmission until all M
blocks of the mother code are transmitted or an HARQ session
completes due to the successful decoding at the intended
receiver.

Now, we focus on the error performance and secrecy level
after m transmissions, m = 1, 2, . . . , M . Let

x(m) = [xN
1 , . . . , xN

m], y(m) = [yN
1 , . . . , yN

m ],

and z(m) = [zN
1 , . . . , zN

m ]

denote the input, the output at the intended receiver, and the
output at the eavesdropper after m transmissions, respectively,
where xN

m, yN
m and zN

m denote the input and outputs in the m-
th transmission.

For a given channel pair (h,g), the average error probability
after the m transmissions is defined as

Pe(m|h) =
∑

w∈W
Pr

{
φ
(
Y(m)

) 6= w|w sent,h
}

Pr(w), (5)

where φ
(
Y(m)

)
denotes the output of the decoder at the

legitimate receiver after m transmissions.
The secrecy level after m transmissions is given by

1
mN

H(W |Z(m),g).

We say that perfect secrecy is achieved after m transmissions
if, for all ε > 0, the equivocation rate satisfies

1
mN

H(W |Z(m),g) ≥ 1
mN

H(W )− ε. (6)

We note that this definition implies that the perfect secrecy can
also be achieved after j transmissions, for j = 1, . . . , m− 1.

Similar to the definition of good codes for a single-block
transmission, we say that a code C of length mN is good
for the m-block transmission and a channel pair (h,g) if
Pe(m|h) ≤ ε and the perfect secrecy requirement (6) can
be achieved, for all ε > 0 and sufficiently large N .

In particular, we consider the following two secure HARQ
protocols based on different mother codes and different com-
bination techniques.
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1) Incremental Redundancy: In the INR secure HARQ
protocol, the mother code is a Wyner code of length MN ,
i.e.,

C ∈ C(R0, Rs,MN).

In the first transmission, the transmitted coded symbols x(1) =
[xN

1 ] form a codeword of a punctured Wyner code of length
N ,

C1 ∈ C (MR0, MRs, N) .

Similarly, after m transmission, m = 1, . . . , M , the (all)
transmitted coded symbols x(m) = [xN

1 , . . . , xN
m] form a

codeword of a punctured Wyner code of length mN ,

Cm ∈ C
(

MR0

m
,
MRs

m
,mN

)
.

At the legitimate receiver and the eavesdropper, decoding and
equivocation calculation are attempted, respectively, based on
the punctured code Cm.

We note that the punctured codes {CM , CM−1, . . . , C1}
form a family of rate-compatible Wyner codes with the secrecy
rates {

Rs,
M

M − 1
Rs, . . . , MRs

}
.

Hence, we refer to this protocol as the INR protocol based on
rate-compatible Wyner codes.

2) Repetition Time Diversity: We also consider a simple
time-diversity HARQ protocol based on the repetition of a
Wyner code. In this case, the mother code C is a concatenated
code consisting of the Wyner code C1 ∈ C (MR0,MRs, N)
as the outer code and a simple repetition code of length M as
the inner code, i.e.,

C = [C1, C1, . . . , C1︸ ︷︷ ︸
M

]. (7)

After each transmission, decoding and equivocation calcu-
lation are performed at the receiver and the eavesdropper,
respectively, based on maximal-ratio packet combining.

III. SECURE CHANNEL SET AND OUTAGE EVENTS

In this section, we study the error performance and the
secrecy level when a mother Wyner code is transmitted over
M parallel channels. Results given in this section form the
basis for the performance analysis of secure HARQ protocols.

Note that in the system model described in Section II, the
transmitter does not have any information on the instantaneous
channel state (except channel statistics); that is, one cannot
choose the code rate pair based on a particular fading channel
state. Instead, an in-advance fixed (Wyner) code rate pair
is used for all channel conditions. An important practical
question is: for a given pair of Wyner code rates, under what
channel conditions will the communication be reliable and
secure? In the following, we describe a secure channel set and
demonstrate that there exists a Wyner code sequence good for
all channel pairs in this set.

Definition 2. For a given pair of rates (R0, Rs) and a fixed
input distribution p(x), the secure channel set P is the union
of all channel pairs (h,g) satisfying

1
M

M∑

i=1

I(X; Y |hi) ≥ R0 (8)

and
1
M

M∑

i=1

I(X;Z|gi) ≤ R0 −Rs, (9)

where I(X; Y |hi) and I(X; Z|gi) are single letter mutual
information characterizations of the channel (1).

Based on this definition, we have the following lemma:

Lemma 1. There exists a Wyner code C ∈ C(R0, Rs,MN),
generated based on p(x), good for all channel pairs (h,g) ∈
P .

Proof: A proof of Lemma 1 is provided in Appendix A.

To facilitate the formulation of outage-based throughput,
we define that an outage event occurs when the channel pair
does not belong to the secure channel set, i.e., (h,g) /∈ P .
Specifically, we distinguish two types of outage: connection
outage3 and secrecy outage. In particular, we say that a
connection outage occurs if

1
M

M∑

i=1

I(X; Y |hi) < R0, (10)

while we say that a secrecy outage occurs if

1
M

M∑

i=1

I(X;Y |gi) > R0 −Rs. (11)

Accordingly, we can evaluate both connection outage and
secrecy outage probabilities, which are the probabilities of
each of the outage events averaged over all possible fading
states. In fact, the connection outage probability can be inter-
preted as the limiting error probability for large block length
packets; the secrecy outage probability can be regarded as an
upper bound on the probability of unsecured packets.

IV. SECURE HARQ WITH WYNER CODES

In this section, we evaluate the error performance and
measure the secrecy level during secure HARQ sessions.

An important part of an ARQ protocol is that decoding
errors should be detected, so that ACKs or NACKs can be
generated accurately. A complete decoding function (e.g. maxi-
mum a posteriori probability decoding or maximum-likelihood
decoding) requires the encoder to add extra redundancy to the
information bits, which decreases the throughput slightly. It is
shown in [1] that error detection can be accomplished by using
the built-in error detection capability of suboptimal decoders.

3The main channel is viewed as a communication link. Thelink is connected
if a packet can be delivered to the intended receiver successfully within the
delay constraint (within M transmissions), otherwise it is in the connection
outage. The connection outage probability defined in this paper is also referred
to as information outage probability in [20].
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Lemma 2. [1, Lemma 3] For any ε > 0 and channel h, any
code C of length MN satisfies

Pr (undetected error|h, C) < ε,

for all sufficiently large N .

Proof: The proof follows similarly to that given in [1].

A. Incremental Redundancy

To evaluate the performance of the INR protocol, we employ
the following M -parallel channel model. Let us focus on the
decoding after m transmissions, i.e., the coded blocks x(m) =
[xN

1 , . . . , xN
m] are transmitted, m = 1, . . . , M . As shown

in Fig. 2, the block xN
i experiences channel pair (hi, gi),

i = 1, . . . , m. We assume that each of the punctured blocks
[xN

m+1, . . . , x
N
M ] is sent to a dummy memoryless component

channel whose output is independent of the input.
In this case, the mother codeword is transmitted over

M parallel channels. At the legitimate receiver, the decoder
combines the real signal y(m) = [yN

1 , . . . , yN
m ] with M −m

dummy signal blocks [bN
1 , . . . , bN

M−m] to form

[yN
1 , . . . , yN

m , bN
1 , . . . , bN

M−m].

Similarly, the processed symbols at the eavesdropper are

[zN
1 , . . . , zN

m , dN
1 , . . . , dN

M−m],

where [dN
1 , . . . , dN

M−m] are M − m dummy signal blocks.
We note that the added dummy blocks do not affect either
the decoding at the legitimated receiver or the equivocation
calculation at the eavesdropper since they are independent of
the confidential message.

The codewords of the mother Wyner code C are transmitted
in at most M transmissions during the secure HARQ session.
By using the equivalent parallel channel model, we can
describe this secure HARQ problem as communication over
M parallel wire-tap channels and. Hence, we establish the
following theorem based on Lemma 1.

Theorem 1. Consider the secure INR protocol based on rate
compatible Wyner codes

{CM , CM−1, . . . , C1},
where

Cm ∈ C
(

MR0

m
,
MRs

m
,mN

)
, m = 1, . . . , M.

For a given pair of rates (R0, Rs) and an input distribution
p(x), let P(m) denote the union of all channel pairs (h,g)
satisfying

1
M

m∑

i=1

I(X;Y |hi) ≥ R0, (12)

and
1
M

m∑

i=1

I(X; Z|gi) ≤ R0 −Rs. (13)

Then, there exists a family of rate compatible Wyner codes
{CM , CM−1, . . . , C1} such that Cm is good for all channel
pairs (h,g) ∈ P(m), for i = 1, . . . , M .
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Fig. 2. M -parallel channel model for the INR protocol: the first m punctured
blocks are actually transmitted (solid lines); the remaining M −m punctured
blocks are assumed to be sent via M − m dummy memoryless channels
whose outputs are independent of the inputs (dashed lines).

Proof: We provide a proof of Theorem 1 in Appendix B.

B. Repetition Time Diversity

In the RTD secure HARQ protocol, both the legitimate
receiver and the eavesdropper combine several noisy obser-
vations of the same packet based on diversity techniques. The
optimal receivers perform maximal-ratio combining (MRC),
which essentially transforms the vector channel pair (h,g)
into a scalar channel pair (ĥ(m), ĝ(m)). Hence, after m
transmissions, the equivalent channel model can be written
as follows:

y(t) =
√

ĥ(m)x(t) + v(t)

and z(t) =
√

ĝ(m)x(t) + u(t) (14)

for t = 1, . . . , N , where ĥ(m) =
∑m

i=1 hi and ĝ(m) =∑m
i=1 gi.
Let L(m) denote the union of all channel pairs (h,g)

satisfying

I(X; Y |ĥ(m)) ≥ MR0, (15)
and I(X;Z|ĝ(m)) ≤ M(R0 −Rs), (16)

where I(X; Y |ĥ(m)) and I(X; Z|ĝ(m)) are single letter
mutual information characterizations of the channel (14). For
a given (finite) M , we have the following result for the RTD
secure HARQ protocol.
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Corollary 1. There exists a Wyner code C1 ∈
C (MR0,MRs, N) such that its m-repeating code

Cm = [C1, C1, . . . , C1︸ ︷︷ ︸
m

]

is good for all channel pairs (h,g) ∈ L(m), for m =
1, . . . ,M .

Proof: The proof follows directly from Lemma 1 by
setting M = 1.

V. SECRECY THROUGHPUT OF HARQ PROTOCOLS

In this section, we study the achievable secrecy throughput
for HARQ protocols. We focus on Rayleigh independent block
fading channels for illustration; other types of block fading
channels can be studied in a similar way.

We note that the optimal input distribution of the channel
(1) is not known in general when the transmitter has no
CSI. For the sake of mathematical tractability, we consider
Gaussian inputs. For INR, the mutual information I

[INR]
XY (m)

and I
[INR]
XZ (m) can be written as

I
[INR]
XY (m) =

1
2M

m∑

i=1

log2 (1 + λi)

and I
[INR]
XZ (m) =

1
2M

m∑

i=1

log2 (1 + νi) , (17)

where

λi = hiP̄ and νi = giP̄ , i = 1, . . . , M, (18)

are the signal-to-noise ratios (SNRs) at the legitimate receiver
and the eavesdropper, respectively, during transmission i.
For RTD, we can express the mutual information quantities
I
[RTD]
XY (m) and I

[RTD]
XZ (m) as

I
[RTD]
XY (m) =

1
2M

log2

(
1 +

m∑

i=1

λi

)

and I
[RTD]
XZ (m) =

1
2M

log2

(
1 +

m∑

i=1

νi

)
. (19)

Although we consider only Gaussian signaling here, the results
in Section IV can be applied to other input distributions, for
example, discrete signaling under modulation constraints.

LetM denote the number of transmissions within an HARQ
session. Given a distribution of the main channel SNR λ, for
both INR and RTD protocols, the probability mass function
of M can be expressed as

p[M = m] = Pr {IXY (m− 1) < R0, IXY (m) ≥ R0}
= Pr {IXY (m− 1) < R0}

−Pr {IXY (m) < R0} , m = 1, . . . , M − 1,

and p[M = M ] = Pr {IXY (M − 1) < R0} , (20)

where IXY (m) and IXZ(m) are chosen either from (19) or
from (17) corresponding to a specific HARQ protocol. Let Pe

denote the connection outage probability, and Ps denote the

secrecy outage probability. The definition in (20) implies that
Pe and Ps can be written as follows:

Pe = Pr {IXY (M) < R0} , (21)

Ps =
M∑

m=1

p[M = m]Pr {IXZ(m) > R0 −Rs} . (22)

Now, we study the secrecy throughput based on Pe and
Ps. We first consider a target secrecy outage probability ξs;
that is, at least a fraction 1 − ξs of the confidential message
bits sent by the transmitter are kept completely secret. Under
this constraint, the secrecy throughput η, measured in bits per
second per hertz, is defined to be the average number of bits
decoded at the legitimate receiver,

η = lim
t→∞

a(t)
tN

, (23)

where again N is the number of symbols in each block and
a(t) is the number of information bits successfully decoded
by the intended receiver up to time slot t (when a total of tN
blocks are sent). The event that the transmitter stops sending
the current codeword is recognized to be a recurrent event
[24]. A random reward R is associated with the occurrence
of the recurrent event. In particular, R = MRs bits/symbol if
transmission stops because of successful decoding, and R = 0
bits/symbol if it stops because successful decoding has not
occurred after M transmissions. By applying the renewal-
reward theorem [1], [24], we obtain the secrecy throughput
as

η(R0, Rs) =
E[R]
E[M]

=
MRs

E[M]
(1− Pe), (24)

where E[M] is the expected number of transmissions in order
to complete a codeword transmission, i.e.,

E[M] =
M∑

m=1

mp[M = m]

= 1 +
M∑

m=1

Pr {IXY (m) < R0} . (25)

We can properly choose the mother code parameters (R0

and Rs) based on channel statistics to obtain the maximum
throughput while satisfying a ξs-secrecy requirement. Hence,
we consider the following problem:

max
R0,Rs

η(R0, Rs) (26)

s.t. Ps ≤ ξs.

The optimization problem (26) imposes a probabilistic service
requirement in terms of confidentiality; that is, the service
quality is acceptable as long as the probability of the secrecy
outage is less than ξs, a parameter indicating the outage
tolerance of the application. Note that Ps is a decreasing
function of Rs according to (22), and η is linearly proportional
to Rs according to (24). Hence, we can solve the optimization
problem (26) in the following two steps: first, for given M , R0,
and ξs, we find the maximum value R∗s(R0); next, we obtain
the optimum R∗0, which maximizes the secrecy throughput
η(R0, R

∗
s(R0)).
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On the other hand, reliability is another important quality
of service parameter. To achieve both the connection outage
target ξe and the secrecy outage target ξs, we consider the
following problem

max
R0,Rs

η(R0, Rs) (27)

s.t. Ps ≤ ξs, Pe ≤ ξe.

In addition to the service requirement of confidentiality, prob-
lem (27) also imposes a probabilistic service requirement
on the connection outage, i.e., at least a fraction 1 − ξs of
HARQ sessions are successful. The connection outage con-
straint ensures that, at the expense of possibly lower average
throughput, the delay constraint (that a packet can be delivered
within M transmissions) is satisfied 1− ξs of the time, hence
enabling applications which trade average rate for decoding
delay like voice communication systems, e.g., CDMA2000
[25]. A similar constraint has been considered in [26] in terms
of service outage for parallel fading channels.

To evaluate p[m], Pe and Ps, we need the cumulative dis-
tribution functions (CDFs) of IXY (m) and IXZ(m). For the
RTD protocol, we can use the fact that

∑m
i=1 λi and

∑m
i=1 νi

are gamma distributed to express the CDFs of I
[RTD]
XY (m) and

I
[RTD]
XZ (m) in terms of incomplete gamma functions. In the

case of the INR protocol, the distributions of I
[INR]
XY (m) and

I
[INR]
XZ (m) cannot be written in closed form. Hence, we resort

to Monte-Carlo simulation in order to obtain empirical CDFs.
Note that Monte Carlo simulation is needed only to estimate
empirical CDFs, while (R∗0, R

∗
s) is found numerically by a

(non-random) search.

VI. ASYMPTOTIC ANALYSIS

In general, the secrecy throughput of the INR protocol is
difficult to calculate since there is no closed form available
for Pr{IXY (m) < R0}. In this section, we consider the
asymptotic secrecy throughput, which does have a closed form.

We are interested in asymptotic results as M increases with-
out bound. Note that this asymptote corresponds to a delay-
unconstrained system. In this case, secure HARQ protocols
yield zero packet loss probability, i.e., the transmission of a
codeword ends only when it is correctly decoded. As a result,
the problems (26) and (27) yield the same throughput, which
can be obtained from (24) as follows:

η(R0, Rs) =
MRs

E[M]

=
MRs

1 +
∑M

m=1 Pr {IXY (m) < R0}
. (28)

Let us consider how to choose a mother Wyner code based
on channel statistics information for the INR protocol in order
to meet reliability and confidentiality constraints when M
is large. Let λ and ν denote the instantaneous SNRs at the
legitimate receiver and the eavesdropper, respectively.

Lemma 3. Consider an INR secure HARQ protocol with the
mother Wyner code C ∈ C(R0, Rs,MN). Then

lim
M→∞

P [INR]
e = 0 and lim

M→∞
P [INR]

s = 0, (29)

if and only if

R0 ≤ 1
2
E[log2(1 + λ)]

and R0 −Rs ≥ R0
E[log2(1 + ν)]
E[log2(1 + λ)]

, (30)

where the expectations are over λ and/or ν. Furthermore, if
(30) does not hold, then

either lim
M→∞

P [INR]
e = 1 or lim

M→∞
P [INR]

s = 1. (31)

Proof: A proof of Lemma 3 is given in Appendix C.
For comparison, we consider the situation in which the

Wyner code C is transmitted over M -block fading channel
without using the HARQ protocol. We refer to this case as
the M -fading-block (MFB) coding scheme. Lemma 1 implies
that, by using the MFB scheme, the requirement (29) can be
achieved if and only if

R0 ≤ 1
2
E[log2(1 + λ)]

and R0 −Rs ≥ 1
2
E[log2(1 + ν)]. (32)

We note that the condition (30) for the INR protocol is weaker
than the condition (32) for the MFB scheme. In other words,
the INR scheme can achieve the confidentiality and reliability
requirements more easily than can the MFB coding scheme by
using the same Wyner code. This result illustrates the benefit
of the INR secure HARQ protocol.

Based on Lemma 3, we have the following asymptotic
result concerning the achievable throughput for secure HARQ
protocols.

Theorem 2. We consider the secure HARQ protocols over a
block-fading wire-tap channel. If the secrecy information rate
R0 satisfies

lim
M→∞

1
MRs

= 0, (33)

then the secrecy throughput of RTD and INR protocols can be
written as follows:

lim
M→∞

max
R0,Rs

η(R0, Rs)

=
{

0 RTD
(1/2)E [log2(1 + λ)− log2(1 + ν)] INR ,

where λ and ν are the instantaneous SNRs at the legitimate
receiver and the eavesdropper, respectively.

Proof: We provide a proof in Appendix D.
We note that the RTD protocol involves suboptimal coding

schemes, for which E[M] grows faster than MRs in (28).
Hence, the limiting secrecy throughput η is zero. Theorem 2
again asserts the benefit of INR over RTD.

VII. NUMERICAL RESULTS

In our numerical examples, we consider Rayleigh block
fading, i.e. the main channel instantaneous SNR λ has the
probability density function (PDF) f(λ) = (1/λ̄)e−λ/λ̄, and
the eavesdropper channel instantaneous SNR ν has the PDF
f(ν) = (1/ν̄)e−ν/ν̄ , where λ̄ and ν̄ are the average SNRs of
the main and eavesdropper channels, respectively.
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Fig. 3. Secrecy throughput η versus the main channel code rate R0 under
different secrecy requirements ξs, where the main channel average SNR is
15dB, the eavesdropper channel average SNR is 5dB, and the maximum
number of transmissions is M = 8.

A. Secrecy Throughput η Versus Coding Rates R0, Rs

To illustrate how the secrecy throughput η is related to
the choice of R0 (and Rs), we give a numerical example of
η versus R0 in Fig. 3, in which the parameter settings are
as follows: the main channel average SNR λ̄ is 15dB, the
eavesdropper channel average SNR ν̄ is 5dB, the maximum
number of transmissions M is 8. (We observe that similar
results are obtained by using other parameter settings.) For
each R0, we obtain the maximum R∗s(R0) that meets the
secrecy constraint ξs = 1, 10−2 or 10−4, respectively. When
there is no secrecy constraint (ξs = 1), due to the sub-
optimality of the RTD scheme, the RTD curve is uniformly
below the INR curve. This does not happen when there is
a secrecy constraint. The reason is that INR not only favors
the information transmission to the intended receiver, but also
benefits the eavesdropping by the eavesdropper. Hence, INR
needs to sacrifice a larger portion of the main channel code
rate than RTD in order to keep the eavesdropper ignorant of
the confidential messages. This fact is depicted in Fig. 3 where
a larger R0 has to be chosen for INR (than RTD) in order to
obtain a positive secrecy throughput.

It is clear from Fig. 3 that there exists a unique R∗0 (and
therefore R∗s(R∗0)) which maximizes η for each parameter
setting. For all secrecy constraints (ξs = 1, 10−2 or 10−4),
if the best R∗0 and R∗s(R

∗
0) are chosen for each scheme, INR

yields higher secrecy throughput than RTD does, which shows
the benefit of INR over RTD.

According to (21), the choice of R0 decides the reliability
performance. This is shown in Fig. 4, where we plot the
connection outage probability Pe versus the value of R0. For
both INR and RTD, Pe increases with the value of R0. Note
that a more strict secrecy constraint requires a larger R∗0 (as
shown in Fig. 3), which however causes degradation of the
reliability performance. Hence, we here observe that there
exists a tradeoff between secrecy and reliability.
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Fig. 4. Connection outage probability Pe versus the main channel code rate
R0, where the main channel average SNR is 15dB, the eavesdropper channel
average SNR is 5dB, and M = 8.

B. Secrecy Throughput η With and Without a Connection
Outage Constraint

Given a strict connection outage constraint Pe < ξe, the
choice of R∗0 (and R∗s(R

∗
0)) might not be feasible. For instance,

in order to obtain Pe < 10−3, we need to choose R
[RTD]
0 ≤

0.38 and R
[INR]
0 ≤ 1.25 (marked with ‘A’ and ‘B’ respectively

in Fig. 3 and Fig. 4). Specifically, for a connection outage
constraint Pe < 10−3, R∗0 is not feasible for INR when ξs =
10−2, and R∗0 is not feasible for both INR and RTD when ξs =
10−4 in Fig. 3. Note that for the case of ξs = 10−4 (and ξe =
10−3), positive secrecy throughput cannot be obtained for INR,
but can be obtained for RTD. This implies that RTD might
outperform INR, when we have strict secrecy and connection
outage constraints. This is a surprising result in the view of
the well-known HARQ performance when there is no secrecy
constraint, where INR always outperforms RTD [1].

In Fig. 5 and 6, we show the secrecy throughput η under
different target secrecy outage probabilities ξs. There is no
connection outage requirement in Fig. 5. There is an additional
connection outage requirement of pe ≤ ξe = 10−3 in Fig.
6. The parameter settings are λ̄ = 15dB, ν̄ = 5dB and
M = 8. We can see that small secrecy outage probability can
be achieved when the throughput is small for both protocols.
The INR protocol outperforms the RTD protocol uniformly
when there is no connection outage requirement. However,
when there is a strict connection outage requirement, the RTD
protocol outperforms the INR protocol when ξs is small (e.g.,
ξs ≤ 10−4).

C. Secrecy Throughput η and the Maximum Number of Trans-
missions M

In Fig. 7, we show the secrecy throughput η versus the
maximum number of transmissions M . Comparing with the
secrecy throughput without the connection outage constraint,
the secrecy throughput with a connection outage constraint
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Fig. 5. Throughput η versus target secrecy outage probability ξs, when the
main channel average SNR is 15dB, the eavesdropper channel average SNR
is 5dB, and M = 8.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ
s

η

INR 

RTD 

Fig. 6. Throughput η versus target secrecy outage probability ξs under
connection outage probability ξe = 10−3, when the main channel average
SNR is 15dB, the eavesdropper channel average SNR is 5dB, and M = 8.

(Pe ≤ 10−3) suffers some loss when M is small due
to insufficient diversity. Both secrecy throughputs converge
when sufficient diversity can be obtained as M increases. In
particular, when M → ∞, both throughputs are the same
and are given by (28) in the asymptotic analysis. For INR,
the secrecy throughput η[INR] increases monotonically with
M . For RTD, η[RTD] decreases with M due to its strongly
suboptimal coding scheme. This concurs with the asymptotic
analysis that, when M → ∞, a constant (nonzero) secrecy
throughput (0.5 ∗ E [log2(1 + λ)− log2(1 + ν)] = 1.31 ac-
cording to Theorem 3) can be achieved for INR, while zero
throughput can be obtained for RTD.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have studied secure packet communication
over frequency-flat block-fading Gaussian channels, based on
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Fig. 7. Throughput η versus the maximum number of transmissions M
under a target secrecy outage probability ξs = 10−3, when the main and
eavesdropper channel average SNRs are 15dB and 5dB, respectively.

secure HARQ protocols with the joint consideration of channel
coding, secrecy coding and retransmission protocols. From an
information theoretic point of view, we have considered two
secure HARQ protocols: a repetition time diversity scheme
with maximal-ratio combining (RTD), and an incremental
redundancy scheme based on rate-compatible Wyner secrecy
codes (INR). We have proved the existence of good Wyner
code sequences, which ensure that the legitimate receiver can
decode the message and the eavesdropper can be kept ignorant
of it for an HARQ session under certain channel realizations.

To facilitate the formulation of the outage-based throughput,
we have defined two types of outage: connection outage and
secrecy outage. The outage probabilities, more specifically, the
connection and secrecy outage probabilities have been used to
characterize the tradeoff between the reliability of the legiti-
mate communication link and the confidentiality with respect
to the eavesdropper’s link. We have evaluated the achievable
throughput of RTD and INR protocols under probabilistic
requirements (constraints) on secrecy outage and/or connection
outage, and have illustrated the benefits of HARQ schemes to
information secrecy through some numerical results and an
asymptotic analysis.

In general, INR can achieve a significantly larger throughput
than RTD, which concurs with the result not involving secrecy
that mutual-information accumulation (INR) is a more effec-
tive approach than SNR-accumulation (RTD). However, when
one is forced to ensure small connection outage for the main
channel even when it is bad, one is forced to reduce the main
channel code rate. The INR scheme, having a larger coding
gain (to both the intended receiver and the eavesdropper),
needs to sacrifice a larger portion of the main channel code
rate (i.e., requires a larger secrecy gap) in order to satisfy
the secrecy requirement. Hence when the main channel code
rate is bounded due to the connection outage constraint, the
achievable secrecy throughput of INR may be smaller than
that of RTD.

We conclude this work by pointing out some future research
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directions.
First, as pointed out in [27], many practical encoders are

separated from the modulator and therefore the performance
of HARQ protocols is impacted by modulation constraints.
Although we have assumed Gaussian signaling, it is possible
and also meaningful to extend the analysis to take discrete
signaling into account.

In our analysis, we have assumed random coding and typical
set decoding. Future work should consider practical coding and
decoding schemes for secure HARQ protocols. Existing work
on the practical secrecy code design includes coset coding
[28], low-density parity check (LDPC) code design [29], and
nested codes [30]. The design of practical rate compatible
secrecy codes for Gaussian channels remains a challenging
problem.

APPENDIX A
PROOF OF LEMMA 1

For convenience, let p , (h,g) and P∗ denote the set of
channel pairs (h,g) so that

1
M

M∑

i=1

I(X;Y |hi) = R0 + δ (34)

and
1
M

M∑

i=1

I(X;Z|gi) = R0 −Rs + δ, (35)

where δ > 0 is arbitrarily small. It is clear that P∗ ⊆ P when
δ → 0.

In order to prove Lemma 1, we first consider the following
lemma.

Lemma A.1. There exists a code C∗ ∈ C(R0, Rs,MN) that
is good for any channel pair p ∈ P∗.

A. Proof of Lemma A.1
Proof: The proof of Lemma A.1 is a combination of the

arguments for Wyner codes and compound parallel channels.
Following standard continuity arguments [23], we consider

a quantization of the input and output of the channel (1) and
work on the resulting discrete channel. Given a channel pair
p = (h,g), on every fading block i ∈ [1, M ], the channel is
time-invariant and memoryless. Let x denote the input, and
let y and z denote the outputs at the legitimate receiver and
the eavesdropper, respectively. We denote that H(X) is the
input entropy per letter, H(Y |hi) and H(Z|gi) are the output
entropy per letter at the intended receiver and the eavesdropper,
respectively, in block i = 1, . . . , M , and H(X, Y |hi) and
H(X, Z|gi) are the joint entropies per letter in block i. We
define the typical set TN

ε as the set of all sequences (x,y, z)
for which the sample means (over MN symbols) are within
ε of their limits (when N , the number of symbols each block
approaches infinity).

The random coding ensemble C = C(R0, Rs,MN) is
constructed by generating 2NMR0 codewords x(w, v), where
w = 1, 2, . . . , 2NMRs and v = 1, 2, . . . , 2NM(R0−Rs), by
choosing the (MN)2NMR0 symbols independently at random.
Given w ∈ W = {1, 2, . . . , 2NMRs}, the encoder randomly
and uniformly selects a v from {1, 2, . . . , 2NM(R0−Rs)} and
transmits x(w, v).

1) Error Analysis: Given a message w ∈ W , the legitimate
receiver declares that x was transmitted, if x is the only
codeword that is jointly typical with y. An error is declared
if either x is not jointly typical with y, or there is another
codeword x̃ jointly typical with y. Let us denote this type of
error as E1 and the probability of error E1 averaged over the
code ensemble C as EC∈C [Pr(E1|p, C)].

Let B(w) denote the set of codewords corresponding to
message w ∈ W . Suppose that the eavesdropper gets to
know w a priori, based on which it tries to determine which
codeword was sent. The eavesdropper declares that x was sent,
if x is the only codeword in B(w) that is jointly typical with
z. An error is declared if either x is not jointly typical with
z, or there is another codeword x̃ in B(w) jointly typical
with z. We denote this type of error as E2 and the average
probability of the error averaged over the code ensemble C as
EC∈C [Pr(E2|p, C)].

Now we define an error event E , which occurs whenever E1

or E2 occurs, i.e. E , E1∪E2. By following the same steps in
[23, Theorem 8.7.1] and using the union bound, we have for
any p ∈ P∗,

EC∈C [Pr(E|p, C)]
≤ EC∈C [Pr(E1|p, C)] + EC∈C [Pr(E2|p, C)]
≤ ε1 + ε2 = ε3.

It is clear that the average error probability, averaged over the
channel set P∗ is

Ep∈P∗ [EC∈C [Pr(E|p, C)]] ≤ ε3.

Interchanging expectations with respect to p ∈ P∗ and with
respect to C ∈ C (since the integrand is nonnegative and
bounded by 1) yields

EC∈C [Ep∈P∗ [Pr(E|p, C)]] ≤ ε3.

Then, there exists a sequence of codes C∗ ∈ C (for increasing
N ) such that

Ep∈P∗ [Pr(E|p, C∗)] ≤ ε3,

where Pr(E|p, C∗) is a random variable that is a function of
the channel pair p. According to the Markov inequality, we
have

Pr (Pr(E|p, C∗) ≥ √
ε3) ≤ Ep∈P∗ [Pr(E|p, C∗)]√

ε3

≤ ε3√
ε3

=
√

ε3.

By letting
√

ε3 = ε4 (ε4 is still arbitrarily small) and noting
that Pr(E1|p, C∗) and Pr(E2|p, C∗) are both upper bounded
by Pr(E|p, C∗), we have that

Pr (Pr(E1|p, C∗) < ε4) ≥ 1− ε4 (36)
and Pr (Pr(E2|p, C∗) < ε4) ≥ 1− ε4. (37)

According to (36), there exists a (non-random) sequence of
codes C∗ ∈ C(R0, Rs,MN), which when used, the legitimate
receiver can decode the message with arbitrarily small error
probability for all p ∈ P∗ with probability 1. Inequality (37)
will be used in the equivocation calculation as followed.
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2) Equivocation Calculation: Now we calculate the equiv-
ocation rate to check whether the perfect secrecy requirement
can be satisfied when codebook C∗ is used.

We bound the equivocation at the eavesdropper as follows:

H(W |Z,h,g)
= H(W,Z|h,g)−H(Z|h,g)
= H(W,Z,X|h,g)−H(Z|h,g)−H(X|W,Z,h,g)
= H(X|h,g) + H(W,Z|X,h,g)−H(Z|h,g)

−H(X|W,Z,h,g)
≥ H(X|h,g)− I(X;Z|h,g)−H(X|W,Z,h,g).

For the first term, we notice that

H(X|h,g) = NMR0. (38)

To bound the second term, we define

µ(X,Z|h,g) =
{

1 if (X,Z) /∈ TN
ε (PXZ)

0 otherwise.

Now

I(X;Z|h,g)
≤ I(X, µ;Z|h,g)
= I(X;Z|h,g, µ) + I(µ;Z|h,g)

=
1∑

j=0

Pr(µ = j)I(X;Z|h,g, µ = j) + I(µ;Z|h,g).

Note that I(µ;Z|h,g) ≤ h(µ) ≤ 1,

Pr(µ = 1)I(X;Z|h,g, µ = 1)

≤ NPr
[
(X,Z) /∈ TN

ε (PXZ)|h,g
]
log2 |Z|

≤ Nε log2 |Z|,
and

Pr(µ = 0)I(X;Z|h,g, µ = 0)
≤ I(X;Z|h,g, µ = 0)
= H(X|h,g, µ = 0) + H(Z|h,g, µ = 0)

−H(X,Z|h,g, µ = 0)

≤ N

[
MH(X) +

M∑

i=1

H(Z|gi)−
M∑

i=1

H(X,Z|gi) + 3ε

]

= N

[
M∑

i=1

I(X; Z|gi) + 3ε

]
.

Therefore, we can bound the second term as

I(X;Z|h,g)

≤ N

[
M∑

i=1

I(X;Z|gi) + (log2 |Z|+ 3)ε

]
+ 1

= NM [R0 −Rs + δ − (log2 |Z|+ 3)ε− 1/N ]
= NM(R0 −Rs + δ1). (39)

To bound the third term, we need to use (37), according to
which the eavesdropper can decode X with arbitrarily small

error probability, given that W is known in prior and Z is
observed. Fano’s inequality implies that

H(X|W,Z,h,g) ≤ 1 + NM(R0 −Rs)Pr(E2|p, C∗)

, NMδ2, (40)

for every channel pair p ∈ P∗.
Now we can combine (38), (39) and (40) into the equivo-

cation calculation:

H(W |Z,h,g) ≥ NMR0 −NM(R0 −Rs + δ1)−NMδ2

= NM(Rs − δ3). (41)

Note that the above equivocation calculation is obtained
when (non-random) code C∗ is used, instead of the random
code ensemble C(R0, Rs,MN). Equation (41) implies that
the perfect secrecy requirement is met. This, together with the
error probability analysis, implies that code C∗ is good for all
channel pairs p ∈ P∗ with probability 1.

B. Proof of Lemma 1

Proof: Now we show that code C∗ is also good for any
channel pair p ∈ P .

Note that for every p = (h,g) ∈ P , there always exists
a channel pair p∗ = (h∗,g∗) ∈ P∗, such that h º h∗ and
g ¹ g∗. To see this, we consider h and h∗ first. We denote
f(h) = 1

M

∑M
i=1 I(X;Y |hi), and note that f(0) = 0 and

that f(h) is a continuous and an increasing function of hi

(for any i ∈ [1,M ]) when other hj , 1 ≤ j 6= i ≤ M are
fixed. Therefore, based on the intermediate value theorem, for
every h for which f(h) > R0, there exists one h∗ ¹ h for
which f(h∗) = R0 + δ, where δ is arbitrarily small. Similar
arguments can be applied to g and g∗. For every g for which
f̃(g) = 1

M

∑M
i=1 I(X; Z|gi) < R0 − Rs, there exists one

g∗ º g for which f̃(g∗) = R0−Rs +δ, where δ is arbitrarily
small.

We denote the input X, and the outputs at the legitimate
receiver and the eavesdropper by Y and Z, respectively, when
the channel is (h,g). We also denote by Y1 and Z1 the outputs
at the corresponding receivers when the channel is (h∗,g∗).
Since code C∗ is good for (h∗,g∗), Y1 can be decoded with
arbitrarily small error probability at the legitimate receiver
while the equivocation at the eavesdropper with Z1 being
observed satisfies

H(W |Z1,g∗) ≥ H(W )−Nε (42)

for all ε > 0 and a sufficiently large N . Since h º h∗, Y1 is
a degraded version of Y, and thus if Y1 can be decoded at
the legitimate receiver with arbitrarily small error probability,
then so can Y. We also have that

H(W |Z,g)−H(W |Z1,g∗)
= I(W ;Z1|g∗)− I(W ;Z|g) ≥ 0,

where we use the fact that Z is a degraded version of Z1,
since g ¹ g∗. Therefore,

H(W |Z,g) ≥ H(W |Z1,g∗) ≥ H(W )−Nε, (43)

for all ε > 0 and sufficiently large N , which is the perfect
secrecy requirement.
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APPENDIX B
PROOF OF THEOREM 1

Proof: We note that the punctured code Cm is obtained
by taking the first m blocks, x(m) = [xN

1 , . . . , xN
m], of the

mother code C, where the block xN
i is transmitted over a

wire-tap channel with channel pairs (hi, gi), for i = 1, . . . , m.
Based on the equivalent M -parallel channel model, we can
form a new sequence of channel pairs by adding M − m
dummy memoryless channels whose outputs are independent
of the input. For example, we can let hi = 0 and gi = 0 for
all i = m + 1, . . . ,M . The dummy channel pairs have zero
mutual information between the input and output; that is,

M∑

i=1

I(X;Y |hi) =
m∑

i=1

I(X;Y |hi)

and
M∑

i=1

I(X; Z|gi) =
m∑

i=1

I(X;Z|gi).

Now, by using Lemma 1 and the fact P(m) ⊆ P , we have
the desired result.

APPENDIX C
PROOF OF LEMMA 3

Applying the weak law of large numbers, we have the
following lemma that is used in the proofs of Lemma 3 and
Theorem 2.

Lemma C.1. Let Ai be i.i.d. random variables with means
µA and variances σ2

A. Then, for alll ε > 0,

lim
M→∞

Pr

[
1
M

M∑

i=1

(Ai − µA) < ε

]
= 1

and lim
M→∞

Pr

[
1
M

M∑

i=1

(Ai − µA) < −ε

]
= 0. (44)

Now, we consider the proof of Lemma 3.
Proof: Define Ai = (1/2) log2(1+λi) and its mean µA =

E[Ai], and Bi = (1/2) log2(1+νi) and its mean µB = E[Bi],
for i = 1, . . . ,M . The connection outage probability P

[INR]
e ,

defined in (21), can be rewritten as follows:

P [INR]
e = Pr

(
1
M

M∑

i=1

Ai < R0

)

= Pr

(
1
M

M∑

i=1

(Ai − µA) < R0 − µA

)
.

By using Lemma C.1, we have, for all ε > 0,

lim
M→∞

P [INR]
e =

{
0, R0 ≤ µA − ε
1, R0 ≥ µA + ε.

(45)

We first prove the sufficiency given by (29) in Lemma 3
and show that if

R0 ≤ µA − ε and R0 −Rs ≥ R0

(
µB

µA − ε
+ ε

)
, (46)

then (29) holds.

Define

M1 =
⌊

MR0

µA − ε

⌋
. (47)

Note that (46) implies that M1 ≤ M . Hence, we can bound the
secrecy outage probability P

[INR]
s , defined in (22), as follows:

P [INR]
s =

M1∑
m=1

p[m]Pr

(
1
M

m∑

i=1

Bi ≥ R0 −Rs

)

+
M∑

m=M1+1

p[m]Pr

(
1
M

m∑

i=1

Bi ≥ R0 −Rs

)

≤
(

M1∑
m=1

p[m]

)
Pr

(
1
M

M1∑

i=1

Bi ≥ R0 −Rs

)

+
M∑

m=M1+1

p[m]

≤ Pr

[
M1∑

i=1

Bi ≥ M(R0 −Rs)

]
+ Pr

(
M1∑

i=1

Ai < MR0

)

(48)

It can be further bounded by

P [INR]
s = Pr

[
M1∑

i=1

Bi − µB

M1
≥ M(R0 −Rs)

M1
− µB

]

+ Pr

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)

≤ Pr

[
M1∑

i=1

Bi − µB

M1
≥ ε(µA − ε)

]

+ Pr

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)
, (49)

where the last step follows from the condition (46) and the
definition of M1 in (47). Applying Lemma C.1, we have

lim
M→∞

Pr

[
M1∑

i=1

Bi − µB

M1
≥ ε(µA − ε)

]
= 0 (50)

and

lim
M→∞

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)

= lim
M→∞

Pr

(
M1∑

i=1

Ai − µA

M1
< −ε

)
= 0. (51)

Combining (45), (49), (50), and (51), we have (29).
Next, we prove the necessity given by (31) in Lemma 3.

Based on (45) we need only to show that if

R0 −Rs ≤ R0

(
µB

µA
− ε

)
and R0 < µA + ε, (52)

then limM→∞ P
[INR]
s = 1. Define

M2 =
⌈

M(R0 −Rs)
µB − ε2

⌉
(53)
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where ε2 = (µA − ε)ε. Note that the condition (52) implies
that M2 ≤ M . In this case, we obtain the following lower
bound on P

[INR]
s :

P [INR]
s

≥
M∑

m=M2

p[m]Pr

[
m∑

i=1

Bi ≥ M(R0 −Rs)

]

≥
(

M∑

m=M2

p[m]

)
Pr

[
M2∑

i=1

Bi ≥ M(R0 −Rs)

]

= Pr

(
M2−1∑

i=1

Ai < MR0

)
Pr

[
M2∑

i=1

Bi ≥ M(R0 −Rs)

]

= Pr

(
M2−1∑

i=1

Ai − µA

M2 − 1
<

MR0

M2 − 1
− µA

)

× Pr

[
M2∑

i=1

Bi − µB

M2
≥ M(R0 −Rs)

M2
− µB

]
. (54)

Based on the condition (52) and the definitions of M2 and ε2,
we have

MR0

M2 − 1
− µA =

MR0

dM(R0 −Rs)/(µB − ε2)e − 1
− µA

≥ R0

R0 −Rs
(µB − ε2)− µA

≥ µAε2

µB − εµA
> 0.

By applying Lemma C.1, we have

lim
M→∞

Pr

(
M2−1∑

i=1

Ai − µA

M2 − 1
<

MR0

M2 − 1
− µA

)
= 1. (55)

On the other hand, since

M(R0 −Rs)
M2

− µB ≤ −ε2 < 0,

Lemma C.1 implies that

lim
M→∞

Pr

(
1

M2

M2∑

i=1

(Bi − µB) ≥ R0 −Rs

M2
− µB

)
= 1.

(56)
Finally, combining (45), (54), (55), and (56), we have the
necessity of Lemma 3.

APPENDIX D
PROOF OF THEOREM 2

To derive Theorem 2, we need the following lemmas from
[1].

Lemma D.1. Suppose A be a random variable with CDF FA.
Then, for all a and ã. we have

FA(a) ≤ FA(ã) + 1(a ≥ ã) (57)

where 1(·) denote the indicator function.

Lemma D.2. Suppose {Ai} is a sequence of i.i.d. zero mean
random variables with variances σ2

A. Then, for all ε > 0 and
sufficiently large n,

Pr

(
1√
n

n∑

i=1

Ai < −√nε

)
≤ exp

(
−n

ε2

2σ2
A

)
. (58)

We note that Lemma D.2 follows from the central limit
theorem and the bound on the Gaussian tail function, Q(a) ≤
exp(−a2/2), where Q denotes the tail function of the standard
Gaussian distribution.

A. INR Protocol

Proof: Again, we define Ai = (1/2) log2(1 + λi) with
mean µA = E[Ai] and variance σ2

A, Bi = (1/2) log2(1 + νi)
with mean µB = E[Bi], for i = 1, . . . ,M , and

M4 =
⌊

MR0

µA + ε

⌋
.

The reliability condition in (45) implies M4 ≤ M .
We first consider an upper bound of η[INR] based on (28):

η[INR] ≤ MRs

[
M4∑

m=1

Pr

(
m∑

i=1

Ai < MR0

)]−1

≤ MRs

[
M4∑

m=1

Pr

(
M4∑

i=1

Ai < MR0

)]−1

=
MRs

M4

{
Pr

[
M4∑

i=1

Ai − µA

M4
<

MR0

M4
− µA

]}−1

.

Since MR0/M4 − µA ≥ ε > 0, according to Lemma C.1, we
have

lim
M→∞

Pr

[
M4∑

i=1

Ai − µA

M4
<

MR0

M4
− µA

]
= 1. (59)

Hence,

lim
M→∞

η[INR] ≤ lim
M→∞

MRs

M4
=

Rs

R0
µA. (60)

Next, we consider a lower bound on η[INR]. Let M5 =
bMR0/(µA − ε)c. We have

1
η[INR]

≤ 1
MRs

+
1

MRs

M∑
m=1

[
Pr

(
m∑

i=1

Ai

m
< µA − ε

)

+1
(

MR0

m
≥ µA − ε

)]
(61)

=
1 + L(M)

MRs
+

M5

MRs
,

where (61) follows from Lemma D.1 and

L(M) =
M∑

m=1

Pr

(
1
m

m∑

i=1

(Ai − µA) < −ε

)
. (62)
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By Lemma D.2, there exists an integer n, finite and indepen-
dent of R0, so that

L(M) =
n∑

m=1

Pr

(
1
m

m∑

i=1

(Ai − µA) < −ε

)

+
M∑

m=n+1

Pr

(
1
m

m∑

i=1

(Ai − µA) < −ε

)

≤
n∑

m=1

Pr

(
1
m

m∑

i=1

(Ai − µA) < −ε

)

+
∞∑

m=n+1

exp
(
−m

ε2

2σ2
A

)
.

Since the first sum contains a finite number of terms (each
being less than 1), and the second converges for all ε > 0, we
have that

lim
M→∞

1 + L(M)
MRs

= 0.

Hence, we have that

lim
M→∞

η[INR] ≥ lim
M→∞

MRs

M5
=

Rs

R0
µA. (63)

Combining (60) and (63), we obtain

lim
M→∞

η[INR] =
Rs

R0
µA =

Rs

2R0
E [log2(1 + λ)] . (64)

Furthermore, Lemma 3 implies that

Rs

R0
≤ 1− E[log2(1 + ν)]

E[log2(1 + λ)]
. (65)

Finally, combining (64) and (65), we have the desired result
that

lim
M→∞

η[INR] =
1
2
E [log2(1 + λ)− log2(1 + ν)] .

B. RTD Scheme

Proof: We first consider the connection outage proba-
bility P

[RTD]
e . Let Ai = λi with mean µA = E[λi], for

i = 1, . . . ,M . Based on (21) we have

P [RTD]
e = Pr

[
1

2M
log2

(
1 +

M∑

i=1

Ai

)
< R0

]

= Pr

(
M∑

i=1

Ai − µA

M
<

22MR0 − 1
M

− µA

)
.

By using Lemma C.1, we have, for all ε > 0,

lim
M→∞

P [RTD]
e =

{
0, 1

M (22MR0 − 1) ≤ µA − ε
1, 1

M (22MR0 − 1) ≥ µA + ε.
(66)

Hence, to ensure the connection outage requirement, R0

should satisfy

22MR0 − 1
M

< µA + ε. (67)

Now, we consider an upper bound on η[RTD]. Let

M3 =
⌊

22MR0 − 1
µA + ε

⌋
< M,

where the inequality follows from (67). By using (28), we
have

η[RTD] ≤ MRs

[
1 +

M3∑
m=1

Pr

(
m∑

i=1

Ai < 22MR0 − 1

)]−1

≤ MRs

[
M3∑

m=1

Pr

(
M3∑

i=1

Ai < 22MR0 − 1

)]−1

≤ MR0

M3

[
Pr

(
M3∑

i=1

Ai − µA

M3
<

22MR0 − 1
M3

− µA

)]−1

.

Since (22MR0 − 1)/M3 − µA ≥ ε > 0 and Lemma C.1, we
have that

lim
M→∞

Pr

(
M3∑

i=1

Ai − µA

M3
<

22MR0 − 1
M3

− µA

)
= 1.

Therefore,

lim
M→∞

η[RTD] ≤ lim
M→∞

MR0

M3
= lim

M→∞
MR0(µA + ε3)

22MR0 − 1
= 0.

REFERENCES

[1] G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols
for the Gaussian collision channel,” IEEE Trans. Inf. Theory, vol. 47,
no. 5, pp. 1971–1988, Jul. 2001.

[2] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC
codes) and their applications,” IEEE Trans. Commun., vol. 36, no. 4,
pp. 389–400, Apr. 1988.

[3] K. R. Narayanan and G. L. Stuber, “A novel ARQ technique using the
turbo coding principle,” IEEE Commun. Lett., vol. 1, no. 2, pp. 49–51,
Mar. 1997.

[4] D. Tuninetti and G. Caire, “The throughput of some wireless multiaccess
systems,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 2773–2785, Oct.
2002.

[5] E. Soljanin, R. Liu, and P. Spasojević, “Hybrid ARQ with random
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