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sitions are removed. The general algorithm to construct permutation
DPMs from the multilevel construction, is

Input: (x1; x2; . . . ; xM)
Output: (y1; y2; . . . ; yM )
begin

(y1; y2; . . . ; yM )  (1; 2; . . . ;M)
if x1 = 1 then

for i from 1 to b(M + 2)=4c
swap(y4i�3; y4i�2)

if x2 = 1 then

for i from 1 to bM=4c
swap(y4i�1; y4i)

for i from 1 to L � 1
for j from 1 to 2i

if j � M � 2i then
if xj+2 = 1 then

for k from 1 to b(M � j + 2i)=2i+1c
p = j + 2i+1(k � 1)
swap(yp; yp+2 )

end.

This algorithm then produces mappings with the same jEj values as
those listed in [8] for the multilevel mappings. In almost all cases these
values are larger than those for previous mappings.

VI. CONCLUSION

We have shown how the use of graphs can give new insight into the
analysis and construction of permutation DPMs. The graphs can visu-
ally aid one in determining the positions of symbols at certain stages
in a mapping, as well as showing why some mappings cannot be dis-
tance-preserving. These graphs can also be used in the decoding of per-
mutation codes obtained from mapping algorithms [11].

Although the multilevel construction of [8] was flexible and could
produce numerous different mappings for the same M value, some
empirical work or computer searches were still necessary to obtain the
mappings. Using the trellis representation of the graphs, we were able
to construct a general algorithm for this construction, even though only
a subset of all the possible mappings are obtained for a certain M .
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Capacity of Ultra-Wideband Power-Constrained
Ad Hoc Networks
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Abstract—In this correspondence, we show that the uniform throughput
capacity of an ultra-wideband (UWB) power-constrained ad hoc network
is given by �(P ( n= logn) ), where P is the per-node power
constraint, � is the fading exponent of radio signal and n is the number of
nodes randomly distributed inside a disk of unit area. This is a stronger
result than the upper bound O(P (

p
n logn) ) and the lower bound

O(P n =(logn) ) previously shown by Negi and Rajeswaran.
Our proof is simple given the prior work by Gupta and Kumar.

Index Terms—Capacity, power-constrained ad hoc networks, ultra-wide-
band (UWB) ad hoc networks.

I. INTRODUCTION

Recently, there has been much interest in analyzing the capacity of
ad hoc networks since the seminal paper [1]. For an ad hoc wireless net-
work wheren nodes are independently and uniformly distributed inside
a disk of unit area, the throughput obtainable by each node in the net-
work is shown in [1] to be �(W=

p
n logn) whereW is the bandwidth

available for the network. When n approaches infinity, the throughput
approaches zero. Several research efforts have been made to investigate
the ad hoc network capacity under different settings [2]–[9]. In [2] and
[3], it is shown that node mobility improves the capacity bound, and
two-hop routes are sufficient to achieve the per-node throughput order
�(1) even if the node mobility is further constrained to a one-dimen-
sional pattern. The issue of packet delay caused by mobility is further
addressed in [5] and [6]. In [7], capacity improvement by infrastructure
support is investigated, where a hybrid wireless network is formed by
placing a sparse network (in a hexagonal pattern) of m base stations in
an ad hoc network of total n mobile nodes. Their results show that ifm
grows faster than

p
n, the throughput capacity increases linearly with

the number of base stations, i.e., the capacity order becomes �(m).
In [8], directional antennas with transmitter beamwidth � and receiver
beamwidth � are considered, and the capacity is shown to be improved
by a factor of 4�2=��. In [9], the extreme case where the transmitter
can generate arbitrarily narrow beams is considered. It is shown that
by choosing a very small beam width �, the capacity can only be im-
proved by an order of O(log2(n)).
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All the above research activities are based on the assumption that
the whole network is bandwidth-constrained. In contrast to this band-
width-limited scenario, there exists another scenario where the avail-
able (radio frequency) bandwidth may be sufficiently large to be mod-
eled as unlimited but the transmission power of each node is limited.
This scenario arises from many possible ad hoc wireless sensor net-
works where ultra-wideband (UWB) techniques are suitable for short
range transmissions. In [10], it is shown that when the bandwidth W
is infinite and each node has a power constraint of P0, the per-node
throughput capacity is upper bounded by O(P0(

p
n logn)��1) and

lower bounded by O(P0 n��1=(logn)�+1), where � is the (large
scale) path loss exponent. In this paper, we show a much stronger re-
sult, that is, the exact order of the per-node throughput capacity of a
power-constrained ad hoc network is �(P0( n= logn)��1). This re-
sult closes the gap between the upper bound and the lower bound given
in [10].

II. BACKGROUND

In this section, we first quantify the assumptions of bandwidth-con-
strained networks versus power-constrained networks, then define the
performance metric of uniform throughput capacity, and finally intro-
duce the Voronoi tessellation and the Chernoff bounds, both of which
are important for our derivation of network capacity.

A. Bandwidth-Constrained Versus Power-Constrained

In the bandwidth-constrained scenario, all nodes share a limited
bandwidth W . Let Xi denote both the node and its position in a
unit area disk. A power Pi is used by node Xi to transmit data to a
randomly chosen node Yi. Let gi denote the attenuation due to path
loss. Then the SINR (signal to interference and noise ratio) at the
receiver Yi is

SINR =
Pigi

WN0 + k2I Pkgk
(1)

where N0 represents the (single-sided) power density of noise, WN0

is the power of noise falling within the bandwidth W; I is the set of
nodes that cause interference to node Yi. The transmission from Xi to
Yi is assumed to be successful if SINR is above a threshold �, i.e.

SINR � �: (2)

This is called physical model in [1]. Furthermore, in [1], each node is
assumed to use a common power P for transmission. When n is suf-
ficiently large, the term WN0 can be discarded because of the limited
bandwidth assumption, and hence all transmissions are only limited by
the interference generated by neighboring concurrent transmissions.

In the power-constrained scenario, we assume that the maximal
power consumed by each node for transmission is P0 and furthermore
the bandwidth W is very large, i.e., W � nIP0=N0 where nI is
the maximum number of nodes within an interference range of any
receiving node. In this case, SINR is only affected by ambient noise,
i.e.

SINR =
Pigi
WN0

: (3)

Therefore, the Shannon capacity of a link Xi ! Yi is now given by

ri = lim
W!1

W log 1 +
Pigi
WN0

=
Pigi
N0

: (4)

Our capacity analysis will be based on the power-constrained sce-
nario. Further assumptions of the network are as follows. There are
n stationary nodes that are independently and uniformly distributed
on a disk of unit area. At anytime, each node can play the role of

either source or sink, and each node can serve as a relay for mul-
tiple source-destination pairs. Each node can transmit a packet to its
next-hop node and receive a new packet from its previous-hop node
at the same time. This is possible because of the unlimited bandwidth
assumption. At anytime, there can be maximum n=2 pairs of source
and destination, and all these pairs are randomly chosen. The path loss
model for each link Xi ! Yi is

gi =
d0

jXi � Yj j
�

; for jXi � Yj j > d0 (5)

where� is the path loss exponent, jXi�Yj j is the distance betweenXi

andYj , and d0 is a very small number that corresponds to the dimension
of each node after the network is scaled to a unit area disk. However,
d0 is independent of the number n of nodes in the network.

B. Uniform Throughput Capacity

If each source node is able to transmit data to its chosen destination
node at a rate of r(n) bits per second, the data rate r(n) is called a
uniform throughput of the network. Note that the length (number of
hops) of a route affects the delay of a packet from source to destination
but not the data rate. The maximum feasible uniform throughput in the
network is called the uniform throughput capacity of the network. A
uniform throughput capacity r(n) is said to be of the order �(f(n)) if
there exits constants 0 < c2 < c1 < 1 such that

lim
n!1

Pr[r(n) = c1f(n) is feasible] < 1 (6)

lim
n!1

Pr[r(n) = c2f(n) is feasible] = 1 (7)

where “feasible” means that the data can be transmitted at the specified
rate with virtually no error (via optimal encoding and decoding).

C. Routing Based on Voronoi Tessellation

A Voronoi tessellation is a partition of space based on the nearest
neighboring criterion [12]. It was used in deriving lower bounds on
uniform throughput capacity in [1] and [10]. Let fa1; a2; . . . ; apg be
a set of reference points on the disk. A Voronoi cell V (ai) is the set
of all points which are closer to ai than to any other points aj ; j 6= i.
The reference point ai is also called the generator of the Voronoi cell
V (ai). It is also known that for any " > 0, a Voronoi tessellation can
be constructed such that each Voronoi cell contains a disk of radius "
and is itself contained in a disk of radius 2" [1].

The routing scheme based on a Voronoi tessellation is shown in
Fig. 1. Xi and Yi are two randomly chosen points or nodes to form
a pair of source and destination. Xi and Yi are independently and uni-
formly distributed on the disk. The straight line segmentLi connecting
Xi and Yi are also independently and uniformly distributed. The route
from Xi and Yi consists of the cells intersected by Li in the tessel-
lation. Packets from Xi are relayed from the source cell, through the
cells intersected by Li, to the destination cell and finally to Yi. Each
cell may contain multiple nodes.

D. Chernoff Bounds

Let A1; A1; . . . ; An be independent indicator (binary) random vari-
ables with Pr[Ai = 1] = pi and Pr[Ai = 0] = 1 � pi, where 0 <
pi < 1. Define the sum of the binary random variables: A = n

i=1 Ai

where � = E[A] = n
i=1 pi. As shown in the Appendix, for any

0 < � < 1, the following two inequalities hold:

Pr[A > (1 + �)�] � e��� =3 (8)

Pr[A < (1� �)�] � e��� =2: (9)

An implication of the above bounds is that as n!1, the probability
for A to be larger than its mean by a fixed (however small) fraction of
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Fig. 1. Packets fromX are relayed from the source cell, along the cells inter-
sected by L in order, to the destination cell and finally to Y .

the mean approaches zero exponentially, and likewise the probability
for A to be smaller than its mean by a fixed (however small) fraction
of the mean approaches zero exponentially.

III. BOUNDS ON UNIFORM THROUGHPUT CAPACITY

A. An Upper Bound on Uniform Throughput Capacity

We denote a route Ri from a source node Xi;1 to a destination node
Xi;K +1 by Ri = [Xi;1; Xi;2; . . . ; Xi;K ; Xi;K +1] where there are
Ki links or hops. Let ri(n) be the throughput achieved by this route.
Then, the power consumed by the kth link Xi;k ! Xi;k+1 is

Pi;k �
ri(n)N0

gi;k
(10)

where gi;k denotes the path power attenuation. The total power con-
sumed by route Ri is

Pi(n) =

K

k=1

Pi;k � ri(n)N0

K

k=1

1

gi;k

=
ri(n)N0

d�0

K

k=1

d�i;k (11)

where di;k = jXi;k�Xi;k+1j. There are n=2 concurrent routes in the
network. According to the definition of uniform throughput capacity,
we have r(n) � ri(n) for all 1 � i � n=2. Taking the sum of (11)
leads to

r(n) �
d�0
N0

n=2
i=1 Pi(n)

n=2
i=1

K
k=1 d

�
i;k

(12)

where the numerator is the sum of power used by all routes in the net-
work, which is upper bounded by total allowable transmission power
nP0, i.e.

n=2

i=1

Pi(n) � nP0: (13)

Here, P0 is the maximum power consumed by each node in the net-
work.

We now denote

H =

n=2

i=1

K

k=1

1 (14)

which is the total number of hops in the network. Since d� is a convex
function of d as long as � � 1 (although for radio signals we have
� � 2), we can write

1

H

n=2

i=1

K

k=1

d�i;k �
1

H

n=2

i=1

Ki

k=1

di;k

�

� d� (15)

where d is the minimum distance among all hops in the network and
the equalities in (15) hold if and only if di;k = d, for all 1 � k � Ki

and 1 � i � n=2. This together with (12) implies that the optimal
routing occurs if and only if all hops in the network are using the same
transmission range d.

We further observe that

K

k=1

di;k � Di(n) (16)

where Di(n) = jXi;1 �Xi;K +1j denotes the (direct) distance of the
ith pair of source and destination. Combining (15) and (16) yields

n=2

i=1

K

k=1

d�i;k � H
1

H

n=2

i=1

Ki

k=1

di;k

��1

1

H

n=2

i=1

Ki

k=1

di;k

� d��1
n=2

i=1

Di(n) (17)

Combining (17) with (13) and (12) gives

r(n) �
P0
N0

2d�0

d��1D
(18)

where D = 2

n
n=2
i=1Di(n).

We have shown that to achieve the maximum uniform throughput,
all hops must have the same distance d. But to ensure the connectivity
of the network with high probability (i.e., with probability approaching
one as n approaching infinity), d can not be arbitrarily small. Indeed, it
is shown in [13] that if all hops in the network have the same distance,
to guarantee that all nodes in the network are connected with high prob-
ability, it is sufficient and necessary that

d � (logn+ c(n))=n� (19)

where c(n) can grow much more slowly than logn but must become
infinity when n becomes infinity. For example, we can choose c(n) =
log logn.

By using (19) in (18), we have

r(n) �
P0
N0

2� d�0

D

n

logn

��1

(20)

which defines an upper bound of the uniform throughput capacity of
the network where the total network power is upper bounded by (13)
and the network connectivity is guaranteed with high probability.

We now explain that the value ofD becomes a constant asn becomes
large. The problem of Di(n) is known as disk line picking [11], i.e.,
Di(n) is the distance between two randomly picked two points in a
disk of unit area. The mean and variance of Di(n) are known to be

� = E(Di(n)) =
128

45�3=2
' 0:5

�2 = Var(Di(n))

=
1

�
1�

128

45�

2

' 0:06
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According to the central limit theorem,D = 2
n

n=2
i=1Di(n) is asymp-

totically Gaussian with mean � and variance �2D = �
n=2

! 0.
From (20), we have that for large n,

r(n) � c1P0
n

logn

��1

(21)

where c1 is a constant. In other words, we have the following theorem.

Theorem 1: There exists c1 < 1 such that

lim
n!1

Pr[r(n) = c1P0( n= logn)��1 is feasible] < 1 (22)

whereP0 is the maximum power per node. (The constant c1 here should
be larger than the constant c1 in (21).)

This theorem has established an upper bound on the uniform
throughput. In the next section, we establish that a uniform throughput
of the same order O(P0( n= logn)��1) can be achieved with the
per-node power P0.

B. A Constructive Lower Bound on Uniform Throughput Capacity

The meaning of a lower bound here is an achievable uniform
throughput in the network with high probability. Recall that the
maximum uniform throughput of the network is achieved when all
hops are of equal distance, and the minimum of such distance must
be in the order of logn=n to ensure network connectivity. (We
have neglected the term c(n) in (logn+ c(n))=n as c(n) becomes
negligible as n increases.) We now construct a Voronoi tessellation
of a unit area disk as in [1], i.e., each Voronoi cell contains a disk
of radius �(n) = c logn=n and is itself contained in a disk of
radius 2�(n) where c is any constant. A Voronoi cell of the above
defined dimension contains at least one node (and hence the network
connectivity) with high probability. Furthermore, every node in such a
cell is within a maximum possible distance of 8�(n) from any node in
its own cell or in its adjacent cell. Adjacent cells are defined as cells
sharing common edges or vertices.

The route for a source–destination pair is a sequence of cells inter-
sected by the line segment that connects the source node and the desti-
nation node. There are n=2 concurrent working routes in the network
at any time. Each cell in the tessellation can be intersected by multiple
line segments. Each intersection to a cell adds traffic load to that cell.
The total traffic in a cell will be carried by all the nodes in the cell. We
will establish a lower bound on the uniform throughput capacity of the
network by relating the answers to the following two questions:

Q1: Given a uniform throughput in the network, what is the max-
imum traffic that each cell has to serve with high probability?
Q2: What is the capability that each cell has with high proba-
bility?

The following two lemmas will answer the above two questions re-
spectively and hence lead to a feasible lower bound on the uniform
throughput capacity. Lemma 1 is also proved in [1]. However, we give
a simpler proof based on the Chernoff bounds (8) and (9), instead of
the Vapnik–Chervonenkis theorem as used in [1]. The Chernoff bound
is also effective to prove Lemma 2. The fact that all nodes in a cell can
work simultaneously was not noticed in [10].

Lemma 1: Let Vk denote a Voronoi cell in the tessellation, and
T (Vk(n)) denote the total traffic that cell Vk has to carry. If all trans-
mission pairs transmit with a uniform rate of r(n), then there exists
�(n) ! 0 such that

Pr(supT (Vk(n)) � c3r(n) n logn) � 1� �(n): (23)

Proof: Let Li \ Vk 6= � denote that a segment line Li intersects
a cell Vk . It is shown in [1] that

Pr(Li \ Vk 6= �) � c4
logn

n
: (24)

There are totally n=2 lines in the network. Since each pair of nodes
communicate at a rate of r(n) bits per second, each lineLi carries r(n)
bits per second. From the fact that fLign=2i=1 are independent with each
other, we have the mean value of traffic that a cell Vk has to carry

E[T (Vk(n))] � nr(n)

2
c4

logn

n
= c5r(n) n logn: (25)

Define the random indicators

Ai =
1; Li \ Vk 6= �

0; Li \ Vk = �
: (26)

Then, T (Vk(n)) = r(n) n=2
i=1 Ai. Using the Chernoff bound (8), we

have

Pr(T (Vk(n))

� (1 + �)c5r(n) n logn)

� 1� e�c
p
n logn� =3; for all 0 < � < 1:

Let �(n) = e�c
p
n logn� =3 and c3 = (1 + �)c5. We have

limn!1 �(n) = 0. Lemma 1 is proved.

Lemma 2: Let C(Vk(n)) denote the traffic that a Voronoi cell Vk is
able to carry. Then, there exists �0(n) ! 0 such that

Pr(C(Vk(n))� c6
P0
N0

n�=2

(logn)�=2�1
) � 1� �0(n) (27)

where P0 is the transmission power of each node.
Proof: In our routing scheme, each packet is relayed from a

Voronoi cell to a neighboring cell. Any pair of nodes in two neigh-
boring cell are within the distance 8�(n). The Shannon capacity
between any two neighboring nodes is

C � P0
N0

d0
8�(n)

�

=
P0(�d0=8)

�

N0

n

logn

�

: (28)

Note that in a power-constrained network, interference between
transmission pairs are negligible in comparison to the ambient noise.
All nodes in a cell can work simultaneously, which is different from
the setting used in [10]. In [10], only one node in each cell is allowed
to work at any time.

Let jVk(n)j denote the number of nodes in cell Vk . Since all nodes
are independently and uniformly distributed, the expected number of
nodes in each cell is lower bounded by a lower bound on the area of each
cell times n, i.e., there is constant c7 such that the expected number of
nodes in cell Vk is

E(jVk(n)j) � c7�
2(n)n = c8 logn (29)

Note that
E(C(Vk(n)))� C inf E(jVk(n)j): (30)

Define the random indicators

Ai =
1; Xi 2 Vk
0; Xi�2Vk: (31)

Then, jVk(n)j = n
i=1 Ai. Therefore, for all 0 < � < 1, the Chernoff

bound (9) gives
Pr(inf jVk(n)j � c9 logn) � 1� �0(n) (32)

where c9 = (1 � �)c8 and �0(n) = e�c logn� =2 ! 0. Combining
(28), (30) and (32), we get (27). Lemma 2 is proved.
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Lemmas 1 and 2 state that any cell Vk in the Voronoi tessellation has
to carry a maximum traffic no larger than c3r(n)

p
n logn with high

probability, and at the same time the cell Vk is able to carry a traffic
more than c6

P
N

n

(logn)
with high probability. Therefore, there

exists such r(n) that c3r(n)
p
n logn � c6

P
N

n

(logn)
, i.e.

r(n) � c6
c3

P0
N0

n

logn

��1

: (33)

As n becomes large, the above achievable lower bound on the uni-
form throughput r(n) holds with high probability. Therefore, we have
the following theorem.

Theorem 2: There exists c2 > 0 such that

lim
n!1

Pr[r(n) = c2P0 n= logn
��1

is feasible] = 1 (34)

where P0 is the transmission power of each node.

Combining Theorems 1 and 2, we can draw the conclusion that the
per-node uniform throughput capacity of the power-constrained net-
work is in the order of �(P0( n= logn)��1).

IV. CONCLUSION

We have shown that for a power-constrained ad hoc network where
the nodes are randomly distributed in a unit area disk, the uniform (per-
node) throughput capacity is �(P0( n= logn)��1) where P0 is the
maximum transmission power consumed by each node.

APPENDIX I
PROOF OF CHERNOFF BOUNDS

We are not aware of any prior source of the exact forms of the Cher-
noff bounds (8) and (9). Hence, we include a proof here. For any t > 0

Pr(A > (1 + �)�) = Pr(etA > et(1+�)�): (35)

For � > 0, we have the Markov inequality:

Pr(etA > et(1+�)�) <
E[etA]

et(1+�)�
(36)

where E[etA] = n
i=1 E[etA ] = n

i=1(pie
t+1� pi) =

n
i=1(1+

pi(e
t � 1)) < n

i=1 e
p (e �1) = e

(e �1) p
= e(e �1)�. Com-

bining (35) and (36), we have

Pr(A > (1 + �)�) < e�(e �1�t(1+�)) (37)

Minimizing the right side of (37) with respect to t > 0 gives

Pr(A > (1 + �)�) < e�(��(1+�) log(1+�)) (38)

which corresponds to (37) with t = log(1 + �) > 0. By the Taylor’s
series expansion of log(1 + �), we have that

� � (1 + �) log(1 + �)

= ��2

2
+
�3

6
� (

1

3
� 1

4
)�4 + (

1

4
� 1

5
)�5 � � � �

< �1

2
+

1

6
�2 � 1

3
� 1

4
� 1

4
� 1

5
�4 � � � �

where the inequality holds under the condition 0 < � < 1, and all the
terms with orders higher than two are negative. Therefore

� � (1 + �) log(1 + �) < ��2=3: (39)

Hence, we have

Pr[A > (1 + �)�] � e��� =3 (40)

which is (8).

Similarly, for any t > 0 and 0 < � < 1

Pr(A < (1� �)�) = Pr(e�tA > e�t(1��)�): (41)

By the Markov inequality, we have

Pr(e�tA > e�t(1��)�) <
E[e�tA]

e�t(1��)�
(42)

where we can show that E[e�tA] < e(e �1)�. Combining (41) and
(42) gives

Pr(A < (1� �)�) < e�(e �1+t(1��)): (43)

Minimizing the right side of (43) with respect to t > 0 yields

Pr(A < (1� �)�) < e��(�+(1��) log(1��)) (44)

which corresponds to (43) with t = � log(1� �) > 0. By the Taylor’s
series expansion of log(1 � �), we have

� + (1� �) log(1� �) =
�2

2
+

1

2
� 1

3
�3 +

1

3
� 1

4
�4 + � � � :

Since the terms with orders higher than two are positive, we have

� + (1� �) log(1� �) > �2=2: (45)

Therefore, we have

Pr[A < (1� �)�] � e��� =2: (46)
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