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Abstract—Wireless communication is susceptible to eaves-
dropping attacks because of its broadcast nature. This paper
illustrates how interference can be used to counter eavesdrop-
ping and assist secrecy. In particular, a wire-tap channel with a
helping interferer (WT-HI) is considered. Here, a transmitter
sends a confidential message to its intended receiver in the
presence of a passive eavesdropper and with the help of an
independent interferer. The interferer, which does not know
the confidential message, helps in ensuring the secrecy of the
message by sending an independent signal. An achievable
secrecy rate and several computable outer bounds on the
secrecy capacity of the WT-HI are given for both discrete
memoryless and Gaussian channels.

Index Terms—Information-theoretic secrecy, wire-tap chan-
nel, interference channel, eavesdropping, interference

I. I NTRODUCTION

Broadcast and superposition are two fundamental prop-
erties of the wireless medium. Due to its broadcast nature,
wireless transmissions can be received by multiple receivers
with possibly different signal strengths. This property makes
wireless communications susceptible to eavesdropping. Due
to the superposition property of the wireless medium, a
receiver observes a superposition of multiple simultaneous
transmissions resulting in interference. This paper illustrates
how one can pit the superposition property of the wireless
medium against eavesdropping by using interference to
assist secrecy.

Our approach follows Wyner’s seminal work on the wire-
tap channel [1], in which a single source-destination com-
munication is eavesdropped upon via a degraded channel.
Wyner’s formulation was generalized by Csiszár and Körner
who studied general broadcast channels [2]. The Gaussian
wire-tap channel was considered in [3]. In these models, it
is desirable to minimize the leakage of information to the

Manuscript received August 16, 2009; revised August 16, 2010; accepted
January 13, 2011. This research was supported by the National Sci-
ence Foundation under Grants CNS-09-05398, CCF-07-28208 and CCF-
0729142, and in part by the Air Force Office of Scientific Research under
Grant FA9550-08-1-0480. The material in this paper was presented in part
at the IEEE Information Theory Workshop, Porto, Portugal May 5-9 2008,
and in part at the IEEE Communication Theory Workshop, Napa,CA,
USA, May 10 - 13, 2009.

Xiaojun Tang is with AT&T Labs, San Ramon, CA 94583 USA (e-mail:
xiaojun.tang@att.com). Ruoheng Liu is with Alcatel-Lucent, Murray Hill,
NJ 07974 USA. (email: ruoheng.liu@alcatel-lucent.com). Predrag Spaso-
jević is with the Wireless Information Network Laboratory(WINLAB),
Department of Electrical and Computer Engineering, Rutgers University,
North Brunswick, NJ 08902, USA (e-mail: spasojev@winlab.rutgers.edu).
H. Vincent Poor is with the Department of Electrical Engineering, Prince-
ton University, Princeton, NJ 08544, USA (email: poor@princeton.edu).

eavesdropper. The level of ignorance of the eavesdropper
with respect to the confidential messages is measured by
the equivocation rate. Perfect secrecy requires that the
equivocation rate is asymptotically equal to the message
rate, and the maximal achievable rate with perfect secrecy
is the secrecy capacity. The central idea of [1]–[3] is that
the transmitter can use stochastic encoding to introduce
randomness to preserve secrecy. In this paper, we study the
problem in which a transmitter sends confidential messages
to the intended receiver with the help of an interferer, in the
presence of a passive eavesdropper. The difference between
this model and Csiszár and Körner’s model is that there
is an additional transmitter, who functions as an interferer
without any knowledge of the actual confidential message
sent by the primary transmitter. We call this model the
wire-tap channel with a helping interferer (WT-HI). The
external transmitter provides additional randomization to
increase the secrecy level of the primary transmission. We
choose the transmission schemes at both the interferer and
the legitimate transmitter to enhance the secrecy rate.

To understand the effects of interference in wireless
transmissions, the interference channel (IC) has been exten-
sively studied. The capacity region of interference channels
remains an open problem, except for some special cases
including the strong/very strong interference regimes [4]
and [5]. The best achievable rate region so far was proposed
by Han and Kobayashi [6]. Several outer bounds for the
Gaussian IC with weak interference were proposed in [7]–
[10], and more recently a new outer bound was proposed
independently in [11]–[13] to obtain the sum-capacity in a
very weak interference regime.

The secrecy capacity of interference channels remains
even more elusive. In [14], an achievable secrecy rate
region and an outer bound were proposed for the discrete
memoryless interference channel with confidential messages
(IC-CM). An achievable secrecy rate was also proposed
for Gaussian IC-CMs. In [15], the secrecy capacity region
was found for a special class of cognitive interference
channels, in which the cognitive user knows the message
sent by the primary user non-causally and the primary
user is constrained by using deterministic encoding. Secret
communication on interference channels was also studied in
[16]–[18]. In [16], an outer bound on the secrecy capacity
region of a class of one-sided interference channels was
presented. In [17], the robust-secrecy capacity was defined
and characterized for a special deterministic interference
channel.
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The idea of using artificial noise, which is a special
case of interference, to help secret communication was first
proposed by Goel and Negi in [19]. It is assumed in [19] that
the transmitter has multiple antennas or there are helpers
who can amplify-and-forward noisy versions of the signal
sent by the transmitter. In [18], a complex independent and
identically distributed (i.i.d.) fading Gaussian interference
channel is considered and an interference alignment scheme
was proposed for the purpose of preserving secrecy. Since
we consider static interference channel in this paper, the
interference alignment technique in [18] cannot be applied.

The information-theoretic secrecy approach has also been
applied to study other various multi-user channel models
such as the multiple access channel with confidential mes-
sages (MAC-CM) [20], [21], the multiple access wire-tap
channel (MAC-WT) [22], [23], and the relay-eavesdropper
channel (REC) [24]–[26]. We refer the reader to [27], [28]
for a recent survey of the research progress in this area.

The main contributions of this paper are summarized
as follows: First, for general discrete memoryless WT-
HI models, we consider all possible interference patterns
and design the corresponding achievable coding scheme at
the legitimate transmitter based on the coding rate of the
interference codebook. We propose an achievable secrecy
rate for this channel by optimizing the coding schemes at
both the interferer and the legitimate transmitter. Second,
for a Gaussian WT-HI, we provide an achievable secrecy
rate based on Gaussian codebooks and describe a power
policy to optimize the secrecy rate. The results show that
the interferer can increase the secrecy level, and that a
positive secrecy rate can be achieved even when the source-
destination channel is worse than the source-eavesdropper
channel. An important example for the Gaussian case is
that in which the interferer has a better channel to the
intended receiver than to the eavesdropper. We show that
when the interferer-receiver channel is good enough and
the power used at the transmitters is unconstrained, the
achieved secrecy rate for the Gaussian WT-HI is equal to
the secrecy rate achieved when the message is given to the
helper secretly and the helper forwards the message. This
is particularly interesting because we do not assume that
there is a secret transmitter-interferer channel (which would
enable the interferer to relay the transmission). Finally,we
provide several computable upper bounds on the secrecy
capacity of the Gaussian WT-HI model. Each of them
can be a better upper bound than others under certain
channel and power conditions. For some special cases, the
best upper bound is quite close to the achievable secrecy
rate. One important contribution of this work is that it
is one of the first works that look at individual secrecy
rate, while previous work on secret communication over
interference channels focus on sum secrecy rate. This effort
of maximizing individual secrecy rate brings important
insight that inspires later research.

The WT-HI model has been studied in part within the

context of the REC [25], MAC-WT [22] and IC-CM [14]
models. Our achievable scheme can be considered to be
a generalization of the schemes proposed previously. In
the cooperative jamming [22] scheme or the artificial noise
scheme in [14] (both proposed for Gaussian channels),
the helper generates an independent (Gaussian) noise. This
scheme does not employ any structure in the transmitted
signal and can be considered as a special case of our scheme
when the coding rate of the interference codebook is large
(infinity). The noise forwarding scheme in [25] requires
that the interferer’s codewords can always be decoded
by the intended receiver, which can be considered as a
special case of our scheme when the coding rate of the
interference codebook is lower than a certain rate such that
the intended receiver can decode the interference first. By
taking a holistic view, we obtain a number of new insights.
For the Gaussian WT-HI channel, our scheme achieves a
rate that is equal to the better one of the noise forwarding
and cooperative schemes. For general discrete memoryless
channels, our scheme can achieve a higher secrecy rate in
certain cases.

The achievable rate for the Gaussian WT-HI channel
is derived by assuming Gaussian random coding at the
transmitter and interferer. While it can be close to the upper
bound at low or moderate SNR, it becomes a constant as the
SNR increases, which causes a large gap between lower and
upper bounds at high SNR. In [29], He and Yener show that
structured codes (nested lattice codes) outperform Gaussian
random codes at high SNR, and can achieve an unbounded
secrecy rate as the SNR increases.

The remainder of the paper is organized as follows.
Section II describes the system model for the WT-HI.
Section III states an achievable secrecy rate and a Sato-
type upper bound for general discrete memoryless channels.
Section IV studies a Gaussian WT-HI model, for which an
achievable secrecy rate and a power policy for maximizing
the secrecy rate, together with several computable upper
bounds on the secrecy capacity are given for the Gaussian
WT-HI model. Section V illustrates the results through some
numerical examples. Conclusions are given in Section VI.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a communication
system including a transmitter (X1), an intended receiver
(Y1), a helping interferer (X2), and a passive eavesdropper
(Y2). The transmitter sends a confidential messageW1 to the
intended receiver with the help of anindependent interferer,
in the presence of a passive butintelligent eavesdropper.
We assume that the eavesdropper knows the codebooks
of the transmitter and the helper. Furthermore, we assume
that the transmitters do not share any common randomness
and also that the helper does not know the confidential
messageW1. As noted above, we refer to this channel
as the wire-tap channel with a helping interferer (WT-
HI). The channel can be defined by the alphabetsX1, X2,
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Fig. 1. A wire-tap channel model with interference: a transmitter wants to send a confidential messageW1 to the intended receiver while keeping the
message secret with respect to an passive eavesdropper, in the presence of an active interferer.

Y1, Y2, and channel transition probabilityp(y1, y2|x1, x2)
where xt ∈ Xt and yt ∈ Yt, t = 1, 2. The transmitter
encodes a confidential messagew1 ∈ W1 = {1, . . . , M}
into xn

1 and sends it to the intended receiver inn channel
uses. A stochastic encoder [2]f1 is specified by a matrix
of conditional probabilitiesf1(x1,k|w), wherex1,k ∈ X1,
w1 ∈ W1,

∑

x1,k
f1(x1,k|w1) = 1 for all k = 1, . . . , n,

andf1(x1,k|w1) is the probability that the encoder outputs
x1,k when messagew1 is being sent. The helper gener-
ates its outputx2,k randomly and can be considered as
using another stochastic encoderf2, which is specified by
a matrix of probabilitiesf2(x2,k) with x2,k ∈ X2 and
∑

x2,k
f2(x2,k) = 1. We assume thatXn

1 and Xn
2 are

independent. Since randomization can increase secrecy, the
legitimate transmitter uses stochastic encoding to introduce
randomness. Additional randomization is provided by the
helper and the secrecy can be increased further.

The decoder uses the output sequenceyn
1 to compute

its estimateŵ1 of w1. The decoding function is specified
by a (deterministic) mappingg : Yn

1 → W1. The average
probability of error is

Pe =
1

M

M
∑

w=1

Pr {g(Y n
1 ) 6= w1|w1 sent} . (1)

The secrecy level (level of ignorance of the eavesdropper
with respect to the confidential messagew1) is measured
by the equivocation rate(1/n)H(W1|Y n

2 ).
A secrecy rateRs is achievable for the WT-HI if, for any

ǫ > 0, there exists an (M, n, Pe) code so that

M ≥ 2nRs , Pe ≤ ǫ (2)

and Rs −
1

n
H(W1|Y n

2 ) ≤ ǫ (3)

for all sufficiently largen. The secrecy capacity is the
maximum of all achievable secrecy rates.

III. D ISCRETEMEMORYLESSCHANNELS: ACHIEVABLE

SECRECY RATE AND UPPERBOUND

In this section, we consider the general discrete memo-
ryless WT-HI model. We present an achievable secrecy rate
with an outline of its achievable coding scheme. We also
present a computable upper bound on the secrecy capacity.

A. Outline of An Achievable Coding Scheme

An achievable scheme involves two independent stochas-
tic codebooks. The encoder at the legitimate transmitter uses
codebookC1(2

nR1 , 2nR1,s , n), where n is the codeword
length,2nR1 is the size of the codebook, and2nR1,s is the
number of confidential messages thatC1 can convey (R1,s ≤
R1). In addition, the encoder at the interfering helper uses
codebookC2(2

nR2 , n), where2nR2 is the codebook size.
This codebook can be considered to be theC2(2

nR2 , 1, n)
code where the number of messages thatC2 can convey is
1 (and therefore with zero effective rate).

The random secrecy binning [1] technique is applied
to C1, so that the2nR1 codewords are randomly grouped
into 2nR1,s bins each with2n(R1−R1,s) codewords, where
each bin represents a message. During the encoding, to
send messagew1 ∈ W1, the encoder selects one codeword
uniformly and randomly in thew-th bin and sends it to the
channel. Meanwhile, the encoder at the interferer randomly
selects a codeword inC2 and sends it to the channel.

In the decoding, after receivingy1, the intended receiver
declares that̂w1 is sent if either of the following two events
occur:

1) (separate decoding): there is only one codeword in
C1 that is jointly typical withy1 and the bin index of
this codeword isŵ1;

2) (joint decoding): there is only one pair of codewords
in C1 andC2 that are jointly typical withy1 and the
bin index of the codeword inC1 is ŵ1.

The intended receiver declares that a decoding error occurs
if neither 1) nor 2) happens. (Please see Appendix A for
the details.)
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B. Achievable Rate

Note that in the achievable scheme, the intended receiver
can perform either a joint decoding or a separate decoding.
When joint decoding is performed, the intended receiver
needs to decode both codewords fromC1 and C2. This is
essentially a multiple-access channel (MAC)(X1,X2) →
Y1. Hence, We letR[MAC]

1 denote the achievable rate region
of the MAC (X1,X2) → Y1 defined by

R[MAC]
1 =















(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
R1 ≤ I(X1; Y1|X2),
R2 ≤ I(X2; Y1|X1),
R1 + R2 ≤ I(X1, X2; Y1)















.

(4)

When separate decoding is performed, the intended receiver
does not need to decodeC2. Instead, it treats the codewords
from C2 as interference. An achievable rate (region) for this
separate decoding is given by

R[S]
1 =







(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
R1 ≤ I(X1; Y1),
R2 > I(X2; Y1|X1)







. (5)

Hence, as shown in Fig. 2, the “achievable” rate region in
theR1-R2 plane at the receiver is the union ofR[MAC]

1 and
R[S]

1 .
Similar analysis applies for the eavesdropper as shown

in Fig. 2, whereR[MAC]
2 denotes the region of the MAC

(X1,X2) → Y2:

R[MAC]
2 =















(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
R1 < I(X1; Y2|X2),
R2 < I(X2; Y2|X1),
R1 + R2 < I(X1, X2; Y2)















,

(6)

andR[S]
2 is the separate decoding region given by

R[S]
2 =







(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≥ 0, R2 ≥ 0,
R1 < I(X1; Y2),
R2 > I(X2; Y2|X1)







. (7)

Our achievable secrecy rate is based on the above defi-
nitions of joint and separate decoding regions, and is given
in the following theorem.

Theorem 1: The following secrecy rate is achievable for
the WT-HI:

Rs =

max
π,R1,R2,R1,d















R1,s

∣

∣

∣

∣

∣

∣

∣

∣

R1,s + R1,d = R1,

(R1, R2) ∈
{

R[MAC]
1 ∪R[S]

1

}

,

(R1,d, R2) /∈
{

R[MAC]
2 ∪R[S]

2

}















,

(8)

whereπ is the class of distributions that factor as

p(x1)p(x2)p(y1, y2|x1, x2). (9)

Remark 1: The rateR1 is split asR1 = R1,s + R1,d,
whereR1,s denotes a secrecy information rate intended by
receiver 1 andR1,d represent a redundancy rate sacrificed in
order to confuse the eavesdropper. The interferer can help
by transmitting dummy information at the rateR2.

Proof: The proof consists of error analysis and equiv-
ocation computation. It can be found in Appendix A.

Note that the encoding procedure outlined in Section
III-A involves only one step of binning forC1, but in
the proof given in Appendix A, we assume an additional
binning step forC1 (double binning [14]) and one binning
step forC2. However, the additional binning procedure is
assumed only for simplifying the proof and is equivalent
to the coding procedure described in Section III-A. More
specifically, we do the additional binning forC1 to ensure
that some random information can be decoded by the
eavesdropper at the rate given by the upper boundary
of

{

R[MAC]
2 ∪R[S]

2

}

, if the eavesdropper is interested in
decoding the random information when the messageW1

is given as side information. This facilitates the technical
proof as shown in Appendix A.

C. Some Special Cases

In the following, we consider three typical cases: weak in-
terference/eavesdropping, strong interference/eavesdropping
and very strong eavesdropping.

1) Weak Interference/Eavesdropping: This implies that

I(X1; Y1|X2) ≥ I(X1; Y2|X2)

and I(X2; Y2|X1) ≥ I(X2; Y1|X1) (10)

for all product distributions on the inputX1 andX2. This
case is illustrated by Fig. 2.(a). Let

∆1 = I(X1; Y1|X2) − I(X1; Y2|X2) (11)

and ∆2 = I(X1; Y1) − I(X1; Y2). (12)

Remark 2: For the weak interference case as illustrated
in Fig. 2.(a), the noise forwarding scheme proposed in [25]
achieves∆1. We show that a larger secrecy rate can be
achieved when∆1 < ∆2.

The interferer generates an “artificial noise” with the
dummy rateR2 > I(X2; Y2|X1) so that neither the receiver
nor the eavesdropper can decodeC2. On the other hand,
when ∆1 > ∆2, the interferer “facilitates” the transmitter
by properly choosing the signalX2 to maximize∆1. There-
fore, in the weak interference case, the intended receiver
performs a separate decoding ofC1. The achievable secrecy
rate can be summarized as

Rs = max
π

{max (∆1, ∆2)} .
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Fig. 2. Illustrations of code rateR1 versus dummy rateR2 at the intended receiver and eavesdropper for several special cases.

2) Strong Interference/Eavesdropping: This implies that

I(X1; Y1|X2) ≤ I(X1; Y2|X2)

and I(X2; Y2|X1) ≤ I(X2; Y1|X1) (13)

for all product distributions on the inputX1 andX2. This
case is illustrated by Fig. 2.(b) and Fig. 2.(c). This condition
implies that, without the interferer, the channelX1 → Y2

is more capable than the channelX1 → Y1 and, hence, the
achievable secrecy rate may be0.

However, we may achieve a positive secrecy rate with
the help of the interferer. Here we choose the rate pair
(R1, R2) ∈ R[MAC]

1 so that the intended receiver can first
decodeC2 and thenC1. Therefore, in this case, the intended
receiver performs joint decoding. Moreover, the dummy rate
pair satisfies

(R1,d, R2) /∈
{

R[MAC]
2 ∪R[S]

2

}

;

i.e., we provide enough randomness to confuse the eaves-
dropper. Hence, for strong interference, the achievable se-
crecy rate can be simplified as

Rs = max
π

{

min

[

I(X1, X2; Y1) − I(X1, X2; Y2),
I(X1; Y1|X2) − I(X1; Y2)

]}+

.

3) Very Strong Eavesdropping: In this case,

I(X1; Y2) ≥ I(X1; Y1|X2) (14)

for all product distributions on the inputX1 and X2.
We cannot obtain any positive secrecy rate by using the
proposed scheme.

The secrecy rate may be increased by using the channel
prefixing technique in [2, Lemma 4], as shown in the
following corollary.

Corollary 1: If X1 andX2 in R[MAC]
t andR[S]

t , t = 1, 2,
defined by (4)-(7), are replaced with random variablesV1

and V2, respectively, and the input distributionπ in (8) is
replaced withπ′, whereπ′ is the class of distributions that
factor as

p(v1, v2, x1, x2, y1, y2)

= p(v1)p(v2)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2),

then the secrecy rate given by (8) is achievable.
However, we do not follow the prefixing approach in this

paper to avoid the intractability of its evaluation.

D. A Sato-type Upper Bound

A trivial upper bound on the secrecy capacity is the (main
channel) capacity without secrecy constraint. That is

Rs ≤ max
PX1

,PX2

I(X1; Y1|X2). (15)

Here, another computable upper bound for a general WT-
HI is a Sato-type upper bound.

Theorem 2: The secrecy capacity of the WT-HI satisfies

Rs ≤ min
PỸ1,Ỹ2|X1,X2

max
PX1

,PX2

I(X1, X2; Ỹ1|Ỹ2), (16)

where Ỹ1 and Ỹ2 are outputs of a discrete memoryless
channel characterized byPỸ1,Ỹ2|X1,X2

whose marginal dis-
tributions satisfy

PỸj |X1,X2
(yj |x1, x2) = PYj |X1,X2

(yj |x1, x2), (17)

for j = 1, 2 and ally1, y2, x1, andx2.
Proof: The proof can be found in Appendix B.

Remark 3: The upper bound assumes that a genie gives
the eavesdropper’s signalỸ2 to the intended receiver as side
information for decoding messageW . Since the eavesdrop-
per’s signalỸ2 is always a degraded version of the combined
signal(Ỹ1, Ỹ2), the wire-tap channel result [1] can therefore
be used.

The secrecy capacity of the WT-HI channel depends
only on the marginal distributionsPỸ1|X1,X2

andPỸ2|X1,X2
,

and not on any further structure of the joint distribution
PỸ1,Ỹ2|X1,X2

. Hence, the secrecy capacity is the same for
any channel described by (17) whose marginal distributions
are the same. Since the secrecy capacity is upper bounded
by maxPX1

,PX2
I(X1, X2; Ỹ1|Ỹ2) for each channel, it is

upper bounded by the minimum of all.
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Remark 4: The upper bound is tight for the degraded
WT-HI which satisfies

PY2|X1,X2
(y2|x1, x2)

=
∑

y1

PY1|X1,X2
(y1|x1, x2)PY2|Y1

(y2|y1). (18)

In the degraded case, the side informationỸ2 does not
benefit the decoding at the intended receiver.

IV. GAUSSIAN CHANNELS

In this section, we consider a discrete memoryless Gaus-
sian channel, for which the channel outputs at the intended
receiver and the eavesdropper can be written as

Y1,k = X1,k +
√

bX2,k + Z1,k,

and Y2,k =
√

aX1,k + X2,k + Z2,k, (19)

for k = 1, . . . , n, where{Z1,k} and{Z2,k} are sequences
of i.i.d. zero-mean Gaussian noise (real) variables with unit
variances. The channel inputsX1,k andX2,k satisfy average
block power constraints of the form

1

n

n
∑

k=1

E[X2
1,k] ≤ P̄1 and

1

n

n
∑

k=1

E[X2
2,k] ≤ P̄2. (20)

We note that the channel described by (19) satisfies the
degradedness condition as defined by (18) ifab = 1 and
a ≤ 1.

A. Achievable Secrecy Rate

First, we give an achievable secrecy rate assuming that the
transmitter and interferer use powersP1 ≤ P̄1 andP2 ≤ P̄2,
respectively.

Theorem 3: When fixing the transmit power(P1, P2) for
the Gaussian WT-HI model given by (19), the following
secrecy rate is achievable:

Rs(P1, P2) = max
{

RI
s(P1, P2), R

II
s (P1)

}

, (21)

whereRI
s(P1, P2) is given by

RI
s(P1, P2) =















γ (P1) − γ
(

aP1

1+P2

)

if b ≥ 1 + P1,

γ (P1 + bP2) − γ (aP1 + P2) if 1 ≤ b < 1 + P1,

γ
(

P1

1+bP2

)

− γ
(

aP1

1+P2

)

if b < 1,

andRII
s (P1) is given by

RII
s (P1) = [γ(P1) − γ(aP1)]

+
,

with γ(x) , (1/2) log(1 + x).
Proof: This rate is achieved by using the coding

scheme introduced in Section III. The input distributions
π are chosen to be GaussianN (0, P1) and N (0, P2) for
C1 andC2, respectively. A sketch of a proof is provided in
Appendix C.

1) Power Policy: For the Gaussian WT-HI, power control
plays an important role. Roughly speaking, the interferer
may need to control its power so that it does not introduce
too much interference to the primary transmission, while
the transmitter may want to select its power so that the
intended receiver is able to decode and cancel now helpful
interference either fully or partially before decoding the
primary transmission.

In the following, we give a power control strategy. We
consider the cases whena ≥ 1 anda < 1, separately.

Lemma 1: The following power policy maximizes the
secrecy rate given in Theorem 3.

Whena ≥ 1, we choose the following transmit power:

(P1, P2) =






(min{P̄1, P
∗
1 }, P̄2) if b > 1, P̄2 > a − 1,

(P̄1, min{P̄2, P
∗
2 }) if b < 1

a
, P̄2 > a−1

1−ab
,

(0, 0) otherwise,
(22)

and whena < 1, we choose the following transmit power:

(P1, P2) =


























(P ∗
1 , P̄2) if b ≥ 1

a
, P̄1 ≥ b − 1, P̄2 ≥ 1−a

ab−1 ,
(P̄1, min{P̄2, P

∗
2 }) if b < 1, P̄1 ≥ b−a

a(1−b) ,

(P̄1, 0) if 1 ≤ b ≤ a−1, P̄1 > b−1
1−ab

or a < b < 1, P̄1 < b−a
a(1−b) ,

(P̄1, P̄2) otherwise,
(23)

whereP ∗
1 andP ∗

2 are given by

P ∗
1 = b − 1, (24)

P ∗
2 =

(a − 1) +
√

(a − 1)2 + (1 − ab)∆

1 − ab
, (25)

and ∆ =
a

b
(1 + P̄1) − (1 + a)P̄1. (26)

Proof: A proof is provided in Appendix D.
When a > 1, a positive secrecy rate can be achieved

when b > 1 or b ≤ a−1 if the interferer’s powerP̄2 is
large enough. Whenb > 1, the interferer uses its full power
P̄2 and the transmitter selects its power to guarantee that
the intended receiver can first decode the interference (and
cancel it). Whenb < a−1, the intended receiver treats the
interference as noise. In this case, the transmitter can useits
full power P̄1 and the interferer controls its power (below
P ∗

2 ) to avoid excessive interference.
When a < 1 and 1 ≤ b < a−1, the transmitter needs

to restrict its power if it wants to let the receiver decode
some interference. However, if the transmitter has a large
power

(

P̄1 > b−1
1−ab

)

, it is better to use all its power and
to request that the interferer be silent. In the case when
a < b < 1, the receiver treats the interference as noise. If
the transmitter does not have enough power

(

P̄1 < b−a
a(1−b)

)

,
the interference will hurt the intended receiver more than
the eavesdropper.
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Remark 5: The explicit form of the power policy gives
some interesting insights into the achievable secrecy rate.
For example, it is clear that an interference powerP̄2 can
benefit secrecy. In particular, when̄P2 is sufficiently large,
a positive secrecy rate can be achieved when

(a < 1) or (b > 1) or

(

a > 1 andb <
1

a

)

. (27)

In comparison, we recall that the secrecy capacity of the
Gaussian wire-tap channel (when there is no interferer in
the Gaussian WT-HI model) is

RWT
s = [γ(P1) − γ(aP1)]

+ (28)

and a positive secrecy rate can be achieved only whena <
1.

2) Power-unconstrained Secrecy Rate: The secrecy rate
achievable when the transmitter has unconstrained power
depends only on the channel condition, and therefore is
an important parameter of wire-tap-channel-based secrecy
systems. Here, we refer to it as power-unconstrained secrecy
rate. Note that the power-unconstrained secrecy capacity of
the Gaussian wire-tap channel (assuminga 6= 0) is

lim
P̄1→∞

[

γ(P̄1) − γ(aP̄1)
]+

=
1

2

[

log2

1

a

]+

. (29)

The explicit form of the power policy facilitates a limiting
analysis, based on which we obtain the following result
(assumingab 6= 0) for the power-unconstrained secrecy rate
of the WT-HI model.

Lemma 2: An achievable power unconstrained secrecy
rate for the Gaussian WT-HI is

lim
P̄1,P̄2→∞

Rs =







1
2 log2 b if b > max(1, 1

a
),

1
2 log2

1
ab

if b < min(1, 1
a
),

1
2

[

log2
1
a

]+
otherwise.

(30)

Proof: The proof can be found in Appendix E.
Remark 6: Compared with the power-unconstrained rate

without the help of interference, a gain of(1/2) log2 b can
be observed for the WT-HI model when the interferer-
receiver channel is good

(

b > max(1, 1
a
)
)

. Note that
(1/2) log2 b is the power-unconstrained secrecy rate if the
confidential message is sent from the interferer to the
intended receiver in the presence of the eavesdropper. This
is interesting because we do not assume that there is a
secret transmitter-interferer channel, which would enable
the interferer to relay the transmission.

Remark 7: Lemma 2 shows that the secrecy rate achieved
by Gaussian random coding is bounded as the SNR in-
creases. In [29], He and Yener show that structured codes
(nested lattice codes) outperform Gaussian random codes
at high SNR, and can achieve an unbounded secrecy rate
when power is unconstrained.

3) Superposition of Interference Codeword and Noise:
A more general scheme (than our achievability scheme) is
that the signal of the helping interferer consists of two parts
where one part is pure noise and the other part is codeword
with structure. This is a special case of applying superpo-
sition coding where the interference codeword consists of
two layers, and the coding rate of one layer is infinity.

In this paper, we do not consider the superposition-
coding scheme because the achievable rate of the scheme
is complicated and its advantage over our scheme is diffi-
cult to evaluate for general discrete memoryless channels.
Furthermore, the scheme of the superposition of pure noise
and codeword does not improve the achievable secrecy rate
for the Gaussian channel characterized by (19). We show
this in the following.

In the superposition scheme, the interferer sends an
interference signal given by

X2 =
√

βX2c +
√

1 − β
√

P2Z, (31)

where 0 ≤ β ≤ 1, X2c ∼ N(0, P2) is the interference
codeword, andZ ∼ N(0, 1) is the pure noise. Furthermore,
X2c andZ are independent. Putting (31) into (19), we have

Y1 = X1 +
√

bβX2c +
√

b(1 − β)P2Z + Z1,

and Y2 =
√

aX1 +
√

βX2c +
√

(1 − β)P2Z + Z2. (32)

This is equivalent to the following normalized form,

Ỹ1 = X̃1 +
√

b̃X̃2 + Z̃1,

and Ỹ2 =
√

ãX̃1 + X̃2 + Z̃2, (33)

whereX̃1, X̃2, Z̃1 andZ̃2 obey the following distributions:
X̃1 ∼ N

(

0, P1

1+b(1−β)P2

)

, X̃2 ∼ N
(

0, βP2

1+(1−β)P2

)

, Z̃1 ∼
N(0, 1) and Z̃2 ∼ N(0, 1). In addition,

ã =
a [1 + b(1 − β)P2]

1 + (1 − β)P2
,

and b̃ =
b [1 + (1 − β)P2]

1 + b(1 − β)P2
.

Using Theorem 3, we can show that the following secrecy
rate is achieved by the superposition scheme when fixing
the transmit power(P1, P2):

Rs(P1, P2) = max
{

RI
s(P1, P2), R

II
s (P1)

}

, (34)

whereRI
s(P1, P2) is given by

RI
s(P1, P2) =



















γ
(

P1

1+b(1−β)P2

)

− γ
(

aP1

1+P2

)

if b ≥ 1 + P1,

γ
(

P1+bβP2

1+b(1−β)P2

)

− γ
(

aP1+βP2

1+(1−β)P2

)

if 1 ≤ b < 1 + P1,

γ
(

P1

1+bP2

)

− γ
(

aP1

1+P2

)

if b < 1,

andRII
s (P1) is given by

RII
s (P1) =

[

γ

(

P1

1 + b(1 − β)P2

)

− γ

(

aP1

1 + (1 − β)P2

)]+

.
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We can verify that the optimum power allocation between
noise and codeword parts to maximizeRs(P1, P2) requires

β = 1, (35)

which means that the superposition scheme degenerates into
our achievability scheme. This suggests that the superposi-
tion of codeword and noise does not improve the achievable
secrecy rate for the Gaussian channel.

B. Upper Bounds

Again, a simple upper bound on the secrecy capacity of
the Gaussian WT-HI is the main channel capacity without
a secrecy constraint. That is,

Rs ≤ γ(P̄1).

In the following, we describe two additional upper bounds.
1) Sato-type upper bound: The first upper bound is based

on the specialization of the Sato-type upper bound given by
(16) to the Gaussian WT-HI model.

Lemma 3: The secrecy capacity of the Gaussian WT-HI
model given by (19) is upper bounded as

Rs ≤ f(P̄1, P̄2, ρ
∗(P̄1, P̄2)), (36)

where the functionf(P1, P2, ρ) is defined as

f(P1, P2, ρ) =
1

2
×

log
(1 + P1 + bP2)(1 + aP1 + P2) − (ρ +

√
aP1 +

√
bP2)

2

(1 − ρ2)(1 + aP1 + P2)
,

(37)

andρ∗(P1, P2) is given by

ρ⋆(P1, P2)

=
(1 + a)P1 + (1 + b)P2 + (

√
ab − 1)2P1P2 −

√
Θ

2(
√

aP1 +
√

bP2)
(38)

with

Θ = [(
√

a − 1)2P1 + (
√

b − 1)2P2 + (
√

ab − 1)2P1P2]

× [(
√

a + 1)2P1 + (
√

b + 1)2P2 + (
√

ab − 1)2P1P2].

Proof: The proof can be found in Appendix F.
2) A Z-channel upper bound: The second outer bound

for the secrecy capacity of the Gaussian WT-HI model is
motivated by [16]. To derive this bound, we assume that
there is a genie to provide the interference codeword to
the intended receiver. In this case, the intended receiver
can cancel interference without any cost and becomes
interference-free (b = 0). The channel model becomes a
one-sided interference channel (or Z-channel).

Lemma 4: The secrecy capacity of the Gaussian WT-HI
model given by (19) is upper bounded by

Rs ≤ 1

2

[

log(1 + P̄1) − log(1 + aP̄1)
]+

+
1

2
log

[

2(1 + aP̄1)(1 + P̄2)

2 + aP̄1 + P̄2

]

. (39)

Proof: The proof can be found in Appendix G.

V. NUMERICAL EXAMPLES

In Fig. 3, the achievable secrecy rates with helping
interference and without interference are shown for the
symmetric Gaussian WT-HI model (a = b). In this example,
the power constraints arēP1 = P̄2 = 10. The secrecy
rate achieved with interference (here denoted byRs) first
decreases witha when a < 1; when 1 < a ≤ 3.26, Rs

increases witha because the intended receiver now can
decode and cancel the interference, while the eavesdropper
can only treat the interference as noise; whena > 3.26, Rs

decreases again witha because the interference does not
affect the eavesdropper much whena is large. It can also
be found that nonzero secrecy rate can be achieved only
whena < 1 when there is no help of interference. However,
nonzero secrecy rate can be achieved whena < 1+ P̄2 with
the help of interference. It is clear that a larger value ofP̄2

can improve the secrecy rate more. Hence, this result shows
the value of exploiting interference to assist secrecy.

In Fig. 4 and Fig. 5, we present numerical results to show
the achievable rate and upper bounds versusP̄2 for some
non-symmetric parameter settings ofa and b, where we
again assume that̄P1 = 10. In Fig. 4, a and b are fixed to
be0.5 and10, respectively. Each of the three upper bounds
is better than the others within some certain ranges ofP2.
In particular, the Sato-type upper bound is the best when
P̄2 is small, and the Z-channel bound becomes the best
whenP̄2 is relatively larger. It is also conceivable that when
P̄2 is large (compared with a fixed̄P1), the main channel
capacity, though simple, is a good upper bound. In this
case, the secret signals are hidden in very large interference
at the eavesdropper, and secrecy can be achieved without
sacrificing rate.

Also note that the Z-channel bound could be quite loose
for some parameter settings ofa and b (especially when
a > 1). As shown in Fig. 5, wherea and b are fixed to
be 2 and 0.1, respectively, the Sato-type upper bound is
uniformly better than the other two bounds during the shown
range ofP̄2. Our numerical results show that the Sato-type
upper bound is relatively close to the achievable secrecy
rate whenab is close to 1. Note thatab = 1 corresponds to
the degraded case, for which the Sato-type upper bound is
always tight.

VI. CONCLUSIONS

In this paper, we have considered the use of the super-
position property of the wireless medium to alleviate the
eavesdropping issues caused by the broadcast nature of the
medium. We have studied a wire-tap channel with a helping
interferer (WT-HI), in which the interferer assists the secret
communication by injecting independent interference. Our
results show that interference, which seldom offers any
advantage for problems not involving secrecy, can benefit
secret wireless communication.

For general discrete memoryless WT-HI models, we have
proposed an achievable secrecy rate which depends on
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Fig. 3. Achievable secrecy rate with or without the help of interference for a symmetric channel (a = b), whereP̄1 = P̄2 = 10.

the coding rate of the interference codebook. We have
considered all possible interference coding rates. For a
Gaussian WT-HI, we have given both the achievable secrecy
rate and a power policy to optimize the secrecy rate. Our
results show that the interferer can increase the secrecy
level, and that a positive secrecy rate can be achieved
even when the source-destination channel is worse than the
source-eavesdropper channel. An important example of the
Gaussian case is that in which the interferer has a better
channel to the intended receiver than to the eavesdropper.
Here, the interferer can send a (random) codeword at a rate
that ensures that it can be decoded and subtracted from
the received signal by the intended receiver, but cannot be
decoded by the eavesdropper. Hence, only the eavesdropper
is interfered with and the secrecy level of the confidential
message can be increased. In addition, we have provided
several computable upper bounds on the secrecy capacity of
the Gaussian WT-HI. Each of the bounds can be a tighter
upper bound under certain channel and power conditions.

We have also shown that the secrecy rate achieved by
using random Gaussian coding for a Gaussian channel is
bounded as the SNR increases. Therefore, there exists a
large gap between lower bound and upper bounds at high
SNR. In [29], it is shown that structured codes (nested
lattice codes) can achieve an unbounded secrecy rate as
SNR increases, and outperforms Gaussian coding at high
SNR.

Future work of interest is to study the secrecy capacity

of Gaussian interference channels with multiple confidential
messages. The WT-HI model studied in this paper is a
special case of the two-user interference channel in which
only one user has a confidential message to send. Therefore,
we essentially have provided some results for studying the
corner point of the secrecy capacity region of two-user in-
terference channels, although a combination of the proposed
achievable scheme and a time sharing strategy can provide
an achievable secrecy rate region for general interference
channels. We believe that the achievable scheme and upper
bounds proposed in this paper can give in-depth insight and
facilitate further study of general interference channel with
multiple confidential messages.

APPENDIX A
PROOF OFTHEOREM 1

Proof:
1) Random Code Construction: For a given distribution

p(x1, x2) = p(x1)p(x2), C1 andC2 are generated at random.
More specifically, for codebookCt (t = 1, 2), we generate
2nRt i.i.d. sequences each of lengthn at random according
to p(xt) =

∏n
i=1 p(xt,i).

A further step of codebook construction is the indexing
of codewords for each codebook. Our proof here is based
on an “implicit” double binning technique. That is, the
2nR1 codewords in codebookC1 are randomly grouped into
2nR1,s bins each with2nR1,d codewords, whereR1,d =
R1 −R1,s. Furthermore, in each bin, the2nR1,d codewords
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Fig. 4. Achievable secrecy rate and upper bound versusP̄2, wherea = 0.5, b = 10, and P̄1 = 10.

are randomly grouped into2nR′
1,d sub-bins each with2nR′′

1,d

codewords (and thusR1,d = R′
1,d + R′′

1,d). Therefore,
any codeword inC1 is indexed asx1(w1, w

′
1, w

′′
1 ) for

w1 ∈ W1 = {1, . . . , 2nR1,s}, w′
1 ∈ W ′

1 = {1, . . . , 2nR′
1,d}

andw′′
1 ∈ W ′′

1 = {1, . . . , 2nR′′
1,d}. The codewords inC2 are

indexed asx2(w2) for w2 ∈ W2 = {1, . . . , 2nR2}.
2) Encoding and Decoding: In encoding, to send mes-

sage w1 ∈ W1, the encoder at the transmitter selects
w′

1 ∈ W ′
1 and w′′

1 ∈ W ′′
1 independently at random, and

sends the codewordx1(w1, w
′
1, w

′′
1 ), while the encoder at

the interferer selectsw2 ∈ W2 at random and sends the
codewordx2(w2) to the channel.

In the decoding, after receivingy1, the intended receiver
declares thatŵ1 ∈ W1 is received if
(i) (separate decoding):x1(ŵ1, ŵ

′
1, ŵ

′′
1 ) is the only code-

word such that〈x1(ŵ1, ŵ
′
1, ŵ

′′
1 ),y1〉 is jointly typical;

or
(ii) (joint decoding): x1(ŵ1, ŵ

′
1, ŵ

′′
1 ) and x2(ŵ2)

are the only codeword pair such that
〈x1(ŵ1, ŵ

′
1, ŵ

′′
1 ),x2(ŵ2),y1〉 is jointly typical.

The intended receiver makes an error if neither (i) nor (ii)
occurs, or ifŵ1 6= w1.

For any (R1, R2) ∈
{

R[MAC]
1 ∪R[S]

1

}

, the intended
receiver can always decode the messageW1 reliably with
an arbitrarily small error probability whenn is sufficiently
large. Therefore, in the following, we only need to analyze
the equivocation rate at the eavesdropper to account for the

secrecy constraint.

The parametersR′
1,d and R′′

1,d are different for each of
two cases depending on the code rateR2 of the (inter-
ference) codebookC2. Now we discuss those two cases
separately. From the perspective of the eavesdropper, in
case I, we considerR2 < I(X2; Y2|X1), which corre-
sponds to the rate regionR[MAC]

2 ; in case II, we consider
R2 ≥ I(X2; Y2|X1), which corresponds to the rate region
R[S]

2 .

A. Case I: R2 < I(X2; Y2|X1)

1) Codebook Parameters: We choose the following rate
parameter forR′′

1,d:

R′′
1,d = min [I(X1, Y2|X2), I(X1, X2; Y2) − R2] − ǫ1.

(40)
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Fig. 5. Achievable secrecy rate and upper bound versusP̄2, wherea = 2, b = 0.1, and P̄1 = 10.

2) Equivocation Computation: The equivocation at the
eavesdropper is bounded as follows:

H(W1|Y2)

≥ H(W1|Y2, W
′
1)

= H(W1,Y2|W ′
1) − H(Y2|W ′

1)

= H(W1,Y2,X1,X2|W ′
1) − H(X1,X2|W1, W

′
1,Y2)

− H(Y2|W ′
1)

= H(X1,X2|W ′
1) + H(W1,Y2|W ′

1,X1,X2)

− H(X1,X2|W1, W
′
1,Y2) − H(Y2|W ′

1)

≥ H(X1,X2|W ′
1) + H(Y2|X1,X2) − H(Y2)

− H(X1,X2|W1, W
′
1,Y2)

≥ H(X1,X2|W ′
1) − I(X1,X2;Y2)

− H(X1,X2|W1, W
′
1,Y2). (41)

For the first term, we notice that

H(X1,X2|W ′
1) = H(X1|W ′

1) + H(X2)

= n(R1,s + R′′
1,d + R2). (42)

For the second term, we first have

I(X1,X2;Y2) ≤ n [I(X1, X2; Y2) − δ1] ,

whereδ1 → 0 asn → ∞. We also have

I(X1,X2;Y2) = I(X2;Y2) + I(X1;Y2|X2)

≤ H(X2) + I(X1;Y2|X2)

≤ nR2 + n [I(X1, Y2|X2) − δ1] .

Therefore, we have

I(X1,X2;Y2)

≤ min [I(X1, X2; Y2), I(X1; Y2|X2) + R2] − δ1

= n
(

R′′
1,d + R2

)

− δ1, (43)

where the last equality is based on (40).
To bound the third term, we consider the (joint) decoding

of W ′′
1 andW2 at the eavesdropper assuming thatW1 and

W ′
1 are given to the eavesdropper as side information. Given

that W1 = w1 andW ′
1 = w′

1, we assume thatw′′
1 andw2

are sent. The eavesdropper declares thatx1(w1, w
′
1, ŵ

′′
1 ) and

x2(w2) are sent ifx1(w1, w
′
1, ŵ

′′
1 ) is the only codeword in

the sub-binB(w1, w
′
1) and x2(ŵ2) is the only codeword

in C2, such that〈x1(w1, w
′
1, ŵ

′′
1 ),x2(ŵ2),y2〉 is jointly

typical. The eavesdropper makes an error if(ŵ′′
1 , ŵ2) 6=

(w′′
1 , w2) or if there is no such a codeword pair jointly

typical with y2. According to (40), the rate pair(R′′
1,d, R2)

satisfies the following condition:






R′′
1,d ≤ I(X1; Y2|X2),

R2 ≤ I(X2, Y2|X1),
R′′

1,d + R2 ≤ I(X1, X2; Y2).
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Therefore, the probability of error is arbitrarily small when
n is large. Based on Fano’s inequality, we have

H(X1,X2|W1 = w1, W
′
1 = w′

1,Y2) ≤ nδ2.

Hence, we have

H(X1,X2|W1, W
′
1,Y2)

=
∑

w1,w′
1

p(w1, w
′
1)H(X1,X2|W1 = w1, W

′
1 = w′

1,Y2)

≤ nδ2. (44)

By combining (41) with (42), (43) and (44), we have

H(W1|Y2) ≥ n [R1,s + (δ1 − ǫ1 − δ2)] = n (R1,s − ǫ) ,

whereǫ → 0 asn → ∞. Therefore, the secrecy constraint
is satified.

B. Case II: R2 > I(X2; Y2|X1)

1) Codebook Parameters: We choose the following rate
parameter forR′′

1,d:

R′′
1,d = I(X1; Y2) − ǫ1. (45)

Note that in the encoding, the interfering encoder selects
w2 ∈ W2 at random and sends the codewordx2(w2) to the
channel. In order to prove for Case II, we assume that this
is done as in the following procedure. We suppose that the
2nR2 codewords in codebookC2 are randomly grouped into
2nR′

2 bins each with2nR′′
2 codewords, whereR′′

2 = R2−R′
2.

Therefore, any codeword inC2 is indexed asx2(w
′
2, w

′′
2 )

for w′
2 ∈ W ′

2 = {1, . . . , 2nR′
2} and w′′

2 ∈ W ′′
2 =

{1, . . . , 2nR′′
2 }. During encoding, the encoder at the helper

selectsw′
2 ∈ W ′

2 and w′′
2 ∈ W ′′

2 independently at random,
and sends the codewordx2(w

′
2, w

′′
2 ). This is equivalent to

that a random codewordx2(w2) (w2 = w′
2 × w′′

2 ) is sent.
To facilitate the proof, we let

R′′
2 = I(X2; Y2|X1) − ǫ2. (46)

2) Equivocation Computation: Following steps similar
to those as given by (41), the equivocation at the eaves-
dropper is bounded by:

H(W1|Y2) ≥ H(W1|Y2, W
′
1, W

′
2)

≥ H(X1,X2|W ′
1, W

′
2) − I(X1,X2;Y2)

− H(X1,X2|W1, W
′
1, W

′
2,Y2). (47)

For the first term, we have that

H(X1,X2|W ′
1, W

′
2)

= H(X1|W ′
1) + H(X2|W ′

2)

= n(R1,s + R′′
1,d) + nR′′

2

= n [R1,s + I(X1, X2; Y2) − ǫ3] , (48)

whereǫ3 = ǫ1 + ǫ2 → 0 asn → ∞. For the second term,
we have that

I(X1,X2;Y2) ≤ n [I(X1, X2; Y2) − δ1] . (49)

To bound the third term, we consider the (joint) decoding of
W ′′

1 andW ′′
2 at the eavesdropper assuming thatW1, W ′

1 and
W ′

2 are given to the eavesdropper as side information. For
the rate pair(R′′

1,d, R
′′
2 ) = (I(X1; Y2)− ǫ1, I(X2; Y2|X2)−

ǫ2), we can show that the probability of error is arbitrarily
small whenn is large. Hence, we also have

H(X1,X2|W1, W
′
1, W

′
2,Y2) ≤ nδ2. (50)

By combining (47) with (48), (49) and (50), we have

H(W1|Y2) ≥ n [R1,s + (δ1 − ǫ3 − δ2)] = n (R1,s − ǫ) ,

where ǫ = ǫ3 + δ2 − δ1 → 0 as n → ∞. Therefore, the
secrecy constraint is also satified for case II.

APPENDIX B
PROOF OFTHEOREM 2

Proof: The secrecy requirement implies that

nRs = H(W1) ≤ H(W1|Y n
2 ) + nǫ, (51)

and Fano’s inequality implies that

H(W1|Y n
1 ) ≤ nǫR1 + h(ǫ) , nδ. (52)

Based on (51) and (52), we have

nRs ≤ H(W1|Y n
2 ) + nǫ

≤ H(W1|Y n
2 ) − H(W1|Y n

1 ) + n(ǫ + δ)

≤ H(W1|Y n
2 ) − H(W1|Y n

1 , Y n
2 ) + n(ǫ + δ) (53)

= I(W1; Y
n
1 |Y n

2 ) + n(ǫ + δ)

≤ I(Xn
1 , Xn

2 ; Y n
1 |Y n

2 ) + n(ǫ + δ) (54)

≤
n

∑

i=1

I(X1,i, X2,i; Y1,i|Y2,i) + n(ǫ + δ), (55)

where (53) is due to the fact that conditioning reduces en-
tropy, and (54) follows sinceW1 → (Xn

1 , Xn
2 ) → (Y n

1 , Y n
2 )

forms a Markov chain.
Now, it is observed that the secrecy capacity of the WT-

HI depends only on the marginal distributionsPY1|X1,X2

andPY2|X1,X2
, and not on any further structure of the joint

distributionPY1,Y2|X1,X2
. This can be easily proved because

the average error probabilityPe defined by (1) depends on
the marginal distributionPY1|X1,X2

only, and the equivoca-
tion rateH(W1|Y n

2 )/n depends on the marginal distribution
PY2|X1,X2

only. Hence, the secrecy capacity is the same for
any channel described by (17) whose marginal distributions
are the same. We can replace(Y1, Y2) with (Ỹ1, Ỹ2) defined
by (17) and obtain (16).

APPENDIX C
PROOF OFTHEOREM 3

Proof: The achievability is based on the coding scheme
introduced in Section III, with the input distributionsπ
chosen to be GaussianN (0, P1) and N (0, P2) for C1

and C2, respectively. Here, we discuss only the coding
parametersR1, R2 andR1,d in Theorem 1.
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Whena ≥ 1+P2, which is the very strong eavesdropping
case as discussed in Section III, we haveRs = 0.

Next, we discussRI
s(P1, P2) for the case whena ≤ 1 +

P2. Here, we chooseR2 = γ(P2) andR1,d = γ
(

aP1

1+P2

)

.

1) Whenb ≥ 1 + P1, we haveR2 ≤ γ
(

bP2

1+P1

)

. In this

case, we chooseR1 = γ(P1). The intended receiver
can first perform a separate decoding usingC2 and
cancel interference, and then can decode at the rate of
R1 = γ(P1) usingC1 (virtually a clean channel). The

secrecy rate isRs = R1−R1,d = γ(P1)−γ
(

aP1

1+P2

)

.

2) When1 ≤ b ≤ 1 + P1, we haveγ
(

bP2

1+P1

)

≤ R2 ≤
γ(bP2). In this case, we chooseR1 = γ(P1 + bP2)−
γ(P2). The intended receiver performs joint decoding
using C1 and C2. The secrecy rate isRs = R1 −
R1,d = [γ(P1 + bP2) − γ(P2)]−γ

(

aP1

1+P2

)

= γ(P1+

bP2) − γ(aP1 + P2).
3) Whenb ≤ 1, we haveγ(P2) ≥ γ(bP2). In this case,

we chooseR1 = γ
(

P1

1+bP2

)

. The intended receiver
performs a separate decoding usingC1. The secrecy
rate isRs = R1 − R1,d = γ

(

P1

1+bP2

)

− γ
(

aP1

1+P2

)

.

Under certain conditions, to chooseR2 = 0 andR1,d =
γ(aP1) can yield a higher secrecy rate. In this case, the
secrecy rate isRII

s (P1) = [γ(P1) − γ(aP1)]
+. Therefore,

max
(

RI
s, R

II
s

)

can be achieved.

APPENDIX D
PROOF OFLEMMA 1

Proof: First, we notice thatRII
s can be viewed as a

special result ofRI
s if power is optimized (by applying

power(P1, P2) = (P̄1, 0)). Hence, to optimizeRs given by
(21), we can ignoreRII

s and consider only the optimization
of RI

s with respect toP1 andP2.
For convenience, we denote

Rs1 = γ(P1) − γ

(

aP1

1 + P2

)

,

Rs2 = γ(P1 + bP2) − γ(aP1 + P2),

and Rs3 = γ

(

P1

1 + bP2

)

− γ

(

aP1

1 + P2

)

,

which are all functions ofP1 and P2. Depending on the
channel parameters(a, b) and power(P1, P2), only one of
the three functions is active. When0 ≤ P1 ≤ P̄1 and
0 ≤ P2 ≤ P̄2, all three functions are bounded. Therefore,
there always exists a global maximum, which might be a
maximum of one certain function or at a cross point of
two functions. The subsections below is to search for the
maximum point by checking the gradients and comparing
with the boundary points.

Since we care about the sign of the (partial) derivatives
of these functions, for convenience, we say that two real
numbersx andy satisfyx ∽ y if they have the same sign.

It can be shown that we have

∂Rs1

∂P1
∽ 1 − a + P2,

∂Rs2

∂P1
∽

∂Rs3

∂P1
∽ 1 − a + (1 − ab)P2,

∂Rs1

∂P2
≥ 0,

∂Rs2

∂P2
∽ b − 1 + (ab − 1)P1,

and
∂Rs3

∂P2
∽

[

b(ab − 1)P 2
2 + 2b(a − 1)P2 + a − b + a(1 − b)P1

]

P1.

We discuss all possible cases in the following subsec-
tions:

A. a > 1

For the case whena > 1, we considerb > 1, a−1 < b ≤
1, andb ≤ a−1, respectively.

1) b > 1:

i) P̄2 ≤ a−1: we cannot obtain a positive secrecy
rate, and therefore,(P1, P2) = (0, 0).

ii) P̄2 > a − 1: we choose (P1, P2) =
(min(P̄1, P

∗
1 ), P̄2) because of the following:

If P̄1 ≤ b−1, Rs1 is active,(∂Rs1

∂P1

≥ 0, ∂Rs1

∂P2

≥
0) and therefore(P1, P2) = (P̄1, P̄2). Now if
P̄1 > b − 1, once we chooseP1 > P ∗

1 , Rs2 is
active and(∂Rs2

∂P1
≤ 0, ∂Rs1

∂P2
≥ 0). This forces

us to set(P1, P2) = (P ∗
1 , P̄2).

2) a−1 < b ≤ 1: Rs3 is active, and we have(∂Rs3

∂P1

≤
0, ∂Rs3

∂P2

≤ 0). Therefore,(P1, P2) = (0, 0).
3) b ≤ a−1: Rs3 is active.

i) P̄2 ≤ a−1
1−ab

: (∂Rs3

∂P1

≤ 0, ∂Rs3

∂P2

≤ 0) and
therefore,(P1, P2) = (0, 0).

ii) P̄2 > a−1
1−ab

: we choose (P1, P2) =
(P̄1, min(P̄2, P

∗
2 )) because of the following

If a−1
1−ab

< P̄2 ≤ P ∗
2 , (∂Rs3

∂P1
≥ 0, ∂Rs3

∂P2
≥ 0) and

therefore(P1, P2) = (P̄1, P̄2). Now if P̄2 > P ∗
2 ,

once we chooseP2 > P ∗
2 , (∂Rs3

∂P1
≥ 0, ∂Rs3

∂P2
≤

0). This forces us to set(P1, P2) = (P̄1, P
∗
2 ).

B. a ≤ 1

For the case whena ≤ 1, we considerb > a−1, 1 < b ≤
a−1, andb ≤ 1, respectively.

1) b > a−1:

i) P̄1 ≤ b− 1: Rs1 is active and we have(∂Rs1

∂P1

≥
0, ∂Rs1

∂P2

≥ 0). Therefore, we have(P1, P2) =

(P̄2, P̄2).
ii) P̄1 > b − 1: If P̄2 ≤ 1−a

ab−1 , Rs2 is active,
(∂Rs2

∂P1

≥ 0, ∂Rs2

∂P2

≥ 0) and therefore we choose
(P1, P2) = (P̄1, P̄2). Now if P̄2 > 1−a

ab−1 , once
we chooseP2 > 1−a

ab−1 , (∂Rs2

∂P1

≤ 0, ∂Rs1

∂P2

≥ 0).
This forces us to choose(P1, P2) = (P ∗

1 , P̄2).
After comparing with the rate achieved by using
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(P1, P2) = (P̄1,
1−a
ab−1 ), we find that(P1, P2) =

(P ∗
1 , P̄2) is better.

2) 1 < b ≤ a−1:

i) P̄1 ≤ b−1
1−ab

: when P̄1 ≤ b − 1, Rs1 is active
and we have(∂Rs1

∂P1

≥ 0, ∂Rs1

∂P2

≥ 0); when b −
1 < P̄1 ≤ b−1

1−ab
, Rs2 is active and we have

(∂Rs2

∂P1
≥ 0, ∂Rs2

∂P2
≥ 0). Therefore, we choose

(P1, P2) = (P̄1, P̄2).
ii) P̄1 > b−1

1−ab
: we choose(P1, P2) = (P̄1, 0)

because of the following:
If one choosesP1 > b−1

1−ab
, Rs2 is active

and (∂Rs2

∂P1
≥ 0, ∂Rs2

∂P2
≤ 0), therefore we

need(P1, P2) = (P̄1, 0). After comparing with
(P1, P2) = ( b−1

1−ab
, P̄2), we find that(P1, P2) =

(P̄1, 0) is better.

3) b ≤ 1: Rs3 is active.

i) P̄1 ≤ b−a
a(1−b) : since (∂Rs3

∂P1

≥ 0, ∂Rs3

∂P2

≤ 0), we
choose(P1, P2) = (P̄1, 0).

ii) P̄1 > b−a
a(1−b) : we choose (P1, P2) =

(P̄1, min(P̄2, P
∗
2 )) because of the following:

If P̄2 ≤ P ∗
2 , (∂Rs3

∂P1

≥ 0, ∂Rs3

∂P2

≥ 0), and we
choose(P1, P2) = (P̄1, P̄2). If P̄2 > P ∗

2 and
once choosingP2 > P ∗

2 , (∂Rs3

∂P1

≥ 0, ∂Rs3

∂P2

≤ 0).
This forces us to choose(P1, P2) = (P1, P

∗
2 ).

APPENDIX E
PROOF OFLEMMA 2

Proof: Whenb > max(1, a−1), the power policy uses
(P1, P2) = (P ∗

1 , P̄2), whereP ∗
1 = b − 1. Therefore, the

achievable secrecy rate is

Rs = γ (P ∗
1 ) − γ

(

aP ∗
1

1 + P̄2

)

=
1

2
log b − 1

2
log

(

1 +
a(b − 1)

1 + P̄2

)

.

After taking the limit with respect ofP̄2, we haveRs =
1
2 log b.

Whenb < min(1, a−1), the power policy uses(P1, P2) =
(P̄1, P

∗
2 ), whereP ∗

2 is given by (25) and can be shown to
be

P ∗
2 =

√

(a − b − ab)P̄1

b(1 − ab)
,

when P̄1 is large. The achievable secrecy rate is

Rs = γ

(

P̄1

1 + bP ∗
2

)

− γ

(

aP̄1

1 + P ∗
2

)

.

After taking the limit with respect ofP̄1, we haveRs =
1
2 log 1

ab
.

For other cases, the power policy usesP2 = 0 and the
achievable secrecy rate remains atRs = 1

2

[

log2
1
a

]+
.

APPENDIX F
PROOF OFLEMMA (3)

Proof: To use the result given by (16), we let

Ỹ1 = X1 +
√

bX2 + Z̃1 (56)

and Ỹ2 =
√

aX1 + X2 + Z̃2, (57)

whereZ̃1 andZ̃2 are arbitrarily correlated Gaussian random
variables with zero-means and unit variances. We also letρ
denote the covariance betweeñZ1 and Z̃2, i.e.,

Cov(Z̃1, Z̃2) = ρ.

It can be observed thatPY1,Y2|X1,X2
andPỸ1,Ỹ2|X1,X2

have
the same marginal distribution and satisfy the condition
given by (17).

Note thatI(X1, X2; Ỹ1|Ỹ2) is a function of the transmit
powersP1 andP2, and the noise covarianceρ. Hence, we
denote it by

I(X1, X2; Ỹ1|Ỹ2) = f(P1, P2, ρ). (58)

Now we show thatf(P1, P2, ρ) can be evaluated by (37).
To show this,I(X1, X2; Ỹ1|Ỹ2) is evaluated as

I(X1, X2; Ỹ1|Ỹ2)

= I(X1, X2; Ỹ1, Ỹ2) − I(X1, X2; Ỹ2)

= [H(Ỹ1, Ỹ2) − H(Ỹ1, Ỹ2|X1, X2)]

− [h(Ỹ2) − h(Ỹ2|X1, X2)]

= h(Ỹ1|Ỹ2) − h(Z̃1|Z̃2)

= h(Ỹ1|Ỹ2) −
1

2
log[2πe(1 − ρ2)]. (59)

For convenience, we let

t =
E[Ỹ1Ỹ2]

E[Ỹ 2
2 ]

. (60)

We have

h(Ỹ1|Ỹ2) = h(Ỹ1 − tỸ2|Ỹ2)

≤ h(Ỹ1 − tỸ2) (61)

≤ 1

2
log[2πeVar(Ỹ1 − tỸ2)], (62)

where (62) follows from the maximum-entropy theorem and
both equalities in (61) and (62) hold true when(X1, X2)
are Gaussian.

Furthermore, we have

Var(Ỹ1 − tỸ2) = 1 + P1 + bP2 −
(ρ +

√
aP1 +

√
bP2)

2

1 + aP1 + P2
.

Hence,I(X1, X2; Ỹ1|Ỹ2) can be evaluated by (37).
It is easy to verify thatf(P1, P2, ρ) is an increasing

function of bothP1 andP2 for any givenρ, andf(P1, P2, ρ)
is a convex function ofρ for any givenP1 andP2. It can
be shown that whenP1 and P2 are given, the minimum
of f(P1, P2, ρ) occurs whenρ is chosen to beρ⋆ given by
(38).
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Therefore, the Sato-type upper bound can be calculated
as

min
ρ

max
(P1,P2)

f(P1, P2, ρ) = f(P̄1, P̄2, ρ
∗(P̄1, P̄2)).

APPENDIX G
PROOF OFLEMMA 4

Proof: Based on the secrecy requirement given by (51)
and Fano’s inequality given by (52), we have

nRs ≤ H(W1|Y n
2 ) − H(W1|Y n

1 ) + n(ǫ + δ)

≤ I(W1; Y
n
1 ) − I(W1; Y

n
2 ) + n(ǫ + δ).

For simplicity, we omit the termn(ǫ + δ) since it does not
change the result. Now we let

V n
1 = Xn

1 + Zn
1 (63)

and V n
2 =

√
aXn

1 + Zn
2 , (64)

and proceed with the following steps:

nRs

≤ I(W1; Y
n
1 , V n

1 ) − I(W1; Y
n
2 , V n

2 ) + I(W1; V
n
2 |Y n

2 )

= I(W1; V
n
1 ) + I(W1; Y

n
1 |V n

1 ) − I(W1; V
n
2 )

− I(W1; Y
n
2 |V n

2 ) + I(W1; V
n
2 |Y n

2 )

= I(W1; V
n
1 ) − I(W1; V

n
2 ) + I(W1; V

n
2 |Y n

2 ), (65)

where we use the fact thatI(W1; Y
n
1 |V n

1 ) = 0 and
I(W1; Y

n
2 |V n

2 ) = 0 since each ofW1 ↔ V n
1 ↔ Y n

1 and
W1 ↔ V n

2 ↔ Y n
2 forms a Markov chain. We therefore have

nRs

≤ [I(W1; V
n
1 ) − I(W1; V

n
2 )]

+
+ I(W1; V

n
2 |Y n

2 ). (66)

Based on the result for the Gaussian wire-tap channel [3],
we have

[I(W1; V
n
1 ) − I(W1; V

n
2 )]

+

≤ n

2

[

log(1 + P̄1) − log(1 + aP̄1)
]+

. (67)

Now, we boundI(W1; V
n
2 |Y n

2 ) via the following steps:

I(W1; V
n
2 |Y n

2 )

≤ I(W1, X
n
1 ; V n

2 |Y n
2 )

= I(Xn
1 ; V n

2 |Y n
2 )

= h(V n
2 |Y n

2 ) − h(V n
2 |Xn

1 , Y n
2 )

= [h(Y n
2 , V n

2 ) − h(Y n
2 , V n

2 |Xn
1 )] − h(Y n

2 ) + h(Y n
2 |Xn

1 )

= I(Xn
1 ; Y n

2 , V n
2 ) − h(Y n

2 ) + h(Y n
2 |Xn

1 ).

Since

I(Xn
1 ; Y n

2 , V n
2 ) = I(Xn

1 ; V n
2 )

= h(V n
2 ) − h(Zn

2 ),

we have

I(W ; V n
2 |Y n

2 )

≤ h(V n
2 ) + h(Y n

2 |Xn
1 ) − h(Y n

2 ) − h(Zn
2 )

= h(
√

aXn
1 + Zn

2 ) + h(Xn
2 + Zn

2 )

− h(
√

aXn
1 + Xn

2 + Zn
2 ) − h(Zn

2 ). (68)

Since we assume thatXn
1 andXn

2 are independent (and
both are also independent ofZn

2 ), based on the subset sum
entropy power inequality (EPI) [30], we have

exp

(

2

n
h(
√

aXn
1 + Xn

2 + Zn
2 )

)

≥ 1

2

[

exp

(

2

n
h(
√

aXn
1 + Zn

2 )

)

+ exp

(

2

n
h(Xn

2 + Zn
2 )

)]

.

(69)

By letting t1 = h(
√

aXn
1 +Zn

2 ) andt2 = h(Xn
2 +Zn

2 ), we
have

h(
√

aXn
1 + Xn

2 + Zn
2 ) ≥

n

2

{

log

[

exp

(

2t1
n

)

+ exp

(

2t2
n

)]

− log 2

}

. (70)

Using (70) in (68), we obtain

I(W ; V n
2 |Y n

2 )

≤ t1 + t2 −
n

2

{

log

[

exp

(

2t1
n

)

+ exp

(

2t2
n

)]

− log 2

}

− n

2
log(2πe)

=
n

2
log





exp
(

2(t1+t2)
n

)

exp
(

2t1
n

)

+ exp
(

2t2
n

)



 − n

2
log(πe). (71)

Note that the bound given by (71) is an increasing function
of both t1 andt2. From the maximum-entropy theorem, we
have

t1 ≤ n

2
log

(

2πe(1 + aP̄1)
)

,

t2 ≤ n

2
log

(

2πe(1 + P̄2)
)

,

where the equalities hold when bothXn
1 andXn

2 are i.i.d.
Gaussian. Therefore,

I(W1; V
n
2 |Y n

2 ) ≤ n

2
log

[

2(1 + aP̄1)(1 + P̄2)

2 + aP̄1 + P̄2

]

. (72)

Finally, by combining (66), (67), and (72), we obtain the
upper bound given by (39).
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