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Abstract—Wireless communication is susceptible to eaves- eavesdropper. The level of ignorance of the eavesdropper
dropping attacks because of its broadcast nature. This page with respect to the confidential messages is measured by
illustrates how interference can be used to counter eavesop-  the equivocation rate. Perfect secrecy requires that the
ping and assist secrecy. In particular, a wire-tap channel vth a . . . .
helping interferer (WT-HI) is considered. Here, a transmitter equivocation rate _'S asymptotlcally equ"’_‘l to the message
sends a confidential message to its intended receiver in thefate, and the maximal achievable rate with perfect secrecy
presence of a passive eavesdropper and with the help of anis the secrecy capacity. The central idea of [1]-[3] is that
independent interferer. The interferer, which does not knav  the transmitter can use stochastic encoding to introduce
the confidential message, helps in ensuring the secrecy ofeth 5nqomness to preserve secrecy. In this paper, we study the
message by sending an independent signal. An achievable . . - . .
secrecy rate and several computable outer bounds on the prOble_m in which a t_ransm'tter sends Conf'd_em'al messages
secrecy capacity of the WT-HI are given for both discrete !0 the intended receiver with the help of an interferer, i th
memoryless and Gaussian channels. presence of a passive eavesdropper. The difference between

Index Terms—Information-theoretic secrecy, wire-tap chan- HiS model and C5|szé\r and Korner's model is that there
nel, interference channel, eavesdropping, interference is an additional transmitter, who functions as an interfere
without any knowledge of the actual confidential message
sent by the primary transmitter. We call this model the
wire-tap channel with a helping interferer (WT-HI). The

Broadcast and superposition are two fundamental progxternal transmitter provides additional randomization t
erties of the wireless medium. Due to its broadcast natuiegcrease the secrecy level of the primary transmission. We
wireless transmissions can be received by multiple recgivehoose the transmission schemes at both the interferer and
with possibly different signal strengths. This propertykem the legitimate transmitter to enhance the secrecy rate.
wireless communications susceptible to eavesdropping. Du To understand the effects of interference in wireless
to the superposition property of the wireless medium, teansmissions, the interference channel (IC) has beemn-exte
receiver observes a superposition of multiple simultaseosively studied. The capacity region of interference chésne
transmissions resulting in interference. This papertilates remains an open problem, except for some special cases
how one can pit the superposition property of the wirelegscluding the strong/very strong interference regimes [4]
medium against eavesdropping by using interference aod [5]. The best achievable rate region so far was proposed
assist secrecy. by Han and Kobayashi [6]. Several outer bounds for the

Our approach follows Wyner’s seminal work on the wireGaussian IC with weak interference were proposed in [7]-
tap channel [1], in which a single source-destination corfitO], and more recently a new outer bound was proposed
munication is eavesdropped upon via a degraded channedlependently in [11]-[13] to obtain the sum-capacity in a
Wyner’s formulation was generalized by Csiszar and Kbrngery weak interference regime.
who studied general broadcast channels [2]. The GaussiaThe secrecy capacity of interference channels remains
wire-tap channel was considered in [3]. In these models,eéven more elusive. In [14], an achievable secrecy rate
is desirable to minimize the leakage of information to theegion and an outer bound were proposed for the discrete

memoryless interference channel with confidential message
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The idea of using artificial noise, which is a speciatontext of the REC [25], MAC-WT [22] and IC-CM [14]
case of interference, to help secret communication was firsbdels. Our achievable scheme can be considered to be
proposed by Goel and Negi in [19]. It is assumed in [19] tha generalization of the schemes proposed previously. In
the transmitter has multiple antennas or there are helpéne cooperative jamming [22] scheme or the artificial noise
who can amplify-and-forward noisy versions of the signacheme in [14] (both proposed for Gaussian channels),
sent by the transmitter. In [18], a complex independent atite helper generates an independent (Gaussian) noise. This
identically distributed (i.i.d.) fading Gaussian intedace scheme does not employ any structure in the transmitted
channel is considered and an interference alignment schesignal and can be considered as a special case of our scheme
was proposed for the purpose of preserving secrecy. Sineken the coding rate of the interference codebook is large
we consider static interference channel in this paper, tliafinity). The noise forwarding scheme in [25] requires
interference alignment technique in [18] cannot be appliethat the interferer's codewords can always be decoded

The information-theoretic secrecy approach has also bedh the intended receiver, which can be considered as a
applied to study other various multi-user channel mode¥®ecial case of our scheme when the coding rate of the
such as the multiple access channel with confidential mdaterference codebook is lower than a certain rate such that
sages (MAC-CM) [20], [21], the multiple access Wire-taﬁ)he intended receiver can decode the interference first. By
channel (MAC-WT) [22], [23], and the relay-eavesdroppdking a holistic_ view, we obtain a number of new insjghts.
channel (REC) [24]-[26]. We refer the reader to [27], [28[OF the Gaussian WT-HI channel, our scheme achieves a

. S . ._and cooperative schemes. For general discrete memoryless
The main contributions of this paper are summarlzecﬂ ) . .
annels, our scheme can achieve a higher secrecy rate in

as follows: First, for general discrete memoryless wzan
certain cases.

HI models, we consider all possible interference patterns ) .
P P '[he achievable rate for the Gaussian WT-HI channel

and design the corresponding achievable coding scheme aderived by assuming Gaussian random coding at the

.. . . S
the legitimate transmitter based on the coding rate of tlL'rf,%msmitter and interferer. While it can be close to the uppe

interference codebook. We propose an achievable secr .
brop %md at low or moderate SNR, it becomes a constant as the

rate for this channel by optimizing the coding schemes R increases. which causes a large aap between lower and
both the interferer and the legitimate transmitter. Secon ' ge gap

for a Gaussian WT-HI, we provide an achievable secretPPer bounds at high SNR. In [29], He and Yener show that

rate based on Gaussian codebooks and describe a posv)[v/'('eurcwred codes (nested lattice codes) outperform Gaussi

policy to optimize the secrecy rate. The results show th%a{ndom codes at high SN.R’ and can achieve an unbounded
the interferer can increase the secrecy level, and that & ooy rate_as the SNR INCreases. .

positive secrecy rate can be achieved even when the sour, e-h.e remalnde_r of the paper is organized as follows.
destination channel is worse than the source—eavesdropgg tion Il describes the system model for the WT-HI.

channel. An important example for the Gaussian case gction lll states an achievaple secrecy rate and a Sato-
that in which the interferer has a better channel to ﬂ%pe_upper bour_1d for genera_ll discrete memoryless channels.
intended receiver than to the eavesdropper. We show t %f.“on IV studies a Gaussian WT-HI quel, for Wh.'ch an
when the interferer-receiver channel is good enough al i levable secrecy rate and a power policy for maximizing
the power used at the transmitters is unconstrained, & secrecy rate, together W'.th severgl computable upper
achieved secrecy rate for the Gaussian WT-HI is equal unds on the secrecy _capacny are given for the Gaussian
the secrecy rate achieved when the message is given to 'g—HI_modeI. Section V |IIustr:_;1tes the re§ults_through some
helper secretly and the helper forwards the message. Tﬂ%merlcal examples. Conclusions are given in Section V.

is particularly interesting because we do not assume that
there is a secret transmitter-interferer channel (whichldio Il. SYSTEM MODEL

enable the interferer to relay the transmission). Finally, ag depicted in Fig. 1, we consider a communication
provide several computable upper bounds on the secregétem including a transmitterXg), an intended receiver
capacity of the Gaussian WT-HI model. Each of ther(yl)’ a helping interfererX5), and a passive eavesdropper
can be a better upper bound than others under certgif) The transmitter sends a confidential messageo the
channel and power conditions. For some special cases, {h@&nded receiver with the help of amdependent interferer,
best upper bound is quite close to the achievable secrggyine presence of a passive hintelligent eavesdropper.
rate. One important contribution of this work is that ifp\e assume that the eavesdropper knows the codebooks
is one of the first works that look at individual secrecyf the transmitter and the helper. Furthermore, we assume
rate, while previous work on secret communication OV@Rat the transmitters do not share any common randomness
interference channels focus on sum secrecy rate. Thigeffgrg also that the helper does not know the confidential
of maximizing individual secrecy rate brings importanhessagewl_ As noted above, we refer to this channel
insight that inspires later research. as the wire-tap channel with a helping interferer (WT-
The WT-HI model has been studied in part within théll). The channel can be defined by the alphab¥ts X5,
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Fig. 1. A wire-tap channel model with interference: a traittenwants to send a confidential messadjg to the intended receiver while keeping the
message secret with respect to an passive eavesdroppkee jmesence of an active interferer.

V1, V2, and channel transition probabiligy(y1, y2|z1,22) 1ll. DISCRETEMEMORYLESSCHANNELS: ACHIEVABLE
wherez, € X; andy; € )y, t = 1,2. The transmitter SECRECY RATE AND UPPERBOUND
encodes a confidential message € Wi = {1,..., M} In this section, we consider the general discrete memo-

into z7 and sends it to the intended receiverrirchannel yjess WT-HI model. We present an achievable secrecy rate
uses. A stochastic encoder [2] is specified by a matrix with an outline of its achievable coding scheme. We also

of conditional probabilitiesf, (z1,x|w), wherex, .. € X1, present a computable upper bound on the secrecy capacity.
w1 € Wh, Zwlkf1($17k|w1) =1forall k =1,...,n,

and f1(z1 x|w) Is the probability that the encoder output . . )
x1, when messagey; is being sent. The helper gener—%" Outhng of An Achwabl_eCodmg Sch?me
ates its outputr, , randomly and can be considered as An achievable scheme involves two independent stochas-
using another stochastic encodgr which is specified by tic codebooks. The encoder at the legitimate transmittes us
a matrix of probabilitiesfs(z2;) With 22, € Xs and codebookcl_(2”R1,2_"R1vs,n), wheren is the codeword
S fa(zar) = 1. We assume thatX? and X2 are length, 27 is the size of the codebook, and’: - is the

T2k s i i . ) . .
independent. Since randomization can increase secracy, ifmber of confidential messages thatan convey g, s <
legitimate transmitter uses stochastic encoding to intced £21)- In add|t|0n1,% the encoder ag%thg interfering helper uses
randomness. Additional randomization is provided by theCOdebookCs (2", n), where 2" is the codeb}gok size.
helper and the secrecy can be increased further. This codebook can be considered to be thé2"™, 1, n)_

The decoder uses the output sequepgeto compute code where the nu_mber of messages thatan convey is
its estimated; of w;. The decoding function is specified! (and therefore with zero effective rate).

by a (deterministic) mapping : Y7 — W;. The average The random segrRelcy binning [1] technique is applied
probability of error is to Cy, so that the2 codewords are randomly grouped

into 2"+ bins each with2"(#1—F1.5) codewords, where
M each bin represents a message. During the encoding, to
P, = 1 Z Pr{g(Y]") # wi|w; sent. (1) send message; € Wi, the encoder selects one codeword
M w=1 uniformly and randomly in thev-th bin and sends it to the
channel. Meanwhile, the encoder at the interferer randomly
The secrecy level (level of ignorance of the eavesdroppsalects a codeword ifi; and sends it to the channel.
with respect to the confidential message) is measured In the decoding, after receiving,, the intended receiver

by the equivocation ratél /n)H (W1 |Y35"). declares thatp; is sent if either of the following two events
A secrecy rateR, is achievable for the WT-HI if, for any occur:
e > 0, there exists anM/, n, P.) code so that 1) (separate decoding): there is only one codeword in
C; that is jointly typical withy; and the bin index of
M >l p o <e 2) this codeword isiy;

2) (joint decoding): there is only one pair of codewords
1 in C; and(, that are jointly typical withy; and the
and R, - EH(W1|Y2”) <e (3) bin index of the codeword i€ is ;.
The intended receiver declares that a decoding error occurs
for all sufficiently largen. The secrecy capacity is theif neither 1) nor 2) happens. (Please see Appendix A for
maximum of all achievable secrecy rates. the details.)
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B. Achievable Rate Remark 1: The rateR; is split asRy = Ri,s + Ri.4.

Note that in the achievable scheme, the intended receiV¥dierei1,s denotes a secrecy information rate intended by
can perform either a joint decoding or a separate decodif§Cceiver 1 andi, 4 represent a redundancy rate sacrificed in
When joint decoding is performed, the intended receiv@Fder to confuse the eavesdropper. The interferer can help

needs to decode both codewords fr@mnandC,. This is
essentially a multiple-access channel (MACY;, X>) —
Y:. Hence, We Ie‘R[lMAC] denote the achievable rate regio
of the MAC (X3, X>) — ) defined by

R1 >0, Ry 20,

Ry < I(X1;Y1]X2),

R2 S I(XQ;Y1|X1),

Ry + Ry < I(X1, Xo; Y1)

RMAY — J (R, Ry)

(4)

When separate decoding is performed, the intended receiv® : X
dhat some random information can be decoded by the

does not need to decode. Instead, it treats the codeword

from C, as interference. An achievable rate (region) for th

separate decoding is given by

Rl Z 01 R2 2 07
Ry < I(Xy1; 1),
Ry > I(X2; V1] X1)

RY = { (Ri, Ry) (5)

Hence, as shown in Fig. 2, the “achievable” rate region
the R;-R> plane at the receiver is the unionﬁjﬁMAC} and
R

(Xl7 XQ) - y2:
Ry >0, Ry 20,
MAC] Ry < I(X1;Y2|X2),
R2 - (RlvRQ) R2 <I(X2;}/2|X1), )
Ri + Ry < I(X1, X2;Y3)
(6)
andR[QS] is the separate decoding region given by
s Rl Z 01 R2 2 07
RE = C (R, Re) | Ry < I(X13Ya), (7)

Ry > I(X3;Y2|X1)

Our achievable secrecy rate is based on the above defi-
nitions of joint and separate decoding regions, and is given

in the following theorem.

Theorem 1: The following secrecy rate is achievable foACNIEVeSAi.

the WT-HI:
Ry, =
Ris+Riqg= Ry,
MAC S
max, Ry, | (FaRa) e {REATUREL L
m,R1,R2,R1 q
(Ria, R2) ¢ {REMI URET)
(8)
wherer is the class of distributions that factor as
p(z1)p(z2)p(y1, yo|r1, T2). (9)

Similar analysis applies for the eavesdropper as sho
in Fig. 2, whereR[QMAC] denotes the region of the MAC

wn

by transmitting dummy information at the raf&.
Proof: The proof consists of error analysis and equiv-

;pcation computation. It can be found in Appendix A.

Note that the encoding procedure outlined in Section
IlI-A involves only one step of binning folC;, but in
the proof given in Appendix A, we assume an additional
binning step forC; (double binning [14]) and one binning
step forC,. However, the additional binning procedure is
assumed only for simplifying the proof and is equivalent
to the coding procedure described in Section IlI-A. More
gcifically, we do the additional binning f@% to ensure

gavesdropper at the rate given by the upper boundary
of R[QMAC] UR[QS]j, if the eavesdropper is interested in
decoding the random information when the messége
is given as side information. This facilitates the techhica
proof as shown in Appendix A.

[ |
in

C. Some Special Cases

In the following, we consider three typical cases: weak in-
terference/eavesdropping, strong interference/eapppirg
and very strong eavesdropping.

1) Weak Interference/Eavesdropping: This implies that

I(X1; Y11 X5)
1(X2: Y5l X0)

> 1(X1;Y2|X2)

for all product distributions on the input; and X,. This
case is illustrated by Fig. 2.(a). Let

Ay = I(X1; V1] X2) — 1(X1; Ys|X2)
and AQZI(Xl;Yl)—I(Xl;}/g).

(11)
(12)

Remark 2: For the weak interference case as illustrated
in Fig. 2.(a), the noise forwarding scheme proposed in [25]
We show that a larger secrecy rate can be
achieved whem\; < As.

The interferer generates an “artificial noise” with the
dummy rateR, > I(X»; Y>|X;) so that neither the receiver
nor the eavesdropper can decagdle On the other hand,
when A; > A,, the interferer “facilitates” the transmitter
by properly choosing the sign&l; to maximizeA;. There-
fore, in the weak interference case, the intended receiver
performs a separate decoding@yf The achievable secrecy
rate can be summarized as

Rs = max {max (A1, As)}.
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(a) weak interference (b) strong interference (c) strongriarence

Fig. 2. lllustrations of code rat®; versus dummy raté?, at the intended receiver and eavesdropper for severaladpases.

2) Strong Interference/Eavesdropping: This implies that then the secrecy rate given by (8) is achievable.
However, we do not follow the prefixing approach in this
[0 11| X0) < I(X33 V5] X5) paper to avoid the intractability of its evaluation.
and  I(Xo;Y2|Xy) < I(Xo; Y[ Xy) (13)

for all product distributions on the input; and X,. This
case is illustrated by Fig. 2.(b) and Fig. 2.(c). This coindit D- A Sato-type Upper Bound

implies that, without the interferer, the chann®l — )} A trivial upper bound on the secrecy capacity is the (main
is more capable than the chaniél — )1 and, hence, the channel) capacity without secrecy constraint. That is
achievable secrecy rate may be

However, we may achieve a positive secrecy rate with R, < max I(X1;Yi|Xa). (15)
the help of the interferer. Here we choose the rate pair Pxy,Px,
(R1, R2) € RQMAC] so that the intended receiver can first
decodeC, and therC;. Therefore, in this case, the intende
receiver performs joint decoding. Moreover, the dummy ra
pair satisfies

(Ri,a,R2) ¢ {R[QMAC] U R[QS]} ; Ry < min max I(X7, X2;V1|Ya), (16)

Py 1p1x1,x5 PX15Px,

Here, another computable upper bound for a general WT-
| is a Sato-type upper bound.
Theorem 2: The secrecy capacity of the WT-HI satisfies

i.e., we provide enough randomness to confuse the eaves-  _ _
dropper. Hence, for strong interference, the achievable #¢here Y1 and Y> are outputs of a discrete memoryless
crecy rate can be simplified as channel characterized b?%,?z\xl,xz whose marginal dis-

L tributions satisfy
(X1, Xo; Y1) — I(Xq, Xo; Y2), ] }
I(X1; V1] Xz) = I(Xy;Y2) '

3) Very Strong Eavesdropping: In this case,

Ry = max {min {
m Py, x, Wile1, w2) = Py x, x, (y5le1, 22), (A7)

for j = 1,2 and allyy, y2, 1, andxs.

I(X1;Y2) 2 I(X1; 1] Xz) (14) Proof: The proof can be found in Appendix B. =
for all product distributions on the inpuk; and Xo. Remark 3: The upper bound assumes that a genie gives
We cannot obtain any positive secrecy rate by using tihee eavesdropper’s signg} to the intended receiver as side
proposed scheme. information for decoding messa@®. Since the eavesdrop-

The secrecy rate may be increased by using the chanper’s signalt; is always a degraded version of the combined
prefixing technique in [2, Lemma 4], as shown in theignal(Y7,Y3), the wire-tap channel result [1] can therefore
following corollary. be used.

Corollary 1: If X; andX; in RMAY andRP ¢ = 1,2, The secrecy capacity of the WT-HI channel depends
defined by (4)-(7), are replaced with random variabies only on the marginal distributions;, | v, , andPy, «, x,.
and V5, respectively, and the input distributionin (8) is and not on any further structure of the joint distribution

replaced withr’, wheren’ is the class of distributions that Py, v, x, x,- Hence, the secrecy capacity is the same for

factor as any channel described by (17) whose marginal distributions
are the same. Since the secrecy capacity is upper bounded
p(vr, vz, 21, 2,91, Y2) by maxp, p.. I(X1,Xo;Y1|Ys) for each channel, it is
X1:x5

= p(v1)p(v2)p(x1|v1)p(22|v2)P(Y1, Y2 |21, 72), upper bounded by the minimum of all.
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Remark 4: The upper bound is tight for the degraded 1) Power Policy: Forthe Gaussian WT-HI, power control

WT-HI which satisfies plays an important role. Roughly speaking, the interferer
may need to control its power so that it does not introduce

Pyy1x1,%; (Y2l21, 22) too much interference to the primary transmission, while

= ZPYHXIQQ (y1|w1, 22) Py, |y, (y2ly1).  (18) the transmitter may want to select its power so that the

" intended receiver is able to decode and cancel now helpful

interference either fully or partially before decoding the
primary transmission.

In the following, we give a power control strategy. We
consider the cases when> 1 anda < 1, separately.

IV.  GAUSSIAN CHANNELS Lemma 1: The following power policy maximizes the

In this section, we consider a discrete memoryless Gawg®crecy rate given in Theorem 3.
sian channel, for which the channel outputs at the intendedWhena > 1, we choose the following transmit power:
receiver and the eavesdropper can be written as

In the degraded case, the side informatiBn does not
benefit the decoding at the intended receiver.

(P, Py) =
H’k:XLk—i_\/EXQ’k_FZLk’ (min{pl,Pl*},Pg) |fb>1 pg a—l
and Ya, = VaXyy + Xok + Zoy, (19) (Pr,min{P, P;}) if b<i P> o=t (22)
(0,0) otherW|se,

for k =1,...,n, where{Z; ;} and{Z,} are sequences

of i.i.d. zero-mean Gaussian noise (real) variables wit urdind whena < 1, we choose the fo||owing transmit power:
variances. The channel inputs ;, andX, ; satisfy average

block power constraints of the form (P, Pp) =
L . Lo ) (P}, P2) fo>1 P >b—1P >,
EZE[X%JC]SPI and EZE[XQQ,]C]SPQ' (20) (1?1,min{P2,P2*}) ?f b<17P12%,
k=1 (P1,0) fl1<b<a ', P > {’*alb
We note that the channel described by (19) satisfies t ora<b< 1P < (1 b),
degradedness condition as defined by (18)4if= 1 and (Py, P) otherwise,
a<1. (23)
. here P and P are given b
A. Achievable Secrecy Rate W ! 2 given by
First, we give an achievable secrecy rate assuming that the Pr=b-1, (24)
transmitter and interferer use powdts < P, and P, < P, ., (a=-D)+/(a—1)Z+ (1 —-ab)A
respectively. Py = - , (25)
Theorem 3: When fixing the transmit powéP;, P,) for _a _ _
the Gaussian WT-HI model given by (19), the following and A= Z(l +P) - (1+a)h. (26)
secrecy rate is achievable: Proof: A proof is provided in Appendix D. ]
Ry(Py, P,) = max { RL(Py, P»), R\ (P)}, (21) Whena > 1, a positive secrecy rate can be achieved
. o whenb > 1 or b < a~! if the interferer's powerP, is
where R (Py, P») is given by large enough. Wheh > 1, the interferer uses its full power
1 _ P, and the transmitter selects its power to guarantee that
R (P17 PQ) — . . . .
, . the intended receiver can first decode the interference (and
v(P1) =7 (11152) ifb>1+ P, cancel it). Wherb < a1, the intended receiver treats the
Y (PL+bP) —vy(aPi+P) ifl1<b<l+4 P, interference as noise. In this case, the transmitter cansise
~ (L ) _ 7( aP ) it h<1 full power P, and the interferer controls its power (below
Lo LrP ' Py) to avoid excessive interference.
and RI}(Py) is given by Whena < 1 and1 < b < a™!, the transmitter needs
- N to restrict its power if it wants to let the receiver decode
RS (P) = [y(P1) —v(aP1)]", some interference However, if the transmitter has a large
with v(z) 2 (1/2) log(1 + ). power (Pl b), it is better to use all its power and

Proof: This rate is achieved by using the codind® request that the interferer be silent. In the case when
scheme introduced in Section Ill. The input distributiong < b < 1, the receiver treats the interference as noise. If
7 are chosen to be Gaussiavi(0, ;) and N'(0, P,) for the transmitter does not have enough IOO‘@@[ < (1 b)),

C; and(C,, respectively. A sketch of a proof is provided inthe interference will hurt the intended receiver more than
Appendix C. B the eavesdropper.
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Remark 5: The explicit form of the power policy gives 3) Superposition of Interference Codeword and Noise:
some interesting insights into the achievable secrecy rafemore general scheme (than our achievability scheme) is
For example, it is clear that an interference pouRsrcan that the signal of the helping interferer consists of twagpar
benefit secrecy. In particular, whep is sufficiently large, where one part is pure noise and the other part is codeword

a positive secrecy rate can be achieved when with structure. This is a special case of applying superpo-
sition coding where the interference codeword consists of

(a<1) or (b>1) or (a ~ 1 andb < l) _ 27) two Iayc_ers, and the coding rate of one layer is infinity: .
a In this paper, we do not consider the superposition-

. ] coding scheme because the achievable rate of the scheme
In comparison, we recall that the secrecy capacity of the complicated and its advantage over our scheme is diffi-

Gaussian wire-tap channel (when there is no interferer @y 1o evaluate for general discrete memoryless channels.
the Gaussian WT-HI model) is Furthermore, the scheme of the superposition of pure noise
WT " and codeword does not improve the achievable secrecy rate
RS = [y(P1) — y(aPy)] (28)  for the Gaussian channel characterized by (19). We show
this in the following.
In the superposition scheme, the interferer sends an
interference signal given by

and a positive secrecy rate can be achieved only when
1.

2) Power-unconstrained Secrecy Rate: The secrecy rate
achievable when the transmitter has unconstrained power Xo = \/Bch +V1-8VPZ, (31)
fepend Crly on e shemmel Sondton ot et here) < 1 < 1, X V(0. 1) s the mrferece

Imp P w P todeword, andZ ~ N(0,1) is the pure noise. Furthermore,

systems. Here, we refer to it as powe_r-unconstramed spgr%&c andZ are independent. Putting (31) into (19), we have
rate. Note that the power-unconstrained secrecy capacity 0

the Gaussian wire-tap channel (assuming 0) is Y1 = X1+ VBXae + V(1 — B)PaZ + Z1,
i o 0 and Y = vaX; + /BXac + /(1 — B)PaZ + Zs. (32)
p}linoo [V(P1) = y(aPy)] " = 9 {logQ E} (29) This is equivalent to the following normalized form,
The explicit form of the power policy facilitates a limiting Vi =X+ \/ZXZ + 71,
analysis, based on which we obtain the following result and Y, = VaX; + Xo + Zo, (33)
(assumingub # 0) for the power-unconstrained secrecy rate L R
of the WT-HI model. vyhereXl, Xo, Z1 and Z, opey the following distribu~tions:
Lemma 2: An achievable power unconstrained secrec¥i ~ N (0, rigy5; ) X2 ~ N (O, H(ffpzﬁ)&), Zy ~
rate for the Gaussian WT-HI is N(0,1) and Z, ~ N(0,1). In addition,
%1og2b if b > max(1,1), __a[l+b(1—pB)P]
_lim Ry =< 3logy % if b < min(1, %), (30) @= +1=pP,
FrFameo 1 [logy 2]"  otherwise. - b1+ (1-B)P]
@ and b= ———— 2=,
14+b(1—-pB)P;

Proof: The proof can be found in Appendix E. = ) .
Remark 6: Compared with the power-unconstrained rate Using Theorem 3, we can show that the following secrecy

without the help of interference, a gain 6if/2) log, b can rate is ach_ieved by the s.uperposition scheme when fixing
be observed for the WT-HI model when the interferefle transmit powePs, P»):

receiver channel is goodb > max(1,1)). Note that Ry(Py, Py) = max {RL(P1, P,), RI(P1)}, (34)
(1/2)log, b is the power-unconstrained secrecy rate if the o

confidential message is sent from the interferer to téhereR (P, P») is given by

intended receiver in the presence of the eavesdropper. THLB(PL Py)

is interesting because we do not assume that there is b, b, _
secret transmitter-interferer channel, which would eaabl| 7 m - 1‘1152) if b>14 Py,
the interferer to relay the transmission. P1+b3P; aPi+3P; ) ;
. T80 ) I\ 1x=pp, if 1<b<14 P,
Remark 7: Lemma 2 shows that the secrecy rate achieve H}f(l R WP LHI=B)F, ]
by Gaussian random coding is bounded as the SNR in- 7 Tom; )~V \ 15 if o<1,

creases. In [29], He and Yener show that structured codes RI(P) is ai b
(nested lattice codes) outperform Gaussian random co(ff‘é]éj s (1) Is given by

at high SNR, and can achieve an unbounded secrecy rate P aP; +
when power is unconstrained. R(Pr) = [7 (1 T u(1— B)PQ) 7 (1 +(1— B)PQ):| '
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We can verify that the optimum power allocation between V. NUMERICAL EXAMPLES
noise and codeword parts to maximig(Fy, P») requires |, Fig. 3, the achievable secrecy rates with helping
8=1, (35) interference and without interference are shown for the

. . symmetric Gaussian WT-HI model & b). In this example,
which means that the superposition scheme degenerates {ﬁ%o power constraints aré, — P, = 10. The secrecy
our achievability scheme. This suggests that the superpo ite achieved with interference (here deﬁotedR;;) first
tion of codeword and noise does not improve the achievab

. &creases withi when a < 1; whenl < a < 3.26, R,
secrecy rate for the Gaussian channel.

increases witha because the intended receiver now can
B. Upper Bounds decode and cancel the interference, while the eavesdropper

can only treat the interference as noise; when 3.26, R,

Again, a simple upper bound on the secrecy capacity Jecreases again withh because the interference does not

the Gaussian WT-HI is the main channel capacity withoutff )
. . affect the eavesdropper much wherns large. It can also
a secrecy constraint. That is,

- be found that nonzero secrecy rate can be achieved only
Ry <~(P1). whena < 1 when there is no help of interference. However,

In the following, we describe two additional upper bound&l0NZero secrecy rate can be achieved whenl + P with

1) Sato-type upper bound: The first upper bound is basedthe help of interference. It is clear that a Iarggr valuePof
on the specialization of the Sato-type upper bound given §§n improve the secrecy rate more. Hence, this result shows

(16) to the Gaussian WT-HI model. the value of exploiting interference to assist secrecy.
Lemma 3; The secrecy capacity of the Gaussian WT-HI In Fig. 4 and Fig. 5, we present numerical results to show
model given by (19) is upper bounded as the achievable rate and upper bounds verBusor some

non-symmetric parameter settings @fand b, where we

Ry < f(Pr, By, p"(P1, P)), (36) again assume thd®, = 10. In Fig. 4,a andb are fixed to
where the functionf (Py, P, p) is defined as be 0.5 and10, respectively. Each of the three upper bounds

1 is better than the others within some certain range#&of
f(Pr, P, p) = §>< In particular, the Sato-type upper bound is the best when

L+ P +bP) (1 +aP; + Py — (p+ /aPy + VbPy)? B is §mal|, and the Z-chan_nel bound b_ecomes the best
( ! 2)((1 pQ;(l +2a)P Erpp )\/_ ! 2) , when P is relatively larger. It is also conceivable that when
- 1 2

(37) P, is large (compared with a fixed,), the main channel
o capacity, though simple, is a good upper bound. In this
andp™(Py, P,) is given by case, the secret signals are hidden in very large interéeren
p*(PL, Py) at the eavesdropper, and secrecy can be achieved without
9 sacrificing rate.
= (Lt a)P+ (40P + (Vab—1)2PP — v Also note that the Z-channel bound could be quite loose
2(vaPr + VbPy) for some parameter settings afand b (especially when
(38) a > 1). As shown in Fig. 5, where and b are fixed to
with be 2 and 0.1, respectively, the Sato-type upper bound is
0=[va— 1)2P1 4 (\/5 . 1)2P2 4 (\/E . 1)2P1P2] uniformlyﬁbetter than thg other two bounds during the shown
) 9 9 range of P,. Our numerical results show that the Sato-type
x [(Va+1)*Py+ (Vb+1)*Py + (Vab — 1)* Py o). upper bound is relatively close to the achievable secrecy
Proof: The proof can be found in Appendix F. m rate whernab is close to 1. Note thaib = 1 corresponds to
2) A Z-channel upper bound: The second outer boundthe degraded case, for which the Sato-type upper bound is
for the secrecy capacity of the Gaussian WT-HI model sways tight.
motivated by [16]. To derive this bound, we assume that
there is a genie to provide the interference codeword to VI. CONCLUSIONS

the intended receiver. In this case, the intended receiver ... paper, we have considered the use of the super-
can cancel interference without any cost and become

interference-freel — 0. The channel model becomes % sition property of the wireless medium to alleviate the
. . A= 0). avesdropping issues caused by the broadcast nature of the
one-sided interference channel (or Z-channel).

Lemma 4: The secrecy capacity of the Gaussian W.I__|_lr|ned|um. We have §tud|e_d awire tap channell with a helping
i . interferer (WT-HI), in which the interferer assists therstc
model given by (19) is upper bounded by L N .
communication by injecting independent interference. Our

log

R, < 1 [log(l + Pp) —log(1 + aplﬂ+ results show that interferenge, Which seldom offers any
2 _ _ advantage for problems not involving secrecy, can benefit

+ llog 2(1 +aly)(d + P2)] _ (39) Secret wireless communication.
2 2+aP+ P For general discrete memoryless WT-HI models, we have

Proof: The proof can be found in Appendix G. B proposed an achievable secrecy rate which depends on
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1.8 T T T T T

1.6} with interference ]
e without interference

14} S upper bound i

12

a=b

Fig. 3. Achievable secrecy rate with or without the help déiference for a symmetric channel £ b), where P, = P, = 10.

the coding rate of the interference codebook. We haweé Gaussian interference channels with multiple confidénti
considered all possible interference coding rates. Fornzessages. The WT-HI model studied in this paper is a
Gaussian WT-HI, we have given both the achievable secrespyecial case of the two-user interference channel in which
rate and a power policy to optimize the secrecy rate. Oanly one user has a confidential message to send. Therefore,
results show that the interferer can increase the secrewy essentially have provided some results for studying the
level, and that a positive secrecy rate can be achievedrner point of the secrecy capacity region of two-user in-
even when the source-destination channel is worse than tegerence channels, although a combination of the prapose
source-eavesdropper channel. An important example of thehievable scheme and a time sharing strategy can provide
Gaussian case is that in which the interferer has a bettar achievable secrecy rate region for general interference
channel to the intended receiver than to the eavesdropmrannels. We believe that the achievable scheme and upper
Here, the interferer can send a (random) codeword at a rataunds proposed in this paper can give in-depth insight and
that ensures that it can be decoded and subtracted fréauilitate further study of general interference channghw
the received signal by the intended receiver, but cannot briltiple confidential messages.
decoded by the eavesdropper. Hence, only the eavesdropper
is interfered with and the secrecy level of the confidential APPENDIXA
message can be increased. In addition, we have provided PROOF OFTHEOREM 1
several computable upper bounds on the secrecy capacity of prgof:
the Gaussian WT-HI. Each of the bounds can be a tighter1) Random Code Construction: For a given distribution
upper bound under certain channel and power conditions,(z, 2,) = p(x;)p(22), C; andC, are generated at random.
We have also shown that the secrecy rate achieved fpre specifically, for codebook, (t = 1,2), we generate
using random Gaussian coding for a Gaussian channekig* i.i.d. sequences each of lengthat random according
bounded as the SNR increases. Therefore, there exist® a(x;) = [/, p(z+,i).
large gap between lower bound and upper bounds at higha further step of codebook construction is the indexing
SNR. In [29], it is shown that structured codes (nestest codewords for each codebook. Our proof here is based
lattice codes) can achieve an unbounded secrecy rateoasan “implicit” double binning technique. That is, the
SNR increases, and outperforms Gaussian coding at high*: codewords in codeboak, are randomly grouped into
SNR. 2nfis pins each with2"#1.e codewords, whereR; ; =
Future work of interest is to study the secrecy capacif§; — R, ;. Furthermore, in each bin, tt## 1.« codewords
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Fig. 4. Achievable secrecy rate and upper bound vef3yswherea = 0.5, b = 10, and P; = 10.

are randomly grouped in" %1« sub-bins each witB" /.4 secrecy constraint.

codewords (and thus?; 4 = R, + RY,). Therefore, , . _

any codeword inC, is indexed asx;(wi,w!,w’) for The parameterst; and Ry, are different for egch of

wi € Wy = {1,...,2""e) Wl e W = {17'”,2713'1@} two cases depending on the che réte of the (inter-

andw! € Wl = {1,...,2"F\.4}. The codewords iig, are ference) codebookK,. Now we _d|scuss those two cases
separately. From the perspective of the eavesdropper, in

2) Encoding and Decoding: In encoding, to send mes-35¢ l, we conS|deR2_ <[M~;(§]‘2%Y2|Xl>' which corre-
sagew; € Wi, the encoder at the transmitter selectSPONds to the rate regioR, " in case Il, we consider
w € W! andw” € W/ independently at random, andRQSz I(X5;Y2]X1), which corresponds to the rate region
sends the codewors; (wy, w}, w!), while the encoder at Rz -
the interferer selecta, € W5 at random and sends the
codewordx,(w2) to the channel.

In the decoding, after receiving;, the intended receiver
declares thati; € W is received if

() (separate decodingk; (w1, w},wy) is the only code-
word such thatx; (w1, @], @Y), y1) is jointly typical;
or

(i) (oint decoding): xi(wy,w],w)) and =xo(is)
are the only codeword pair such that
(x1 (1, W, W), x2(2),y1) is jointly typical.
The intended receiver makes an error if neither (i) nor (i) 1) Codebook Parameters: We choose the following rate
occurs, or ifiy # w;. parameter forf] ;:

For any (R, R2) € {R[lMAC] URQS];Q, the intended
receiver can always decode the messHgereliably with
an arbitrarily small error probability when is sufficiently
large. Therefore, in the following, we only need to analyze Ry ; = min [I(X;,Y3|X>), [(X1, X2;Y2) — Ra] — €.
the equivocation rate at the eavesdropper to account for the (40)

indexed asxy(wq) for wy € Wy = {1,...,2"F2},

A Casel: Ry < I(X2;Y2|X1)
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Fig. 5. Achievable secrecy rate and upper bound vef3yswherea = 2, b = 0.1, and P; = 10.

2) Equivocation Computation: The equivocation at the whered; — 0 asn — oo. We also have

eavesdropper is bounded as follows:

H(W1[Y2)
> H(W1[Yq, WY)
= H(W1,Y2|Wi) — H(Y2|W7)

- H(W17Y27X17X2|W{) - H(X17X2|W17W1/3Y2)

— H(Y2|W7)
= H(X17X2|W1I) + H(Wl,Y2|W{,X1,X2)
— H(Xy, Xo|W1, W7, Ys) — H(Y2|W7)
> H(Xl,X2|W1/) + H(Y2X1,X3) — H(Y?)
— H(Xl,X2|W1,W1/,Y2)
> H(Xl,X2|Wll) —I(X1,X2;Y5)
— H(Xq, Xo|W1, W{,Y3).

For the first term, we notice that

H(Xy, Xo|W]) = H(X 1 |W]) + H(Xz2)
= n(RLS + Rll/)d + Rg)

For the second term, we first have

I(X1,X2;Y2) <n[I(X1,X2;Y2) — 1],

(41)

(42)

I(Xl,XQ;YQ) = I(X27Y2)+I(X1,Y2|X2)
< H(X)+I(X1;Y2|Xs)
< nRQ—F?’L[I(Xl,nglXQ)—él].

Therefore, we have

I(X1,X2;Y3)
< min [I(X1, Xo; Y2), [(X1; Y2 X2) + Ra] — &1

where the last equality is based on (40).

To bound the third term, we consider the (joint) decoding
of W/’ andW, at the eavesdropper assuming thiét and
W/ are given to the eavesdropper as side information. Given
that W, = wy and W] = w}, we assume thav} andw,
are sent. The eavesdropper declaressthéi; , w}, @w{) and
x2(w9) are sent ifxy (wy, w}, wy) is the only codeword in
the sub-binB(wy,w]) and x3(w-2) is the only codeword
in Cg, such that(x;(wy,w],w)),x2(d2),y2) is jointly
typical. The eavesdropper makes an errofdf/, w2) #
(wy,wz) or if there is no such a codeword pair jointly
typical with y>. According to (40), the rate paif?y ;, R2)
satisfies the following condition:

Ry 4 < I(X1;Ya|Xo),
Ry < I(Xa,Ya|X1),
Ry 4+ Ra < I(X1, X2;Ya).
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Therefore, the probability of error is arbitrarily small aitn  To bound the third term, we consider the (joint) decoding of
n is large. Based on Fano’s inequality, we have W/ andW at the eavesdropper assuming tiat, W, and
W; are given to the eavesdropper as side information. For
_ 1, 2
H(Xy, Xo|W1 = wi, W] = wy, Y2) < nd. the rate pai( Ry ;, Ry) = (I(X1;Y2) — €1, [(X2; Ya| X2) —
Hence, we have €2), we can show that the probability of error is arbitrarily

, small whenn is large. Hence, we also have
H (X, Xo|W1, Wi, Y3)

! !
< nds.
- Z plwr, wy)H (X, Xo Wi = wi, W = wi, Y2) H(Xa, Xol W, W1, Wa, Yo) < b 59
wr W) By combining (47) with (48), (49) and (50), we have
< nda. (49 HWA[Ys) > n[Ris+ (61— s — 02)] =n (Ry — ),

By combining (41) with (42), (43) and (44), we have wheree = e + 8, — 6, — 0 asn — oo. Therefore, the
H(W1[Y3) >n[Ri.+ (01 — €1 — 8)] =n(Ry, —¢), Secrecy constraintis also satified for case II. [ |

wheree — 0 asn — oo. Therefore, the secrecy constraint
is satified.

APPENDIXB
PROOF OFTHEOREM 2

Proof: The secrecy requirement implies that
B. Case ll: Ry > I(Xo;Y2|X1)

1) Codebook Parameters. We choose the following rate nRs = H(Wh) < HW1[Yy') + ne, (51)
parameter forRy ;: and Fano’s inequality implies that
Ry 4 =1(X1;Y2) — e1. (45) H(W1[Y{") < neRy + h(e) £ nd. (52)

Note that in the encoding, the interfering encoder sele@ised on (51) and (52), we have
wy € W at random and sends the codewasrdw,) to the
channel. In order to prove for Case Il, we assume that this 1t < H(W1|Yy") + ne
is done as in the following procedure. We suppose that the < HWh|Y3') — HWi YY) + n(e+0)
2nR2 codewords in codeboak are randomly grouped into < HWL YY) — HWL YY) +n(e+06)  (53)
2R pins each witle" 2 codewords, wher®&) = Ry—R). (WA YPIYE) 4 e +0)
Therefore, any codeword ifi; is indexed asxs(wh, w}) b

for wy, € W) = {1,...,2"%} and wfj € W} = < I(XT, X550 Y5) + n(e +6) (54)
{1,...,2"2}. During encoding, the encoder at the helper i _
selectsw), € Wy andwy € W4 independently at random, < ZI(Xl-ri’X?v“YL”YM) +n(e+9), (55)

and sends the codewosd (w), w!). This is equivalent to =1

that a random codewors, (w,) (ws = w) x wY) is sent. Where (53) is due to the fact that conditioning reduces en-

To facilitate the proof, we let tropy, and (54) follows sinc®/; — (X', X3') — (Y{",Y3")
. forms a Markov chain.
Ry = I(X2;Y2|X1) — eo. (46)  Now, it is observed that the secrecy capacity of the WT-

2) Equivocation Computation: Following steps similar H! depends only on the marginal distributiod, x, x,
to those as given by (41), the equivocation at the eavédldPy;|x, x,, and not on any further structure of the joint

dropper is bounded by: distribution Py, v, | x, x,- T_h_is can t_)e easily proved because
the average error probabilit}. defined by (1) depends on
H(Wh|Y2) > H(Wi|Y2, Wi, W) the marginal distributiory, | x, x, only, and the equivoca-

> H (X, Xo| W, W3) — I(X1,X2;Y3) tion rateH (1W1]Y3") /n depends on the marginal distribution
— H(Xy, Xo|Wy, W WL Ys). (47 Py, x,,x, only. Hence, the secrecy capacity is the same for
(X1, Xo W1, Wi, W, Yo). - (47) any channel described by (17) whose marginal distributions
For the first term, we have that are the same. We can repladg, Y2) with (Y7, Y>) defined

H (X, Xo| W, W)) by (17) and obtain (16). ]
= H(X1|W)) + H(X3|W3)

APPENDIXC
=n(Ris + R 4) +nRy PROOF OFTHEOREM 3
=n[R s+ (X1, X2;Y2) — €3], (48) Proof: The achievability is based on the coding scheme
introduced in Section lll, with the input distributions

wherees = ¢1 + e — 0 asn — oco. For the second term,

we have that chosen to be Gaussia (0, ;) and AM(0, ;) for C;

and C,, respectively. Here, we discuss only the coding
I(X1,X2;Y2) <n[I(Xy,X2;Y2) — 4] (49) parametersk;, R, and Ry 4 in Theorem 1.
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Whena > 1+ P,, which is the very strong eavesdroppindt can be shown that we have

case as discussed in Section I, we hate= 0. OR.,
Next, we discussk.(Py, P») for the case whem < 1+ P, ~l—a+ Py,
P,. Here, we choos&y = v(P,) and Ry 4 =7y (l‘ff];z). ORs2  ORs3 I —a+(1—ab)P
Sl Sl —_— —_ 27
1) Whenb > 1+ Py, we haveRggw(llfgl). In this 5}?1 3P16R2
case, we choos®, = ~(P;). The intended receiver aPS >0, aPS “wb—1+(ab-1),
can first perform a separate decoding usihgand 2R . 2
cancel interference, and then can decode at the rate afid 8PS -
Ry = ~v(P1) usingC; (virtually a clean channel). The [b(ab —21)P2 +ob(a—1)Py+a—b+a(l—b)P } P
secrecy rate i, = Ry — Ry g = y(Py) — 1‘35;2 . 2 2 ot
2) Whenl < b < 1+ Py, we havey (12*131231) <Ry < tiO\r/]\ge. discuss all possible cases in the following subsec-

~v(bP,). In this case, we choos®, = (P, +bP;) —

~v(Ps). The intended receiver performs joint decodin%

using C; and C,. The secrecy rate iR, = Ry — a>1

Riq=[y(P1+bP) —v(P2)]—7 ( ab ) =y(P+ For the case when > 1, we consideb > 1, a™! < b <

1+ P

bPy) — 7 (aP; + Ps). 1, andb < a~!, respectively.
3) Whenb <1, we havefy(PQ) > v(bP,). In this case, 1) b>1:
we chooseR; = ~ 1+bP . The intended receiver i) P, <a—1: we cannot obtain a positive secrecy
performs a separate decoding usifig The secrecy ) ;gte, and therefore{,Pl,le)qz (0’?])3 Py
; _p _ P\ aP, i) » > a — 1. we choose (P,P,) =
rate ISRS_ =M _ _Rl ! 3P )~ T \1+h (min(P, Py), P2) because of the following:
Under certa_un cond_|t|ons, to choos$ty = 0 anq Riq= If P, <b—1, R,, is active, (aR 1> ), %1;1 >
~v(aPy) can yl_el(ila higher secrecy rate. Ip this case, the 0) and therefore( Py, P») = (Pl,PQ) Now if
sec:recyI ratI(—I:‘ iR (Py) = .[W(Pl) —~(aPy)]". Therefore, Pi > b1, once we choos®, > P, Ry is
max (R;, R;') can be achieved. u active and(aRS2 < 0,%%1 > 0). This forces
us to set(Pl,Pg) (Pf ,Pg)
APPENDIXD 2) a=' < b < 1: Ry is active, and we haveZk: <
PROOF OFLEMMA 1 0,92 < 0). Therefore(P1, P») = (0,0).
Proof: First, we notice thatkR!! can be viewed as a 3) b <a ' Ry is active.
special result ofRi_ if power is optimized (by applying ) P, < 2=k (%’f;f < 0, 66"};3 < 0) and
power (P, P») = (P1,0)). Hence, to optimiz&R, given by therefore,( Py, P») = (0,0).
(21), we can ignorek!! and consider only the optimization i)y P, > 1a—alb' we choose (P, P,) =
of RL with respect toP; and P. (P, min(Py, P5)) because of the following
For convenience, we denote If £=% < P, < Py, (9% >0,9%s >0) and
Py therefore(Pl,Pg) (Pl,Pg)a Now if P23> Py,
Ry =~v(P1)—7 (1 +P2) once we choos#, > Pj, (Gp2 9B > ), ng <

0). This forces us to setP;, PQ) (P, P ).
Ry =v(P1 +bP) — v(aPy + Pa), 2

Pl aP1
and 3 = — ] - B.a<1
Rs 7<1+bpg) 7<1+132)’ ¢ = _
For the case when < 1, we consideb >a~ 1, 1 <b <

which are all functions ofP; and P». Depending on the 4~ andb < 1, respectively.
channel parameters, b) and power(P;, P,), only one of 1) b>a!

the three functions is active. Wheh < P, < P, and IR
0 < P, < P,, all three functions are bounded. Therefore, ) Plf;% b—1: Ry, is active and we havepp: >
0, %%+ > 0). Therefore, we havéP, P,) =

there always exists a global maximum, which might be a 0P,

maximum of one certain function or at a cross point of . (_P%PZ)- _ L , )

two functions. The subsections below is to search for the i) P> b—1If B, < 5=, Ry is active,

maximum point by checking the gradients and comparing (631;?2 =0, %};2 > 0) and therefore we choose

with the boundary points. (P, P2) = (Py, P,). Now if P, > 2=% once
Since we care about the sign of the (partial) derivatives we chooseP; > 2%, (552 < 0, %Ifgl > 0).

of these functions, for convenience, we say that two real This forces us to choosePl,Pg) (P1  Py).

numbersr andy satisfy x « y if they have the same sign. After comparing with the rate achieved by using
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(P1, Py) = (P, 2=%), we find that(Py, P,) = APPENDIXF
(Py, P,) is better. PROOF OFLEMMA (3)
2) 1<b<ah Proof: To use the result given by (16), we let

N B b—1 . 7 ; ; - N

) P < =50 wahRen P Salz)%_ 1, R, Is active V= X, + \/5X2 + 7 (56)
and we have(Wfl1 > O,Wf; > 0); whenb — q Yy = VaXy + Xo 4 7 57
1 < P < =%, Ry, is active and we have an 2= Vaky + Azt 2, (57)
(%Lpf >0, a_alf;;_ > 0). Therefore, we choose whereZ; andZ, are arbitrarily correlated Gaussian random
(fl,Pg) = (P, P2). B variables with zero-means and unit variances. We alsp let

i) P > ﬁ: we choose(P;,P,) = (P1,0) denote the covariance betwe&n and 75, i.e.,

because of the following:

If one choosesP; > % Ry is active
and (G2 > 0,9%2 < 0), therefore we It can be observed thaty, v, x, x, andPy, ¢\, y, have
need(Py, P,) = (Py,0). After comparing with the same marginal distribution and satisfy the condition
(P, P2) = (=5, P»), we find that(P, P;) = given by (17).

COV(Zl, ZQ) = p.

(P1,0) is better. Note that/ (X1, X»; Y1|Y>) is a function of the transmit
3) b < 1: R, is active. powersP; and P,, and the noise covariange Hence, we
o= o i denote it b
) P < h smce(_%’f;l3 >0,%%s <0), we y o
choose(Py, P») = (£1,0). I(X1, Xo;Y1|Y2) = f(Pr, P2, p). (58)

iy P, > 7%: we choose (P, P;) =

(Py, min(P, P5)) because of the following:
If P, < Pj, (982 > 0,98 > (), and we

Now we show thalf (Py, P, p) can be evaluated by (37).
To show this,J (X7, X»; Y1|Y2) is evaluated as

on, = Y9, 2 o
choose(Py, P,) = (Py, P,). If B, > P§ and 1(X1, Xo; V1 |V2)
once choosing > (r > 0. 552 < 0). = I(X1, Xo;Y1,Y2) — I(X1, Xp; Y2)
This forces us to choosgP:, ) = (P1, Py). . .
- = [H(Y1,Y2) — H(Y1, Y2[ X1, X>)]
— [A(Y2) — h(Y2| X7, X2)]
APPENDIXE =h(1|Y2) — h(Z1]2)
|
PROOF OFLEMMA 2 = h(Y:|YV2) — 5 log[2me(1 — p?)]. (59)

Proof: Whenb > max(1,a~1), the power policy uses E . |
(P, Py) = (P}, ), where Pi = b — 1. Therefore, the or convenience, we let

achievable secrecy rate is %
y =L [YE?]. (60)
Ry = (PD) aP} EYy]
T\ R We have
= %logb - %1og <1 + afl;—pl)) . h(Y1|Ya) = h(Y] — tYs|Y2)
o < h(¥; — tYa) (61)
After taking the limit with respect of,, we haveR, = 1 - -
Llogh < 3 log[2meVar(Y; — tY2)], (62)
5 .

_Whinb < min(l, (.l_l).’ the power policy use§Py, P2) = \ypere (62) follows from the maximum-entropy theorem and
(P1, P), where P is given by (25) and can be shown to, 1, equalities in (61) and (62) hold true wheli, X>)
be — are Gaussian.

P = (a—b—ab)P Furthermore, we have

b —ab) (p+ VaP: + VoPy)?

1+CLP1+P2

_ , _ Var(Y; — tYa) = 1+ P + bPs —
when P, is large. The achievable secrecy rate is S 2) ! °
P ab, Hence,I(X1, X»;Y1|Y2) can be evaluated by (37).
s =7 (1 +bP2*) - (1 +P2*> It i_s easy to verify thatf(Pl,PQ,p) is an increasing
- function of bothP; and P, for any givenp, andf (P, Py, p)
After taking the limit with respect of?;, we haveR, = is a convex function op for any givenP; and P». It can
+log L. be shown that wher?, and P, are given, the minimum
For other cases, the power policy usBs = 0 and the of f(Py, P», p) occurs wherp is chosen to be* given by
achievable secrecy rate remainsiat= 1 [log, %]J“ . m (38).
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Therefore, the Sato-type upper bound can be calculated have

as

min max f(Py, Py, p) = f(Pr, Py, p"(P1, P2)).
P (Pl,PQ)

APPENDIXG
PROOF OFLEMMA 4

Proof: Based on the secrecy requirement given by (5

and Fano’s inequality given by (52), we have

nR, < HOWIYE) — HOVAYT) + (e +0)
< I(Wi YY) — I(W13Y5") + n(e+9).

For simplicity, we omit the term(e + ¢) since it does not

change the result. Now we let

V= X[+ 2
V' = VaXy + 23,

(63)

and (64)

and proceed with the following steps:

nR
ST(Ws Y V) = T(Ws Yo!, Vo) + T(Ws Vy' YY)
=I(Wi; V") + I(Was YU V) — T (W5 Vy')

— I(W; Yo' | V5") + I(Wh; Vo' YY)

= I(Wy; V") = I(W; Vy') + T(Was Vo' [Y51), (65)

where we use the fact thaft(Wy;Y"|V;") = 0 and
I(W1; Y31 |V3Y) = 0 since each ofV; « Vi* < Y;" and

W1 « V3t < YJ* forms a Markov chain. We therefore have 2

nR

< W V) = I(W Vah)) ™ + I(Wh; Vi [YS'). (66)

Based on the result for the Gaussian wire-tap channel [3],

we have
[T(Wr; Vi) = (W V)]

< g [log(1+ Py) —log(1 + aP)] " (67)

Now, we boundl (Wy; V3*|Y5") via the following steps:

T(W; V3! [Y5?)

< I(Wa, XT5V5'(YS)

= I(XT; V5'[Y3")

=h(V3'Y3") = h(V3'|XT, Y3")

= [n(Y3", V5") = h(Y3", V3' [ XT)] — h(Y5") + h(Y5'|XT)

= I(X7: V5", Vo) — h(Y3") + h(Y5'|XT).
Since

IXT5 Y5 V') = T(XT3 V')

=h(V5") — h(Z3),

I(W; V3'Ys")
< h(V3') + (Y| XT') — h(Y3") — h(Z3)
=h(vVaX] + Z5) + h(XF + Z3)

— h(vVaX] + X3 + Z3) — h(Z).

Since we assume th&* and X} are independent (and
both are also independent 4%'), based on the subset sum

(68)

f)ntropy power inequality (EPI) [30], we have

2
exp <Eh(\/EX{l + X3 + ZS))

N % {exp <%h(\/ax? 4 Zg)) + exp <%h(X§ + ZS))} .
(69)

By letting t1 = h(vaX} + Z%) andty = h(X3 + Z3), we
have

hVaXT + X3 + Z3) >

g {log [exp <%> + exp (%)] - 1og2} . (70)

Using (70) in (68), we obtain
I(W; V3 Yy")

2t 2t
<ty +1t2— g {log [exp (f) + exp (72)} — 1og2}

- g log(2me)

exp (2(t1+t2))
n n

=glos | (21 4 exp (22)

n
~3 log(me). (72)

Note that the bound given by (71) is an increasing function
of both¢; andt,. From the maximum-entropy theorem, we
have

1

IN

g log (2me(1 + aPy)),

ta

IN

g log (2me(1+ P,)),

where the equalities hold when baoli* and X3 are i.i.d.
Gaussian. Therefore,

n 2(1+aP1)(1+P2)

I(W; VYY) < =1 L 72
(W VEY3) < G log | == 2o (72)
Finally, by combining (66), (67), and (72), we obtain the

upper bound given by (39). [ ]
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