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ABSTRACT

Non-regenerative MIMO relaying between a source and a des-
tination is studied in this paper. Optimal weighting matrix oper-
ating on baseband signals (waveforms) at the relay is found that
maximizes the capacity between the source and the destination.
Relay channels with or without direct link between the source
and the destination are considered. The optimal relay exploits the
knowledge of the channel matrix between the source and the relay
and the channel matrix between the relay and the destination. The
optimal weighting matrix can be considered as a matched filter
along the singular vectors of the channel matrices. Such a non-
regenerative relay can be deployed in mobile ad hoc networks as
well as in cellular networks.

1. INTRODUCTION

MIMO relaying is useful for a variety of applications. In a cellular
environment, a MIMO relay can be deployed in areas where there
are strong shadowing effects, such as inside buildings and tunnels.
For mobile ad hoc networks, MIMO relaying is essential not only
to overcome shadowing due to obstacles but also to reduce trans-
mission power and RF interference. Capacity analysis of a generic
MIMO relay is recently reported in [1, 2].

In this paper, we study non-regenerative MIMO relaying where
the information data are not regenerated at the relay except that
the baseband symbols are reproduced, weighted and then retrans-
mitted. As for any relay, two orthogonal channels are required:
one for the received signal and the other for the retransmitted sig-
nal. The two channels required can be implemented through either
time-division or frequency-division. But the latter seems much
easier to do in practice as no additional synchronization require-
ment between the source and the destination is necessary. A non-
regenerative relay may be easier to install (especially for two-hop
relaying) than a regenerative relay as the former needs no high
level codes. We note here however that for many-hops relaying,
non-regenerative relays may not be as networking-friendly as re-
generative relays.

The previously reported schemes of non-regenerative MIMO
relays such as in [3] are not optimal, and in fact they are ad hoc.
The optimal relay matrix shown in this paper maximizes the capac-
ity between the source and the destination, where the knowledge
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of the channel matrix between the source and the relay and the
channel matrix between the relay and the destination are assumed.

2. OPTIMAL MIMO RELAYING WITHOUT DIRECT
LINK

Consider a relay channel as shown in Figure 1, where a relay is
used to assist the transmission from a source to a destination. In
this section, we do not consider the direct link between the source
and the destination.

Fig. 1. A two-hop MIMO relay channel without direct link

Conceptually, all terminals can be treated as half-duplex (al-
though it is not necessary when two orthogonal frequency chan-
nels are available). Namely, a transmission is done over two time
slots using a “listen-and-transmit” protocol. At the first time slot,
the source terminal transmits to the relay terminal. At the second
time slot, the relay terminal forwards signals to the destination ter-
minal. As long as the channel coherence time is larger than the
reciprocal of the channel coherence bandwidth, all channels may
be modeled as frequency flat through use of multiple narrow-band
carriers (such as OFDM). This is the case for most practical en-
vironments. Therefore, we will assume that the channel between
the source and the relay and the channel between the relay and the
destination are represented by the memoryless channel matrices
H1 and H2, respectively. Consequently, the function of the (non-
regenerative) relay is equivalent to a memoryless weighting matrix
F that transforms the (baseband) waveform received at the relay to
the (baseband) waveform transmitted from the relay. Furthermore,
for each packet of data, H1, H2 and F remain constant.

For a simpler treatment, we assume that all terminals are equipped
with the same number M of antennas, and there are N sub-carriers.
Then, H1, H2 and F are each of L×L where L = MN . We also
assume that H1 and H2 are of full rank. When we evaluate the sta-
tistics (such as ergodic capacity) of the channel capacity, we will
assume that H1 and H2 have i.i.d. CN (0, 1) entries.



The received signal at the relay can be written as

x1 = H1s + n1 (1)

and the received signal at the destination is therefore

x = H2FH1s + H2Fn1 + n2 (2)

where s is assumed to be a L × 1 zero mean circularly symmet-
ric complex Gaussian signal transmitted by the source terminal.
Also assume that the source works in spatial/temporal multiplex-
ing mode, i.e., the source transmits independent data streams from
different antennas and over different sub-carriers. So, we have
E{ss†} = P1

L
IL, where P1 is the transmission power used by

the source. (The superscript † denotes complex conjugation.) n1

and n2 are independent spatio-temporally white circularly sym-
metric complex Gaussian noise vectors with n1 ∼ CN (0, σ2

1IL)
and n2 ∼ CN (0, σ2

2IL).
Let R denote the covariance matrix of the noise term in (2).

Then, we have

R = σ2
2(IL +

σ2
1

σ2
2

H2FF †H†
2) (3)

By applying R−1/2 at both sides of (2) , we have

y = Hs + n (4)

where y = R−1/2x,H = R−1/2H2FH1, and n = R−1/2(H2Fn1+
n2). The “instantaneous” channel capacity between the source and
the destination is therefore given by [4]

CI =
1

2
log2 det(IL +

P1

L
H†H) (5)

The factor 1/2 here accounts for the half duplexity. It then follows
that

CI =
1

2
log2 det

�
IL +

P1

Lσ2
1

H1H
†
1 −

P1

Lσ2
1

H1H
†
1Q−1

�
(6)

with Q = IL +
σ2
1

σ2
2
F †H†

2H2F , where we applied the matrix in-

version lemma to R−1 and the property that det(I + AB) =
det(I + BA) where AB is complex conjugate symmetric. The
so called ergodic capacity is simply the mean of CI , i.e., Ce =
EH1,H2{CI}.

If the relay does not know any channel state information (CSI),
the weighting matrix F may be chosen by maximizing the ergodic
capacity Ce. It can be shown that the maximal ergodic capacity
can be achieved by just using a diagonal weighting matrix. Since
F is diagonal, we do not have to look for the optimal matrix struc-
ture for F . To maximize the capacity becomes to optimize the
power allocation among antennas/subcarriers at the relay.

Throughout this paper, however, we assume that the relay knows
both the channel matrix H1 from the source to the relay, and the
channel matrix H2 from the relay to the destination. In addition,
we assume that the source does not know CSI and the destination
knows CSI. Since the relay knows H1 and H2, the weighting ma-
trix F should be a function of H1 and H2. We will find the optimal
F to maximize the instantaneous capacity CI . When the instan-
taneous capacity CI is optimized, the ergodic capacity Ce is also
optimized.

To find the optimal matrix structure for F , we need the follow-
ing matrix inequality (Theorem 16.8.7 [5]):

Minkowski inequality: If K1 and K2 are L × L non-negative
definite symmetric matrix, then

det(K1 + K2)
1/L ≥ det(K1)

1/L + det(K2)
1/L (7)

where the equality holds when K1 = cK2 and c ≥ 0.
From (7), we have

det(K1 −K2)
1/L ≤ det(K1)

1/L − det(K2)
1/L (8)

where K1 −K2 and K2 are non-negative definite and symmetric,
and the equality holds when K1 = cK2 and c ≥ 1.

Let K1 = IL + P1
Lσ2

1
H1H

†
1 and K2 = P1

Lσ2
1
H1H

†
1(IL +

σ2
1

σ2
2
F †H†

2H2F )−1. It can be verified that K1 − K2 and K2 are
non-negative definite and symmetric. Then, applying (8) to (6),
we have

CI ≤ L
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where the equality holds when
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Using (10) in (9) leads to

CI ≤ 1

2
log2 det

�
IL +

P1

Lσ2
1

H1H
†
1

�
− L

2
log2

�
1 +
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�
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The first term on the right hand side of (11) is the capacity of the
channel from the source to the relay. We can think of the second
term L

2
log2(1 + 1

c−1
) as a capacity loss due to the second hop.

Because the upper bound of CI is a uniformly increasing function
of c, to maximize CI is to maximize c which is however upper
bounded by the power constraint as shown later.

Let the eigenvalue decompositions of H1H
†
1 and H†

2H2 be

H1H
†
1 = U1Σ1U

†
1 (12)

H†
2H2 = V2Σ2V

†
2 (13)

where H1H
†
1 and H†

2H2 are both assumed to be of full rank, with
eigenvalues (in descending order) given by Σ1 = diag{α1, α1, . . . , αL}
and Σ2 = diag{β1, β1, . . . , βL}, respectively. Combining (12),
(13) and (10) yields

σ2
1

σ2
2

F †V2Σ2V
†
2 F = U1ΣU†1 (14)

Σ = (c− 1)IL − c(IL +
P1

Lσ2
1

Σ1)
−1 (15)

Since F †H†
2H2F is nonnegative definite, all the diagonal el-

ements of Σ must be nonnegative. This sets a lower bound on c,
i.e.,

c ≥ 1 +
Lσ2

1

P1αL
(16)

In other words, if (16) is not satisfied, the upper bound shown in
(11) may not be achievable.



From (14), we have the following optimal structure for F :

F =
σ2

σ1
V2Σ

−1/2
2 XΣ1/2U†1 (17)

where X is any unitary matrix.
The power used by the relay is no greater than P2, i.e.,

σ2
1Tr{F (IL +

P1

Lσ2
1

H1H
†
1)F †} ≤ P2 (18)

Using (17) in (18), we have

c ≤ 1 +

P2
σ2
2

+ Tr{Σ−1
2 }

P1
Lσ2

1
Tr{X†Σ−1

2 XΣ1}
(19)

To maximize c, we need to minimize Tr{X†Σ−1
2 XΣ1}, i.e.,

min J = Tr{X†Σ−1
2 XΣ1} (20)

s.t. X†X = IL

We defer a further discussion of this problem to Section 4.

3. OPTIMAL MIMO RELAYING WITH DIRECT LINK

Before we try to solve (20), we show that the above analysis can be
readily extended to the case when there exists a direct link between
the source and the destination.

Fig. 2. A two-hop MIMO relaying channel with direct link

As shown in figure 2, the L × L channel matrix of the di-
rect link between the source and the destination is denoted by H0,
which is also assumed to be of full rank for simplicity. n0 is a
spatio-temporally white circularly symmetric complex Gaussian
noise vector with n0 ∼ CN (0, σ2

0IL). Other parameters have the
same definitions as in the non-line-of-sight case.

Because of the half duplexity, a transmission takes place over
two time slots using “listen-and-transmit” protocol. At the first
time slot, the source broadcasts signals to the relay and the desti-
nation. At the second time slot, the relay forwards the signals to
the destination. Although the source may also send signals to the
destination in the second time slot, we will not consider that op-
tion. We assume that the source will be silent in the second time
slot.

The compound signal vector received at the destination during
two time slots can be modelled as�

σ−1
0 n0

R−1/2x2

�
=

�
σ−1

0 H0

R−1/2H2FH1

�
s+�
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R−1/2 (H2Fn1 + n2)

�
(21)

The instantaneous capacity between the source and the desti-
nation is now given by
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Applying the Minkowski’s inequality, we have
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where the equality holds when
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with
H3 = H1(IL +

P1

Lσ2
0

H†
0H0)

−1/2 (25)

Furthermore, (23) becomes

CI ≤ 1

2
log2 det
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This bound is similar to (11) except that now the first term is the
capacity of the broadcast channel from the source to both the relay
and the destination (as if the relay and the destination are wired
together). We need to maximize c to minimize the capacity loss
represented by the second term.

We use the following expression of the eigenvalue decompo-
sition of H3H

†
3 :

H3H
†
3 = U3Σ3U

†
3 (27)

where the eigenvalues (in descending order) are given by Σ3 =
diag{γ1, γ1, . . . , γL}. Combining (25), (26), (27) and (13), we
eventually have the optimal matrix structure of F :

F =
σ2

σ1
V2Σ

−1/2
2 XΣ1/2U†3 (28)

where

Σ = (c− 1)IL − c

�
IL +

P1

Lσ2
1

Σ3

�−1

(29)

We see that (28) is similar to (17), and (29) is similar to (15). Fur-
thermore, we need to solve the same optimization problem as given
by (20) but with Σ1 replaced by Σ3.

We note that the exact expressions of F , Σ and c in this section
are different from the previous section although it does not affect
the method of the analysis.



4. OPTIMAL WEIGHTING MATRIX

We now go back to the case where there is no direct link between
the source and the relay. Given two L × L Hermitian matrices A
and B with eigenvalues diag{α1, α2, · · · , αL} and diag{β1, β2, · · · , βL},
assuming that α1 ≥ α2 ≥ · · · ≥ αL and β1 ≥ β2 ≥ · · · ≥ βL,
we have the following inequality [6]:

LX
l=1

αlβL−l+1 ≤ tr(AB) ≤
LX

l=1

αlβl (30)

Based on this inequality, We have

LX
l=1

αl

βl
≤ tr(X†Σ−1

2 XΣ1) ≤
LX

l=1

αl

βL+l−1
(31)

The upper bound in (31) is achieved when X = JL where JL

has all ones along the anti-diagonal line and zeros elsewhere. The
lower bound is achieved when X = IL.

Using the lower bound of (31) in (19), we have the upper
bound of c:

c ≤ 1 +
ρ2 + 1

L

PL
l=1 β−1

l

ρ1

�
1
L

PL
l=1 αlβ

−1
l

� (32)

where ρ1 = P1
Lσ2

1
and ρ2 = P2

Lσ2
2

are the signal to noise ratios at
the relay and the destination, respectively. Comparing with (16),
we have the requirement for ρ2,

ρ2 ≥ 1

L

LX
l=1

�
αl

αL
− 1

�
β−1

l (33)

Under the condition of (33), combining (32) and (11), we have
the maximal instantaneous capacity of the MIMO relaying channel
(without the direct link):

CI,Max =
1

2
log2

LY
l=1

(1 + ρ1αl)

− L

2
log2

 
1 + ρ1

1
L

PL
j=1 αjβ

−1
j

ρ2 + 1
L

PL
j=1 β−1

l

!
(34)

In (34), the second term represents the capacity loss due to the
second hop. If ρ2 approaches infinity, the capacity loss approaches
zero. (34) can be further written as

CI,Max =
1

2

LX
l=1

log2

�
(1 + ρ1αl)(ρ2 + φ1)

ρ2 + φ1 + ρ1φ2

�
(35)

where

φ1 =
1

L

LX
j=1

αjβ
−1
j (36)

φ2 =
1

L

LX
j=1

β−1
j (37)

Combining (32), (19) and (17), the optimal weighting matrix
F is given by

F = V2ΛF U†1 (38)

with ΛF = diag{f1, f2, . . . , fL} and

fl =

s
σ2

2

σ2
1

(ρ2 + φ2)αl − φ1

φ1βl(1 + ρ1αl)
(39)

It is useful to observe that the right singular vectors of the op-
timal F match the left singular vectors of H1, and the left singular
vectors of the optimal F match the right singular vectors of H2.

We note that the optimal weighting matrix derived in this paper
is valid only when ρ2 meets the condition given by (33). This
condition requires that the signal to noise ratio at the destination
is high, especially when H1 is ill-conditioned. At this time, we
do not know the optimal weighting matrix F when (33) does not
hold.

However, even though (33) may not hold, we can still use (38),
provided that the power used by the relay does not exceed P2. In
other words, if (33) does not hold, the signal to be transmitted from
the relay needs to be normalized to meet the constraint (18). We
thus introduce a normalization factor η in the weighting matrix:

F ∗ = ηV2ΛF U†1 (40)

η =

s
Lρ2

Tr{ΛF (IL + ρ1Σ1)Λ
†
F }

(41)

When the condition (33) holds, η = 1 and F ∗ = F is the opti-
mum.

5. NUMERICAL RESULTS

In this section, we compare the optimal relaying scheme given by
(40) with two other relaying schemes in terms of the ergodic ca-
pacity of the MIMO relaying channel (without direct link). We
note that all schemes compared here (including the one shown ear-
lier) can be classified as ”amplify-forward” although the levels of
optimality differ.

(1) (Simplest) Amplify-Forward: This is a relaying scheme
where the received signal is simply normalized to meet the power
constraint and then forwarded to the destination. In this case, the
weighting matrix at the relay is

F1 = η1IL (42)

The power constraint is given by (18), and hence

η1 =

s
σ2

2

σ2
1

Lρ2

Tr{IL + ρ1H1H
†
1}

(43)

(2) Match-Forward: This is another simple scheme where the
weighting matrix at the relay as used in [3] is

F2 = η2H
†
2H†

1 (44)

To meet the power constraint, η2 is given by

η2 =

s
σ2

2

σ2
1

Lρ2

Tr{H†
1H1(IL + ρ1H

†
1H1)H2H

†
2}

(45)

Figure 3 shows the ergodic capacity of the relaying channel
as a function of ρ2. Figure 5 shows the ergodic capacity of the
relay channel as a function of L, the number of antennas at each
terminal. Figure 4 shows the ergodic capacity of the relay channel
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Fig. 3. Ergodic capacity as a function of ρ2. L = 10, ρ1 = 10dB,
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as a function of ρ1. Note that there is no requirement on ρ1 to
ensure the existence of the optimal weighting matrix F .

It is clear that the amplify-forward is far from the optimum.
The match-forward method is even worse than the amplify-forward
method, and therefore the weighting matrix given by (44) actually
does not really “match” the channels.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered the capacity maximizing mem-
oryless non-regenerative MIMO relaying scheme. It is shown that
the optimal weighting matrix exists under a certain condition on
the power used by the relay terminal. Future work could consider
how to relax the condition. We have detailed the optimal MIMO
relay channel capacity when there is no direct link between the
source and the destination. However, as we also showed, it is easy
to extend the analysis to the case where there exists a direct link.
We did not consider the power allocation between the source and
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Fig. 5. Ergodic capacity as a function of L, the number of antennas
at each terminals. 1 ≤ L ≤ 20, ρ1 = 10dB, ρ2 = 10dB

the relay under a total power constraint. Future work will consider
the optimal power allocation. We also need to analyze the power
and spectral efficiency of different schemes. We assumed that all
terminals have the same number of antennas. All channel matri-
ces are of full rank. Future work will consider the case where a
different number of antennas is employed at each terminal and/or
the channel matrices are singular. We used the ergodic capacity in
numerical comparisons. The variance or distribution of the instan-
taneous capacity could be more meaningful for packet loss rate
computations. Numerical comparisons of this type will be shown
in our upcoming report.
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