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Abstract— We study the block fading wire-tap channel, where
a transmitter sends confidential messages to a legitimate receiver
over a block fading channel in the presence of an eavesdropper,
which listens to the transmission through another independent
block fading channel. We assume that the transmitter has no
channel state information (CSI) available from either the main
channel or the eavesdropper channel. The transmitter uses an
in advance given Wyner secrecy code (instead of adapting the
code based on CSI). In this case, both reliability and perfect
secrecy can be achieved only for a subset of channel states. We
identify this channel state set and provide an achievable average
secrecy throughput of the block fading wire-tap channel for given
reliability and secrecy outage probabilities.

I. INTRODUCTION

Shannon introduced the notion of perfect secrecy from the
information theoretic point of view in [1], where a secret key is
considered to protect the confidential messages. Later Wyner
proposed the so-called discrete memoryless wire-tap channel
model in the seminal paper [2], where the signal transmitted
over the main channel is eavesdropped by a wire-tapper. As-
suming that the eavesdropper channel is a degraded version of
the main channel, Wyner showed that secure communication
is possible without sharing a secret key between legitimate
users. The level of ignorance of the wire-tapper with respect
to the confidential message is measured by the equivocation
rate. Perfect secrecy requires that the equivocation rate is
asymptotically equal to the message entropy rate. Csiszár and
Körner generalized the results and determined the secrecy
capacity region of broadcast channel with confidential mes-
sages in [3]. The result was extended to the Gaussian wire-tap
channel in [4]. Some recent research efforts aim to determine
the capacity regions of the multiple access channel [5]–[7]
and the broadcast/interference channels [8] with confidential
messages.

Due to its broadcast nature, wireless communication is
particularly susceptible to eavesdropping. The effect of fading
on the secure wireless communications was studied in [9]–
[12]. More specifically, [10]–[12] studied the secrecy capacity
of ergodic fading channels with the full CSI assumption, i.e.,
when all parties have perfect CSI of both the main channel and
the eavesdropper channel prior to the message transmission.
[12] also studied the ergodic scenario where the transmitter
does not have the CSI of the eavesdropper channel.

In this paper, we consider communicating confidential in-
formation over block fading channels when the transmitter has
no channel state information, but only channel statistics. This
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setting is of strong interests in many practical communication
systems, in particular, where the feedback of the instantaneous
CSI is either too costly or physically infeasible. Due to the
absence of CSI, we consider the case when a fixed Wyner
secrecy code is used at the transmitter for all channel states.
However, both reliability and perfect secrecy can be achieved
only for a subset of channel states in this case. Hence, we
identify this reliable and secure channel state set for a given
Wyner code. Furthermore, we prove that there exists a single
Wyner code ensuring reliability and perfect secrecy for all
channel states within the set. Outage events correspond to the
channel state pairs that are not in the set. More specifically,
we define two outage events: reliability outage and secrecy
outage for the main channel and the eavesdropper channel
respectively. The secrecy throughout is evaluated for given
outage probabilities. We study the Rayleigh block fading chan-
nel under different coding schemes, in which a codeword can
span a single or multiple coherence intervals corresponding to
different delay constraints. Our results show that the diversity
obtained through multiple fading block coding can increase
the secrecy throughput significantly.

II. SYSTEM MODEL AND PRELIMINARIES

A. Channel Model

As shown in Figure 1, the transmitter sends a confidential
message to the destination via the main channel in the presence
of an wire-tapper, who listens to the message through the
eavesdropper channel. Both the main channel and the eaves-
dropper channel experience independent M -block fading, that
is, the channel gain is constant within a block while varying
for different blocks.

Confidential message w ∈ W is encoded into a codeword
xn = [x(1), x(2), . . . , x(n)], which spans M fading blocks.
The outputs from the main channel and the eavesdropper



channel are shown as follows:

y(t) =
√

hix(t) + v(t) (1)

z(t) =
√

gix(t) + u(t) for t = 1, . . . , n, i =
⌈

Mt

n

⌉
,

where {v(t)} and {u(t)} (t = 1, . . . , n) are i.i.d. with normal
distributed N (0, 1), and hi and gi, for i = 1, . . . , M , denote
the normalized (real) channel gains of the main channel and
the eavesdropper channel respectively.

Let h = [h1, . . . , hM ] and g = [g1, . . . , gM ] represent
the vectors of channel gain for the main channel and the
eavesdropper channel, respectively, and (h,g) be the channel
pair. We assume that the destination knows h, while the
eavesdropper knows g.

When the transmitted codeword xn spans a single fading
block, i.e., M = 1, we can easily compare the main channel
and the eavesdropper channel. For example, if the main
channel has better condition, i.e. h1 ≥ g1, then we say that zn

is a degraded version of yn. However, when xn spans multiple
fading blocks (M > 1), there is virtually no degraded ordering
between yn and zn.

B. Wyner Code Ensembles

In this subsection, we review Wyner codes, which achieve
the secrecy capacity of the wire-tap channel [2].

Let C(2nR0 , 2nRs , n) denote an ensemble of Wyner codes
with size 2nR0 in order to convey a message set W =
{1, 2, . . . , 2nRs} (We describe the random code generation
in Appendix A). Here, the basic idea is to use a stochastic
encoding since randomization can increase secrecy. The Wyner
code consists of a stochastic encoder fn(·) : W → Xn and a
decoding function φ(·) : Yn →W .

A stochastic encoder [3] is specified by a matrix of con-
ditional probabilities f(xn|w), here xn ∈ Xn, w ∈ W ,∑

xn f(xn|w) = 1 and f(xn|w) is the probability that
message w is encoded as channel input xn. We further assume
that any code C ∈ C(2nR0 , 2nRs , n) is constrained by the
power budget P̄ as

1
n

n∑
t=1

|x(t)|2 ≤ P̄ . (2)

Let φ
(
yn(w)

)
be the output of the decoder at the destination

when message w is sent, the average error probability of a
C ∈ C(2nR0 , 2nRs , n) code is defined as

Pe =
∑

w∈W
Pr

(
φ
(
yn(w)

) 6= w|w is sent
)
Pr(w). (3)

where Pr(w) is the probability that message w ∈ W is sent.
The secrecy level, i.e. the degree to which the eaves-

dropper is confused, is measured by the equivocation rate
(1/n)H(W |Zn,g). Perfect secrecy is defined that for any
ε > 0, the equivocation

1
n

H(W |Zn,g) ≥ 1
n

H(W )− ε (4)

When perfect secrecy is achieved, we also say that the
eavesdropper can be perfectly confused. For conciseness we
consider the following definition of good Wyner codes.

Definition 1: A Wyner code sequence C , {C(n)} is good
for a channel pair (h,g) if, by using code C(n), the legitimate
receiver can decode the message with arbitrarily small error
probability while the eavesdropper can be perfectly confused,
as n →∞.

C. Related Works

A closely related result is the secrecy rate for the memo-
ryless Gaussian wire-tap channel, in which the main channel
and the eavesdropper channel are Gaussian but of no fading.
For the Gaussian wiretap channel, it is shown in [4] that there
exists a code C ∈ C(2nR0 , 2nRs , n) such that the secrecy rate

Rs = I(X;Y )− I(X;Z) (5)

can be achieved, where I(X;Y ) and I(X;Z) are single-letter
characterized mutual information of the main channel and
the eavesdropper channel. It is also shown that the secrecy
capacity, i.e. the maximum secrecy rate is achieved when the
input distribution is Gaussian.

For block fading channels, when the transmitter has channel
state information of the main channel and the eavesdropper
channel, it can adapt either code rate or power level as in [12]
to achieve the maximum secrecy rate.

III. RELIABLE AND SECURE CHANNEL STATE SET

We are interested in the achievable secrecy rate for fading
channels when the transmitter has no channel state informa-
tion. Due to the absence of CSI, a fixed Wyner code is used.
Arbitrarily small error probability and perfect secrecy can be
achieved only for a subset of channel states. In this section,
we identify this set of channel states and provide sufficient
conditions on the secure communication over both single-
block fading and multiple-block fading channels.

A. Coding over a Single Fading Block (M = 1)

In a single fading block case, we denote the channel pair
by (h, g) for convenience, where h and g are channel gains
for the main and the eavesdropper channel, respectively.

Lemma 1: There exists a single Wyner code C ∈
C(2nR0 , 2nRs , n) good for all channel pairs (h, g) such that

I(X;Y |h) ≥ R0

I(X;Z|g) ≤ R0 −Rs (6)

where I(X;Y |h) and I(X;Z|g) are single letter mutual
information characterizations of channel (1).

Proof: To avoid confusion, we denote Y n
1 and Zn

1 to
be the output at the legitimate receiver and the eavesdropper
respectively, when a channel pair (h∗, g∗) gives single letter
characterized mutual information I(X;Y1|h∗) = R0 and
I(X;Z1|g∗) = R0 −Rs.

Since Rs = I(X;Y1|h∗) − I(X;Z1|g∗), there exists a
code C ∈ C(2nR0 , 2nRs , n) for the Gaussian wire-tap channel
(h∗, g∗) according to (5), such that Y n

1 can be decoded with



arbitrarily small error probability and the equivocation at the
eavesdropper with Zn

1 is

H(W |Zn
1 , g∗) ≥ H(W )− nε (7)

It can be shown that this code C is also good for all channel
pairs (h, g) such that I(X;Y |h) > R0 and I(X;Z|g) < R0−
Rs.

Since I(X;Y |h) > R0 = I(X;Y1|h∗), h > h∗ and Y n
1 is

a degraded version of Y n from the discussion in section II, if
Y n

1 can be decoded at the legitimate receiver with arbitrarily
small error probability, so can Y n. We also have

H(W |Zn, g)−H(W |Zn
1 , g∗)

= I(W ;Zn
1 |g∗)− I(W ;Zn|g) ≥ 0

where we use the fact that Zn is a degraded version of Zn
1 .

H(W |Zn, g) ≥ H(W |Zn
1 , g∗) ≥ H(W )− nε (8)

for any ε → 0 as n →∞.
For a given Wyner code C ∈ C(2nR0 , 2nRs , n), (6) de-

scribes a sufficient condition on the secure communication
over a single-block fading channel. In other words, it identifies
the set of good channel states. This will be used in Section
IV to define outage events and evaluate outage probabilities.

B. Coding Over Multiple Fading Blocks

In this section, we consider the secure communication
over M -block fading channel. Under the assumption of using
Wyner codes here, we attempt to answer the question whether
there exists a single code sequence (for increasing block length
n) good for all fading states such that

1
M

M∑

i=1

I(X;Y |hi) ≥ R0

1
M

M∑

i=1

I(X;Z|gi) ≤ R0 −Rs (9)

where I(X;Y |hi) and I(X;Z|gi) are single letter character-
ized mutual information of channel (1) during the i-th fading
block. Notice that this is not a trivial question, since if the
choice of the code sequence depends on the particular fading
state, it would require side information at the transmitter. The
existence of asymptotically good Wyner codes is given by the
following lemma.

Lemma 2: There exists a single code C ∈ C(2nR0 , 2nRs , n)
good for all channel pairs (h,g) satisfying (9).

Proof: In Lemma 1, we have used degradation arguments
to show that there exists a single code C good for a set of chan-
nel pairs when coding is confined over a single fading block.
However, when the code can span multiple fading blocks, there
is virtually no degraded ordering between channel vector pairs
as shown in section II. It demands a new approach to prove
Lemma 2. Due to the page limit, we only outline the proof in
Appendix B.

IV. ACHIEVABLE SECRECY THROUGHPUT OF RAYLEIGH
BLOCK FADING CHANNELS

We first define two outage events (similar as the outage
defined for ordinary communication without considering the
secrecy constraint): reliability outage for the main channel and
secrecy outage for the eavesdropper channel.

Definition 2: A channel pair (h,g) is in the outage, if it
cannot meet the conditions given in (9). More specifically, the
reliability outage occurs if

1
M

M∑

i=1

I(X;Y |hi) < R0; (10)

The secrecy outage occurs if

1
M

M∑

i=1

I(X;Z|gi) > R0 −Rs. (11)

Let Pe be the probability of reliability outage and Ps

be the probability of secrecy outage. Given a target outage
probability pair (εe, εs), we can properly choose R0 and Rs

to maximize the secrecy throughput while satisfying reliability
and secrecy requirements. Let η denote the secrecy throughput,
we consider the following problem

max
{R0,Rs}

η (12)

s.t. Pe ≤ εe and Ps ≤ εs.

When the transmitted codeword spans only a single fading
block, the optimal input distribution is Gaussian [4]. However,
the optimal input distribution p(X) is not known in general
when the codeword spans multiple fading blocks and both
CSIs are not available to the transmitter. For the sake of
mathematical tractability, we consider Gaussian input. Hence,
the channel mutual information pair is given by

I
[M]
XY ,

M∑

i=1

I(X;Y |hi) =
M∑

i=1

log2 (1 + λi) ,

I
[M]
XZ ,

M∑

i=1

I(X;Z|gi) =
M∑

i=1

log2 (1 + νi) , (13)

where λi = hi · P̄ and νi = gi · P̄ are the signal-to-noise
ratio (SNR) at the receiver and the eavesdropper respectively
during the i-th slot.

Here, we also consider a repetition coding (also called
repetition time diversity or RTD) scheme as a comparison. The
RTD code C(n) is a concatenated code, including a Wyner
code C1(n1) ∈ C(2n1R0 , 2n1Rs , n1) as the outer code and a
simple repetition code of length M as the inner code, i.e.,

C(n) = [C1(n1), C1(n1), . . . , C1(n1)︸ ︷︷ ︸
M

]. (14)

By using RTD codes, the maximal ratio combining (MRC) is
performed at both receivers, which essentially transform the
parallel channel pairs into a scalar (Gaussian) channel pair. In
this case, the optimal input distribution is Gaussian and the



mutual information pair can be written as

I
[RTD]
XY , log2

(
1 +

M∑

i=1

λi

)

I
[RTD]
XZ , log2

(
1 +

M∑

i=1

νi

)
. (15)

Following the approach for proving Lemma 1, we can show
that there exists a single RTD code sequence good for all
channel pairs satisfying

I
[RTD]
XY ≥ MR0 and I

[RTD]
XZ ≤ M(R0 −Rs).

A. Secrecy Throughput of Single-Block Fading Channels

We consider the secrecy throughput of Rayleigh block
fading channels (M = 1). In this case, the SNRs λ and ν are
exponentially distributed with the mean λ and ν, respectively.
The probability of reliability outage Pe and the probability of
secrecy outage Ps can be evaluated now by

Pe = Pr(I [1]
XY < R0) = 1− exp

[
−2R0 − 1

λ

]
,

Ps = Pr(I [1]
XZ > R0 −Rs) = exp

[
−2(R0−Rs) − 1

ν

]
,

and the secrecy throughput η is given by

η[1] = log2

(
1 + λδe

)− log2 (1 + νδs) , (16)

where δe = − log(1 − εe) and δs = − log(εs). When there
is no secrecy constraint, εs = 1 and then δs = 0, (16) is the
delay limited capacity of Rayleigh block fading channel.

B. Secrecy Throughput of M -Block Fading Channels

Now, we compute the secrecy throughput of Rayleigh M -
block fading channels based on RTD and (M -Block) Wyner
codes.

1) RTD Scheme: In this case, the channel mutual informa-
tion pair is given by (15). Note that

∑M
i=1 λi and

∑M
i=1 νi are

Gamma distributed with the mean Mλ and Mν, respectively.
Pe and Ps can be evaluated by

Pe = Pr(I [RTD]
XY < MR0) = Γ

(
M,

2MR0 − 1
λ

)
, (17)

Ps = Pr
(
I
[RTD]
XZ > M(R0 −Rs)

)

= 1− Γ
(

M,
2M(R0−Rs) − 1

ν

)
, (18)

where Γ(a, b) = 1
Γ(a)

∫ b

0
ta−1e−tdt is the lower incomplete

Gamma function and Γ(a) is the complete Gamma function.
It can be shown that the secrecy throughput is

η[RTD] =
1
M

[
log2

(
1 + λδe

)− log2 (1 + νδs)
]
, (19)

where δe = Γ−1(M, εe), δs = Γ−1(M, 1− εs), and Γ−1(a, p)
denotes the inverse Gamma function (the inverse function of
p = Γ(a, b)). We note that the inverse gamma function turns
into a logarithm function when M = 1. Hence, it is not
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Fig. 2. Secrecy throughput η versus main channel average SNR λ.

surprise that the throughput in (19) is equal to the result in
(16) for the single-block case.

2) M -Fading-Block Coding: By using (M -block) Wyner
codes C ∈ C(2nR0 , 2nRs , n), we can calculate Pe and Ps as
follows

Pe = Pr
(
I
[M]
XY < MR0

)
, (20)

Ps = Pr
(
I
[M]
XZ > M(R0 −Rs)

)
. (21)

In general, distributions of I
[M]
XY and I

[M]
XZ cannot be written in

a closed form. Hence, we resort to the Monte-Carlo simulation
to obtain the inverse empirical CDF of I

[M]
XY and I

[M]
XZ , denoted

by F−1(M, λ, p) and F−1(M, ν, p), respectively. The secrecy
throughput is written as

η[M] =
1
M

[
F−1(M, λ, εe)− F−1(M, ν, 1− εs)

]
. (22)

V. NUMERICAL RESULTS

In this section, we study the secrecy throughput of Rayleigh
block fading channels based on some numerical computations.
We consider secrecy throughput η versus main channel average
SNR λ and eavesdropper channel average SNR ν respectively.
We also investigate the relationship between the secrecy
throughput η and the number of fading blocks M .

Simulation settings are as follows: main channel average
SNR λ = 20dB, eavesdropper channel average SNR ν =
10dB, target probability of reliability outage εe = 0.05, target
probability of secrecy outage εs = 0.05, the number of fading
blocks M = 4. Through simulations, we observe that similar
results are obtained by using other parameter settings.

Figure 2 illustrates the secrecy throughput η v.s. the main
channel average SNR λ for different schemes, where S-FBC
and M-FBC stand for the single and multiple fading-block cod-
ing schemes. When λ < 16dB, the secrecy throughput closes
to zero for all three coding schemes. RTD and M-FBC yield
positive secrecy throughput from 17dB and 18dB respectively.
The S-FBC cannot give positive secrecy throughput unless
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λ > 27dB. RTD outperforms M-FBC in lower SNR region.1

We also observe that, in high SNR region, M-FBC outperforms
RTD significantly and RTD suffers large loss, even comparing
with S-FBC, which outperforms RTD when λ > 32dB in the
simulation.

Figure 3 shows the secrecy throughput η vs. the eaves-
dropper channel average SNR ν for different schemes. When
ν > 14dB (the eavesdropper channel is good), the secrecy
throughput approaches to zero for all coding schemes. RTD
outperforms M-FBC in the SNR region near to the critical
SNR point (ν ∈ [11dB − 14dB] ). When ν is lower, for
example, ν < 8dB, M-FBC are much more favorable.

Figure 4 illustrates the relationship between the secrecy
throughput and the number of fading blocks M . In practice,
different delay limits require different numbers of transmission
blocks. When the delay limit is strict (M ≤ 3 is small), it is
shown that RTD may outperform M-FBC. If the delay limit is
relaxed, M-FBC quickly outperforms RTD as M increases. We
observe that the secrecy throughput of RTD actually decreases
when M gets large. In fact, there exists an optimal M for the
RTD scheme, e.g., in figure 4, the optimal number of fading
blocks is M = 5 for RTD. In contrast, the secrecy throughput
of M-FBC increases monotonically with the increase of M .

VI. CONCLUSIONS

In this paper, we consider the reliable and secure commu-
nication over block fading wire-tap channels when the trans-
mitter has no channel state information. We assume that the
transmitter uses a fixed Wyner code for all channel states and
identify a set of channel pairs, on which reliability and perfect
secrecy can be ensured by using a deterministic code sequence.
We define the corresponding reliability and secrecy outage
probabilities. The secrecy throughput of block fading channels
follows these definitions. We consider different scenarios,
where a codeword can span a single or multiple fading blocks
due to different delay constraints. Our results show that the
diversity obtained through multiple fading block coding can

1Here and hereafter, by lower SNR region, we mean the SNR region near
to the critical point below which the secrecy throughput is zero.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M

S
ec

re
cy

 T
hr

ou
gh

pu
t

RTD
M−FBC

Fig. 4. Secrecy throughput η versus M , the number of fading blocks.

increase the secrecy throughput significantly, but the repetition
time diversity coding scheme may not. In general, multiple
fading block coding outperforms repetition time diversity
except for the region in which secrecy throughput is close
to zero.

APPENDIX

A. Wyner Code

The random coding ensemble C(2nR0 , 2nRs , n) is con-
structed based on random binning [2], [3].

Code Construction: Generate 2nR0 codewords xn(w, v),
w = 1, 2, . . . , 2Rs , v = 1, 2, . . . , 2n(R0−Rs) by choosing the
n2R0 symbols xi(w, v) independently at random according to
the input distribution PX(·).

Encoder: Given w, randomly and uniformly select v from
(1, 2, . . . , 2n(R0−Rs)) and transmit xn = xn(w, v).

Decoder: Given yn, try to find a pair (w̃, ṽ) such that
(xn(w̃, ṽ), yn) ∈ Tn

ε (PXY ). If there is no such pair, then put
out w̃ = 1.

B. Outline Proof of Lemma 2
For convenience, denote P , (h,g) and denote P as the set

of channel pairs satisfying (9) . We also denote P? = {(h,g)}
as the set of channel pairs satisfying

1
M

M∑

i=1

I(X;Y |hi) = R0 + δ, (23)

1
M

M∑

i=1

I(X;Z|gi) = R0 −Rs + δ. (24)

It is clear P? ⊂ P when δ → 0. Given any channel pair
P ∈ P?, on every fading block i = 1, . . . , M , the channel
is time-invariant memoryless. By following the same steps in
[13, Theorem 8.7.1], we can show that the average probability
of error, averaged over the code ensemble C is

EC [Pr(E1|P, C)] ≤ ε1 (25)

for any given channel pair P ∈ P? as the codeword length
n → ∞. we also consider Pr(E2), the error probability that



the eavesdropper cannot decode Xn given that it observes Zn

and also knows W . Denote B(w) to be the set of codewords
corresponding to message w ∈ W . Given w, the eavesdropper
declares that x̃n was transmitted, if x̃n is the only codeword in
B(w) that is jointly typical with zn. The eavesdropper declares
an error if either there is no codeword in B(w) jointly typical
with zn, or there is more than one. It can be shown that

EC [Pr(E2|P, C)] ≤ ε2 (26)

for any given channel pair P ∈ P? as the codeword length
n → ∞. We define an event E = E1 ∪ E2. According to (25)
and (26), by using the union bound, we have for any P ∈ P?,

EC [Pr(E|P, C)] ≤ ε1 + ε2 = ε3

The average error probability, averaged over channel pair set
P? is

EP [EC [Pr(E|P, C)]] ≤ ε3

Exchanging expectations with respect to C and with respect
to P (since the integrand is nonnegative and bounded by 1)
yields

EC [EP[Pr(E|P, C)]] ≤ ε3

There exists a sequence of codes C∗ such that

EP[Pr(E|P, C∗)] ≤ ε3.

where Pr(E|P, C∗) is a random variable which is a function
of P ∈ P?. According to the Markov inequality, we have

Pr (Pr(E|P, C∗) ≥ √
ε3) ≤ EP[Pr(E|P, C∗)]√

ε3
≤ ε3√

ε3
=
√

ε3

By letting
√

ε3 = ε4 and changing the direction of the
inequality, we have

Pr (Pr(E|P, C∗) < ε4) ≥ 1− ε4

Because Pr(E1|P, C∗) ≤ Pr(E|P, C∗) and Pr(E2|P, C∗) ≤
Pr(E|P, C∗), we have

Pr (Pr(E1|P, C∗) < ε4) ≥ 1− ε4 (27)

Pr (Pr(E2|P, C∗) < ε4) ≥ 1− ε4 (28)

(27) and (28) reveal that we can find a sequence of code C∗ ∈
C(2nR0 , 2nRs , n), for all P ∈ P? with probability 1, such that
the legitimate receiver can decode the message with arbitrarily
small error probability (A.S.E.P.), while the eavesdropper can
decode Xn with A.S.E.P., given that W is known and Zn is
observed. Using Fano’s inequality, we have

H(Xn|W,Zn,h,g) ≤ nδn

With code C∗ being used, the equivocation at the eavesdropper
can be bounded as follows.

H(W |Zn,h,g) ≥ H(Xn|h,g)− I(Xn;Zn|h,g)
−H(Xn|W,Zn,h,g)

For the first two terms, we have

H(Xn|h,g) = nR0

I(Xn;Zn|h,g) ≤ n(
1
M

M∑

i=1

I(X;Z|gi)− ε)

= n(R0 −Rs + δ − ε)

Therefore, we have

H(W |Zn,h,g) ≥ nR0 − n(R0 −Rs + δ − ε)− nδn

= n(Rs − δ1)

The perfect secrecy can be achieved for any P ∈ P? when the
sequence of code C∗ is used (with probability 1). According
to definition 1, code C∗ is good for all channel pair P ∈ P?

with probability 1.
To show that code C∗ is good for any channel pair P ∈ P ,

we can now use the degradation arguments as in the proof
of Lemma 1. For any channel pair P = (h,g) ∈ P , we can
always find a channel pair P∗ = (h∗,g∗) ∈ P?, such that
h∗ ¹ h and g∗ º g. Since code C∗ is good for P∗, we can
show that C∗ is also good for P by following the same steps
as in the proof of Lemma 1.
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